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Abstract 
 
   In this paper, we present a robust procedure for the integration of functions discontinuous across 
arbitrary curved interfaces defined by means of level set functions for an application to linear and 
quadratic eXtended Finite Elements. It includes the possibility to have branching discontinuities 
between the different sub-domains. For the volume integration, integration subcells are built from 
the approximation mesh, in order to obtain an accurate approximation of the sub-domains. The set of 
subcells we get constitutes the integration mesh, which can also be used by the visualization tools. 
Then, we extract the faces of these integration subcells that coincide with the sub-domain 
boundaries, allowing us to perform surface integrations on the sub-domain boundaries. When 
combined with the eXtended Finite Element Method (XFEM) optimal convergence rates are obtained 
with curved geometries for both linear and quadratic elements. 
 
Keywords: XFEM, level-set-method, high order approximation, numerical integration, curved geometries 
 

Introduction 
 
   The Extended Finite Element Method (X-FEM) is an extension to the classical finite element method 
introduced by Moës, Dolbow and Belytschko in [Dolbow**] which allows easy handling of problems 
with jumps or singularities. The X-FEM accounts for the presence of discontinuities by means of a 
local enrichment of the polynomial interpolation space with discontinuous functions, based on the 
partition of unity method [Melenk**]. The discontinuities are usually described implicitly by means of 
the level set method [Osher**], [Sethian**]. Some of the finite elements of the mesh are then 
crossed by the implicit discontinuities. This implies the necessity to account for the presence of 
discontinuities within the elements for the numerical integration. The finite elements are split into 
integration subcells approximating the subdomains formed by the arbitrary interfaces, so that the 
classical numerical integration techniques may be used on each continuous subdomain. One may also 
want to enforce loadings on the immersed discontinuities (contact efforts, fluid pressure in the case 
of hydraulic fractures). This requires a reconstructed approximation of the arbitrary discontinuities. It 
is clear then that the accuracy of the extended finite element depends on the quality of 
approximation of the subdomains formed by the immersed discontinuities. For this matter, 
appropriate error measures have been introduced by Ferté [Ferté**] for linear and quadratic 
extended finite elements. Corresponding theoretical orders of convergence were obtained by in 2 
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dimensions. In this paper, we propose an accurate integration technique for 3 dimensional quadratic 
models. The presence of discontinuities within the elements also prefigures major conditioning issues 
as the shape function supports associated to enriched degrees of freedom depends on the position 
of the arbitrary interfaces. This is even worse for 3 dimensional quadratic models. For this aim, we 
rely on the work of Ndeffo et al [Ndeffo**] who proposed a robust X-FEM formulation for quadratic 
models. In particular, we extend it to the case of branched interfaces. 
   The extension of the X-FEM to higher order elements has been widely considered. First of all, Stazi 
and Belytschko [Stazi**], based on the work of Chessa [Chessa**] on the partition of unity, proposed 
a quadratic interpolation for the classical part of the displacement but a linear one for the enriched 
Heaviside and crack-tip part. In order to better describe the crack curvature, the level set function 
was discretized using the same quadratic shape functions as those of the classical part of 
displacements and its iso-zero was approximated by means of a linear subdivision. But the authors 
highlighted the necessity to consider the curvature of the interface for the design of the integration 
subcells. Cheng and Fries [Cheng**], Dréau et al. [Dréau**], and Mounmassi and coworkers 
[Mounmassi**] observed suboptimal convergence rates for higher formulation with linear 
representations of curved interfaces. The description of the curved crack geometries over finer 
subgrids allowed to recover optimal error rates, provided that the straight subcells approximating the 
curved crack were small enough to compensate the interpolation error perpetrated by the linear  
subdivision [Legrain2**]. Finally, Legay, Wang and Belytschko [Legay**] and Huerta [Huerta**] used 
quadratic curved subcells in 2 dimensions to approximate curved interfaces and observed optimal 
convergence rates. The quadratic interpolation of the crack-tip part of the enrichment was 
considered in [Laborde**] but encountered major conditioning issues. In order to circumvent this 
difficulty, alternative enrichment strategies were proposed: enrichment with cutoff functions 
[Chahine**], vectorial enrichment [Chevaugeon**] or both combined [Nicaise**]. The use of a 
preconditioner over a fixed enriched area around the crack-tip [Béchet**] also offered a successful 
remedy. The numerical examples we present in this paper are limited to Heaviside enrichment, but 
our cutting procedure provides an accurate quadratic approximation of crack fronts which may be 
combined with the tools mentioned above for the integration over crack tip areas.  
    In this paper, the approach of Legay and coworkers [Legay**] is extended to 3 dimensional models. 
Starting from the discretized iso-zero of the level set, the elements are split into straight tetrahedral 
subcells in the linear case and quadratic curved tetrahedral subcells in the quadratic case. The 
resulting integration subcells are then considered as belonging to one or the other side of the 
discontinuity. The numerical results we obtain show the accuracy of the proposed integration 
procedure. 
   This paper is organized as follow. Some preliminaries are given in Section 1: we discuss the 
integration problem within the extended finite element method framework. Then Section 2 focuses 
on the partitioning of the approximation mesh with respect to the arbitrary discontinuities. The 
elements of the mesh that are crossed by the discontinuities are split into integration subcells fitting 
the discontinuities. In Section 3, we detail the recovery of the approximated discontinuity surfaces as 
the set of faces of integration subcells fitting the arbitrary discontinuities. In Section 4, we depict the 
X-FEM formulation we use for branched discontinuities. Then, convergence analyses are performed 
on the resolution of the approximated subdomains for 3D models with curved branched interfaces. 
Optimal convergence rates are achieved for both the linear and the quadratic case. Finally, we 
perform X-FEM mechanical test cases are conducted in 3 dimensions with a single curved interface. 
Convergence analyses are performed for both the displacement norm and the energy norm. Once 
again, we obtain optimal convergence rates for both the linear and the quadratic case. 
 
