INVARIANCE TIMES *
Résumé
On a probability space $(\Omega,\mathcal{A},\mathbb{Q})$ we consider two filtrations
$\mathbb{F}\subset \mathbb{G}$ and a $\mathbb{G}$ stopping time $\theta$ such that the $\mathbb{G}$ predictable processes coincide with $\mathbb{F}$ predictable processes on $(0,\theta]$. In this setup it is well-known that, for any $\mathbb{F}$ semimartingale $X$,
the process $X^{\theta-}$ ($X$ stopped ``right before $\theta$'') is a $\mathbb{G}$ semimartingale.
Given a positive constant $T$,
we call $\theta$ an invariance time if there exists a probability measure $\mathbb{P}$ equivalent to $\mathbb{Q}$ on $\mathcal{F}_T$ such that, for any $(\mathbb{F},\mathbb{P})$ local martingale $X$, $X^{\theta-}$ is a $(\mathbb{G},\mathbb{Q})$ local martingale.
We characterize invariance times in terms of the $(\mathbb{F},\mathbb{Q})$ Az\'ema supermartingale of $\theta$ and we derive a mild and tractable invariance time sufficiency condition. We discuss invariance times in mathematical finance and BSDE applications.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...