 
 
 
 



Part 1: Preliminaries 

1.1 Model problem 

   The formulation is written within the framework of linear elastostatic. We consider a crack Г in a 

domain 𝛺 with boundary 𝜕𝛺 and outward normal 𝑛, representing a linear elastic and isotropic solid. 

The crack is composed of two walls Г− and Г+ whose outward normal are respectively  𝑛− and  𝑛+. 

The domain is submitted to imposed displacements �̅� on Г𝑢 and imposed tractions 𝑡̅  on Г𝑡. The 

fracture walls are eventually subject to imposed tractions 𝑡−̅̅̅ and 𝑡+̅̅̅ on Г− and Г+ (Figure 1). We 

study the case without volumic forces, in small strain. Stresses, strains and displacements are 

respectively denoted by 𝜎, 𝜀 and 𝑢. The problem is to find the admissible displacement field which 

satisfies the following equations: 

 

∇. 𝜎 = 0 on 𝛺 

𝜎. 𝑛 = 𝑡̅ on 𝛤𝑡 

𝜎. 𝑛− = 𝑡−̅̅̅ on  𝛤− and 𝜎. 𝑛+ = 𝑡+̅̅̅  on 𝛤+ 

𝜀(𝑢) =
1

2
(∇u + (∇u)𝑡) on 𝛺 

𝑢 = �̅�  on 𝛤𝑢 

σ= 𝐶: 𝜀 on 𝛺 where 𝐶 is Hooke’s tensor  

Figure 1: definition of the problem. 

 

Let 𝑈 be the space of admissible displacement field and 𝑈0 the space of kinematically admissible test 

functions, vanishing on 𝛤𝑢. The weak form of equilibrium elastostatic and boundary conditions can be 

written as: 

Find 𝑢 ∈ 𝑈 such that: 

∫ 𝜀(𝑢): 𝐶: 𝜀(𝑢)𝑑𝛺 =
𝛺 ∫ 𝑡̅. 𝑣𝑑𝛺

Г𝑡
+ ∫ 𝑡−̅̅̅. 𝑣𝑑𝛺Г−

+ ∫ 𝑡+̅̅̅. 𝑣𝑑𝛺Г+
 , ∀ 𝑣 ∈ 𝑈0                          (1) 

   Within the finite element method, the domain 𝛺 is meshed. The approximation of the 

displacement field 𝑢ℎ on the elements of the mesh is:  

𝑢ℎ(𝑥) =∑𝜑𝑖(𝑥)𝑢𝑖
𝑖∈𝑁

 

where 𝜑𝑖  are the finite element shape functions , 𝑢𝑖 the nodal displacements and 𝑁 the set of nodes 

of the mesh. 

   But the internal crack Г does not necessarily conform the mesh. So in the framework of the 

extended finite element method (through the partition of unity [Melenk**]), the approximation of 

the displacement field is enriched by additional discontinuous functions to allow a displacement 

jump across the crack: 

𝑢ℎ(𝑥) = ∑ 𝜑𝑖(𝑥)𝑢𝑖𝑖∈𝑁 +∑ 𝜑𝑗(𝑥)𝐹(𝑥)𝑎𝑗𝑗∈𝑁𝑔                                                 (2) 



where 𝐹 is the enrichment function; 𝑎𝑗 are the additional degrees of freedom for enriched nodes and 

𝑁𝑔 the set of enriched nodes. The function 𝐹 is discontinuous across the fracture Г, usually 

represented by means of level set functions. 

1.2 Level set method 

   The arbitrary discontinuities are localized thanks to level set functions. An arbitrary interface is 

introduced thanks to a single level set function which represents the normal distance to the interface 

surface. The interface then corresponds to the iso-zero of this level set. In this article, this level set 

function is named the normal level set or 𝑙𝑠𝑛. When it comes to describing arbitrary cracks, two level 

sets are necessary. The first one still marks the normal distance to the crack surface, regardless of the 

presence of the crack front. The second one, the tangential level set (𝑙𝑠𝑡), is the tangent distance to 

the crack front with respect to the crack surface. The crack is defined as the set of points 𝒙 that 

satisfy: {
𝑙𝑠𝑛(𝒙) = 0
𝑙𝑠𝑡(𝒙) < 0

. The level sets are often chosen as distance functions satisfying: {
‖𝛁𝑙𝑠𝑛‖ = 1
‖𝛁𝑙𝑠𝑡‖ = 1

 

and given their definition, they must also satisfy: 𝛁𝑙𝑠𝑛 ∙ 𝛁𝑙𝑠𝑡 = 0 

   On Figure 2 (bottom), we observe the arbitrary crack described by a normal level set (top left) and a 

tangential level set (top right). 

 

Figure 2: on the use of level set functions to describe arbitrary discontinuities. 

   In the implementation we have chosen and which is the most common, the level set functions are 

approximated by the same shape functions as the displacement field (see [Moës**]). This enables 

the crack shape to be described entirely in terms of nodal values. Of course this is not necessary nor 

always most convenient and one could chose to work with the functions themselves. However, in 

case of automatic propagation, the functions are not known explicitly and their numerical estimates 

at the nodes provide the only information to characterize them. So from now on, we abusively use 

the expressions “normal level set” and “tangential level set” to designate the discretized level sets.  

   The crack Г depicted by the original level set functions is then discretized within the finite element 

mesh by means of the discretized level set functions. The resulting discretized discontinuity is 

denoted Гℎ. Finally, the elements crossed by Гℎ are split into integration subcells approximating the 

discontinuity (quadratic integration subcells in the quadratic case and linear ones in the linear case). 

The resulting approximation of the crack is denoted Г̃and does not necessarily coincide with the 



discretized crack Гℎ [Ferté1**] (see Figure 4). In order to measure the error introduced in this two 

steps process, we compute the resolution 𝜀 defined as follow: 

𝜀 = 𝑚𝑎𝑥𝒙∈𝛤(𝑚𝑖𝑛�̃�∈Г̃|𝒙 − �̃�|) 

For each point 𝒙 of the theoretical interface 𝛤, we compute the distance to the approximated 

interface 𝑚𝑖𝑛𝒙′∈Г̃|𝒙 − �̃�|. Finally, we take the maximum over 𝒙 ∈ 𝛤. The resolution 𝜀 is then the 

maximal distance between the analytical interface and the approximated inteface. Ferté ([Ferté1**]) 

showed that the resolution is proportional to ℎ2 in the linear case and ℎ3 in the quadratic case, ℎ 

denoting the representative size of the elements of the mesh, provided that the theoretical crack 𝛤 

has sufficient geometric continuity. 

 

Figure 4: the analytical arbitrary interface 𝜞 (left), the discretized iso-zero of the normal level set 𝛤ℎ 

(middle) and the approximated interface 𝛾 (right). 

1.3 Domain integration 

   The approximation of the displacement field is discontinuous across the crack (equation (2)) so that 

the quantities we have to integrate over the domain 𝛺 (equation(1)) are also discontinuous. In order 

to integrate discontinuous quantities on each side of an interface, a first step consists in the design of 

a physical support for each sub-domain so that we can use the classical integration techniques on 

each continuous domain. We aim at getting a quadratic accurate approximation of the sub-domains 

cut off by the arbitrary discontinuities. 

   In order to obtain an approximation of the sub-domains, we identify the elements of the mesh that 

are crossed by an arbitrary discontinuity and divide them into integration subcells in compliance with 

the discontinuity. Within an element that includes a crack front, we perform this cutting procedure 

regardless of the presence of the crack front (Figure 3). The presence of the crack front is then 

eventually taken into account with specific degrees of freedom associated to singular enrichment 

functions [Dolbow**] [Béchet**] or with internal variables within the framework of cohesive zone 

model [Ferté2**]. In the approach proposed by Minnebo et al. [Minnebo**], the elements of the 

mesh that include the crack front are cut with respect to the crack surface only: {𝑙𝑠𝑛 = 0} ∩ {𝑙𝑠𝑡 <

0}, so that the crack front position is topologically induced by the set of integration subcells. But the 

extension of this method to 3D models is laborious. Two types of elements are then concerned by 

the cutting procedure for a crack: 

- The elements that are entirely crossed by a discontinuity. The edges of these elements are 

strictly intersected by the iso-zero of the normal level set and on each of these intersection 

we satisfy 𝑙𝑠𝑡 < 0. 

- The elements that are cut by the discontinuity and include a piece of the crack front. The 

edges of these elements are strictly intersected by the iso-zero of the normal level set and on 

the set of intersection points we satisfy max{𝑙𝑠𝑡} ∗ min {𝑙𝑠𝑡} < 0. 

 



                                 

Figure 3: a crack on a regular mesh (left) and the triangular integration subcells generated in the 

elements crossed by the crack (right). 

  Once the cutting procedure is done, we can make the distinction between two meshes. The initial 

mesh whose nodes carry the degrees of freedom of the problem and the mesh resulting from the 

elements of the initial mesh that are not cut and the integration subcells designed to fit the arbitrary 

discontinuities. We denote this second mesh integration mesh, it is used for the domain integration 

but also for post-processing with visualization tools. 

   The difficulty of the problem lies in the construction of the integration subcells. We must have a 

systematic and robust procedure that manages to shape quadratic sub-elements fitting arbitrary 

discontinuities for 3D models with curved cracks. To our knowledge, there are few methods 

described in the literature [Fries**] for the cutting of 3D elements in the quadratic case. In the 

following, we propose a robust method to consistently create quadratic subcells fitting a crack 

surface in the 3D case. 

 

Part 2: Partitioning 3D domains with arbitrary discontinuities 

 

2.1 Overview of the cutting procedure 

   Our cutting procedure performs without refinement. We may then fail to identify small inclusions 

embedded within a single element, but we assume the user is aware of the relative size of the 

element of the mesh compared to the refinement of the level sets. On the contrary, the approach 

proposed by Fries et al [Fries**] uses a sample grid to detect eventual changes in the sign of the level 

set within the elements of the mesh. Adaptative remeshing with quadtree and octree meshes have 

also been studied in the extended finite method [Legrain**]. These methods enable a finer 

approximation of the immersed discontinuities and reduce the number of topologically distinct 

cutting configurations. Similarly to the approach of [Fries**], we build integration subcells fitting the 

arbitrary discontinuities with a quadratic accuracy. Then, we recover a reconstructed approximation 

of the immersed interfaces as the set of faces of the integration subcells coinciding with the 

discontinuities. Two noticeable features of our cutting procedure are the systematic preliminary 

reduction into primary elements and the level set adjustment procedure. This considerably reduces 

the number of topologically distinct cutting configurations we may encounter. The determination of 

the intersection points between the mesh and the immersed boundaries is systematically performed 

in the reference configuration of the elements so that the overall cutting procedure only relies on a 

one dimensional root-finding algorithm. We expect a quadratic convergence for this Newton-

Raphson algorithm. Since the procedure depicted in this paper has been implemented in industrially 



oriented finite element software, all the annoying cases have been identified and thoroughly treated. 

An overview of the overall cutting procedure, including the design of the integration subcells and the 

recovery of the contact faces, is summarized in Annex 1. Finally, the integration procedure detailed in 

sections 2 and 3 is entirely applicable for linear models. The difference lies in the fact that middle 

nodes are not necessary in the linear case for the voluminous integration subcells as well as for the 

contact faces. 

2.2 Level set adjustments 

   In the linear case, the intersections between the iso-zero of the discretized normal level set with 

the mesh are found two ways: 

- If at a node of the mesh 𝑙𝑠𝑛(𝑁) = 0, then the node is located on the iso-zero, 

- If at the edge linking node A and B 𝑙𝑠𝑛(𝑁𝐴) ∗ 𝑙𝑠𝑛(𝑁𝐵) < 0, then the position of the 

intersection point 𝐼 is given by: 𝐼 = 𝑁𝐴 +
𝑙𝑠𝑛(𝑁𝐴)

𝑙𝑠𝑛(𝑁𝐴)−𝑙𝑠𝑛(𝑁𝐵)
𝑁𝐴𝑁𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  (see Figure 5), if the level set 

is a distance function.  

   The quadratic case requires more attention. The intersections between the iso-zero of the 

discretized normal level set and the mesh are localized: 

- At the nodes of the mesh satisfying 𝑙𝑠𝑛(𝑁) = 0 

- On any edge strictly cut by the the iso-zero of the discretized normal level set. 

   But the condition for an edge to be cut is not similar to the linear case. Indeed, along the edge of a 

quadratic mesh, the discretized level sets are marked at three locations: the two end nodes and the 

middle node. This leads to potential double cancelation of the discretized level sets along an edge 

(see Figure 5). 

 

Figure 5: an intersection between the iso-zero of the normal level set and an edge in the linear case 

(left) and a case of double cancelation of the normal level set along an edge in the quadratic case 

(right). 

   In the end, the condition for an edge to be strictly cut by the iso-zero of the normal level set in the 

quadratic case is: max{𝑙𝑠𝑛(𝑁𝐴), 𝑙𝑠𝑛(𝑁𝐵), 𝑙𝑠𝑛(𝑁𝑀)} ∗ min {𝑙𝑠𝑛(𝑁𝐴), 𝑙𝑠𝑛(𝑁𝐵), 𝑙𝑠𝑛(𝑁𝑀)} < 0. The 

choice is made to restrict the situations of double cancelation of the normal level set along an edge 

in order to reduce the number and the complexity of the cutting configurations. For this aim, we 

proceed to level set adjustments. 

  The only cases of multiple cancelations of the discretized normal level set along an edge we accept 

are depicted in Figure 6: 

                     

Figure 6: the two cases of multiple cancelations of the level sets along a three node edge which are 

authorized. 

   Either the normal level set is null for each node of the edge, either it is null for one vertex node and 

the middle node. We also forbid the case where the iso-zero of the normal level set brushes against 



an edge: {
𝑙𝑠𝑛(𝑁𝐴) ∗ 𝑙𝑠𝑛(𝑁𝐵) > 0

𝑙𝑠𝑛(𝑁𝑀) = 0
 . Four situations encountered with the discretized normal level set 

must then be adjusted. They are depicted on Figure 7. 

 

Figure 7: level set adjustments along an edge. 

   For each case, we modify the value of the discretized normal level set at some nodes to be reduced 

to one of the two configurations of Figure 6.  

  Each time an adjustment is performed we introduce an error because we modify the value of the 

discretized normal level set at one or two nodes. The approximated iso-zero of the normal level set 

𝛤ℎis then shifted (see Figure 4). It is not an optimal solution. As soon as we make adjustments, the 

convergence properties for the approximation of the sub-domains may not apply. But this choice is 

justified by the following arguments: 

- the restriction of the double cancelation situations significantly reduces the number and the 

complexity of cutting configurations. 

- the adjustments are likely to happen only when the iso-zero of the discretized level set is 

highly curved and close to an edge. The use of thinner meshes always ends up solving the 

problem. 

- the code is able to return a message each time an adjustment is performed. And in order to 

provide an indication on the error introduced, we measure the shift realized relatively to the 

range of the level set values over the support of the shifted node. 

Remarks:  

 when an adjustment is performed on an edge, it can induce a situation that requires an 

adjustment on an adjacent edge. So the procedure is performed recursively until no more 

adjustment is needed. 

 the exact same procedure is applied to the discretized tangential level set. 

2.3 Reducing the problem 

  Before we begin the treatment of an element that needs to be cut, we perform a prior treatment in 

order to reduce the problem. In the reference configuration of the parent element, we systematically 

split the non-simplex elements into a set of simplex cells: tetrahedral elements for 3D models and 

triangles for 2D models. In this way, we only have one type of cell to consider for the cutting 

procedure. It considerably reduces the number of cutting configurations we may come across. In 

Figure 8 and 9, we depict the partitioning of the non-simplex elements into simplex cells. 



                            

Figure 8: Partition of a quadrangle into two triangles (left) and partition of a pyramid into two 

tetrahedral elements (right). 

  

       

Figure 9: Partition of a pentahedron into three tetrahedral elements (left) and partition of a 

hexahedron into six tetrahedral elements (right). 

   We denote the set of simplex cells obtained as the primary simplex cells. For the simplex elements, 

the set of primary simplex cell is composed by the element itself. 

   In the quadratic case, this partitioning induces the apparition of internal edges and additional 

nodes. These additional nodes were not part of the initial mesh; they are fictitious nodes that do not 

carry degrees of freedom. As the internal edges were not part of the original mesh, they were not 

concerned by the level set adjustment procedure. We can thus observe double cancelations of the 

level sets along these internal edges. This would bring undesirable cutting configurations. A solution 

to bypass this problem is explained in Section 2.5. It relies on the fact that we can choose between 

different partitions for the non-simplex elements.  

   Indeed there is not a unique manner to split a quadrangular element into two triangles, there are 

two (see Figure 10). The same goes for the pyramidal elements. There are two eligible sets of 

tetrahedral elements depending on how the internal edge splits the quadrangular face. For the 

pentahedron, we count 6 different manners to obtain a partition of 6 tetrahedral elements (see 

Figure 10). Finally, there are 6 different ways to partition a hexahedron into two pentahedra (see 

Figure 10). So we expect a maximum of 63different manners to partition a hexahedron into 6 



tetrahedral elements. But amongst these 63different possibilities, a lot are identical due to 

symmetries and we only keep those who ensure the conformity between the different tetrahedral 

elements. One can show we are left with 72 distinct manners to partition a hexahedron into 6 

conforming tetrahedral elements. These different manners to partition the non-simplex elements 

into primary simplex cells constitute splitting configurations. We keep in store the possibility to select 

these different configurations. As we will observe in Section 2.5, the use of these different 

configurations is essential to prevent the apparition of undesirable double cancelation of the level 

set along the edges of the primary simplex cells. 

                   

Figure 10 : the two different configurations for a quadrangular element (left), the 6 different 

configurations for a pentahedron (middle) an the six different ways to partition an hexahedron into 

two pentahedra (right). 

   All the elements of the mesh that need to be cut are now split into a partition of simplex cells. The 

problem is now reduced to the cutting of simplex cells with respect to the iso-zero of the normal 

level set. 

2.4 Intersections between the primary simplex cells and the iso-zero of the tangential level set 

   For all the elements that need to be cut, we loop over the primary simplex cells and determine the 

intersections with the iso-zero of the discretized normal level set. For each primary simplex cell: 

- we loop over the vertex nodes and identify those who coincide with the iso-zero of the 

normal level set (𝑙𝑠𝑛(𝑁) = 0). We denote as 𝑛𝑠 the number of intersection points coinciding 

with vertex nodes of the primary simplex cell. 

- we loop over the edges and for those verifying 𝑙𝑠𝑛(𝑁𝐴) ∗ 𝑙𝑠𝑛(𝑁𝐵) < 0, we determine the 

position of the intersection point. If 𝑙𝑠𝑛(𝑁𝑀) = 0, the intersection point directly coincides 

with the middle node 𝑁𝑀. In the opposite case, we use the root finding algorithm 1 to 

determine the position of the intersection point. We denote by 𝑛𝑒 the number of edges 

intersected by the iso-zero of the normal level set which includes the edges intersected at 

one vertex node and at the middle node (see Figure 6) 

Remark: the unwanted cases of double cancelation of the iso-zero of the normal level set along an 

edge are ignored at this stage. They will be detected and cured during the next step (Section 2.5) 

   In order to determine the position of an intersection point on the edge of a primary simplex cell, we 

move to the reference configuration of the parent element and use a Newton-Raphson algorithm. 

The relocation in the reference configuration of the parent element presents two major advantages: 

- the edges of the primary simplex cells are necessarily straight in the reference configuration 

of the parent element (see Figure 11). 



- the convergence criterion for the Newton-Raphson algorithm is the same for all edges. 

        

Figure 11: a quadrangular element crossed by the iso-zero of the normal level set in the real space 

(left) and  in the reference configuration (right). 

A parameterization of a straight edge 𝑁𝐴𝑁𝐵in the reference space is: = 𝑁𝐴 + 𝑡 ∗ 𝑵𝑨𝑵𝑩⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   , 𝑡 ∈ [0, 1] 

   Algorithm 1 determines the intersection point between the iso-zero of a discretized level set and a 

straight line within an element. It only requires an initial guess of the position of the zero-level set 

and a unit vector carrying the search direction. 

�⃗⃗� =
𝑵𝑨𝑵𝑩⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

‖𝑵𝑨𝑵𝑩⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖
  provides the unit vector and a relevant initial guess is the linear approximation: 

𝐼0 = 𝑁𝐴 +
𝑙𝑠𝑛(𝑁𝐴)

𝑙𝑠𝑛(𝑁𝐴)−𝑙𝑠𝑛(𝑁𝐵)
𝑵𝑨𝑵𝑩⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

Algorithm 1: Research of an intersection point between the iso-zero of a level set and a straight 

line within an element 

 We set 𝑛 to 0, 𝛼0 to 0 and ∆𝛼0 to 2𝜀 

 While |∆𝛼𝑛| > 𝜀 

o 𝑛 = 𝑛 + 1 
o 𝐼𝑛 = 𝐼𝑛−1 + ∆𝛼𝑛−1�⃗⃗�  

o Compute the shape functions 𝜑𝑖  associated to the nodes of the parent element for 

𝐼𝑛 
o Interpolate the value of the level set 𝑙𝑠(𝐼𝑛) = ∑ 𝜑𝑖𝑛𝑜𝑑𝑒𝑠 𝑙𝑠𝑖 

o Compute the derivative of the level set field along the unit vector �⃗⃗�  : �⃗⃗� 𝑙𝑠(𝐼𝑛). �⃗⃗�   

o ∆𝛼𝑛 = −
𝑙𝑠(𝐼𝑛)

�⃗⃗� 𝑙𝑠(𝐼𝑛).�⃗⃗� 
 

 Return  𝐼𝑛 

   Tolerance  𝜀 is about a displacement increment in the reference configuration of the parent 

element. It is common to all elements and edges. Since the level set field are polynomial within an 

element, we expect a quadratic convergence for the Newton-Raphson algorithm. 

Remark: when we look for an intersection point on an edge that coincide with an edge of the parent 

element, the discretized level set field only depends on the values of the level set at the three nodes of 

the edge. We could directly get the position of the intersection point from the resolution of a second 

order polynomial equation. 

 



2.5 Shaping the integration subcells 

  Once we have determined the intersections between the primary simplex cells and the iso-zero of 

the normal level set, we associate to each primary simplex cell a cutting configuration. There is a 

total of 3 cutting configurations in the 2D case and 9 cutting configurations in the 3D case. The 

different cutting configurations are distinguished with the number 𝑛𝑠 of intersection points 

coinciding with vertices nodes and the number 𝑛𝑒 of edges intersected by the iso-zero of the normal 

level set. 

   In the following, we detail the different cutting configurations encountered in 2D and 3D. The table 

hereunder gives the number of subcells generated by the primary simplex cells for each cutting 

configuration. On Figure 12 to 23, we depict the different cutting configurations, the iso-zero of the 

tangential level set appearing in red. The nodes and the edges of the primary simplex cells that 

coincide with this iso-zero also appear in red. 

 𝒏𝒆 𝒏𝒔 Number of subcells generated Figure 

 

 

2D 

 

1 1 2 12 

2 0 3 13 

2 1 3 14 

 

 

 

 

 

 

 

3D 

 

1 2 2 15 

2 1 3 16 

2 2 3 17 

3 0 4 18 

3 1 4 19 

3 2 4 20 

4 0 6 21 

4 1 6 22 

3 1 5 23 

Table 1: cutting configurations for the primary simplex cells. 

 

Remark: there are two configurations labeled {
𝑛𝑒 = 3
𝑛𝑠 = 1

. The first is distinguishable from the second 

one because it has a common vertex for all three intersected edges. 

     

Figure 12                                                                              Figure 13 



                        

Figure 14                                                                                     Figure 15 

 

Figure 16 

 

 

Figure 17 

 

Figure 18 



 

Figure 19 

 

 

Figure 20 

 

Figure 21 



 
 

Figure 22 

 
 

Figure 23 

 

   In order to maintain a quadratic accuracy in the approximation of the sub-domains on both sides of 

the discontinuity, the middle nodes of the integration subcells must be thoroughly determined. 

   At this stage, we have only resolved the intersections between the primary simplex cell and the iso-

zero of the normal level set so that we have at our disposal the entire set of vertex nodes for the 

integration subcells. In the following, we detail the determination of the middle nodes for the 3D 

configuration {
𝑛𝑒 = 4
𝑛𝑠 = 0

. The procedure is similar for the other configurations. We distinguish 4 types 

of middle nodes. Here again, the determination of these nodes is performed in the reference 

configuration of the parent element. 

1st type of middle nodes 

   The edges of the primary simplex cell that are intersected by the iso-zero of the normal level set are 

split into two edges, one on either side of the discontinuity. We place the middle nodes on each of 

these edges. For an edge 𝑁𝐴𝑁𝐵 of a primary simplex cells intersected at point 𝐼, the positions of the 

middle nodes are obviously 𝑁𝐴 +
1

2
∗ 𝑵𝑨𝑰⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑁𝐵 +

1

2
∗ 𝑵𝑩𝑰⃗⃗⃗⃗ ⃗⃗⃗⃗ . On Figure 24, we observe the first type 

middle nodes placed on the intersected edges of the primary tetrahedron. 



  

Figure 24: the primary tetrahedron with the 4 intersection points 𝐼1,2,3,4 (left) and the first type middle 

nodes (black circles) on its intersected edges (right). 

2nd type of middle nodes 

   The second type middle nodes are located on the faces of the primary tetrahedron, between the 
intersection points, on the approximated discontinuity. For each intersected face, we search this 
middle node on the perpendicular bisector to the segment formed by the two intersection points. 
For example in Figure 26 (left), we search the middle node between 𝐼3 and 𝐼4 on the perpendicular 
bisector to the segment [𝐼3𝐼4] on the bottom face of the primary tetrahedron. We still use algorithm 
1 to locate these middle nodes. But we must ensure that the middle node stays confined in the face 
of the current primary simplex cell. Indeed, for non-simplex elements, the middle node can be found 
in the adjacent primary simplex cell, giving away a situation of double cancelation of the tangential 
level set along an edge (see Figure 25). In order to detect this situation, we compute first the limits 
𝑡𝑖𝑛𝑓 and 𝑡𝑠𝑢𝑝 of the authorized interval along the perpendicular bisector. The middle of the segment 

[𝐼3𝐼4]  is then chosen as an initial guess and the vector �⃗⃗�  is chosen as the unit vector on the 
perpendicular bisector oriented along the gradient of the normal level set. Once the algorithm has 
converged, if the middle node is found out of the interval [𝑡𝑖𝑛𝑓 , 𝑡𝑠𝑢𝑝], we go back to the splitting into 

primary simplex cells (Section 2.3) for the parent element and select another configuration. For 
instance in Figure 25, we depict a 2D example of double cancelation of the normal level set along the 
internal edge of a quadrangle. The other splitting configuration succeeds in bypassing the problem. 
The 3D cases are similar. There might be some extreme cases for which no conformation succeeds in 
bypassing the problem. In that case, we perform a local linear approximation of the discretized 
normal level set. But these insolvable cases would definitely present very twisted level sets and a 
mesh refinement would surely solve the problem. 
 

 

Figure 25: a case of double cancelation of the normal level set along the internal edge of a 

quadrangle. The middle node 𝑀 between 𝐼1and 𝐼2 is found out of bounds (left). The other 

configuration is selected to split the quadrangle into two primary triangles, bypassing the problem 

(right) 



 

Figure 26: determination of the middle node between 𝐼3 and 𝐼4 (left) and the primary tetrahedron 

with the second type middle nodes 𝑀1,2,3,4 (right). 

3rd type of middle nodes 

   The third type middle nodes are located on the triangular faces of the primary simplex cells 

intersected by the discontinuity. These faces are split into a triangle and a quadrangle (see Figure 27 

left). The quadrangle 𝑁1𝑁2𝐼2𝐼1 is supposed to be split into two triangles. For this aim, we determine 

the middle node between 𝐼2 and the opposite vertex node 𝑁1. Whenever possible, we choose the 

middle of the segment [𝐼2𝑁1] as the middle node 𝐶 which generates one twisted sub-triangles 

instead of two (see Figure 27). But this choice may not be convenient when the discontinuity is highly 

curved. On Figure 27, the case depicted at the bottom left generates distorted sub-triangles if the 

middle node 𝐶 is chosen as the middle of the segment [𝐼2𝑁1]. In that case, we choose the middle of 

the quadratic quadrangle for 𝐶. In order to detect these situations, we compute the tangent vector 𝑗   

to the three node segment 𝐼2𝑀𝐼2 at the point 𝐼2 (see Figure 27). Depending on its position compared 

to the tangent vector �⃗�  to the segment 𝐼2𝑁1, we choose a different type of construction for the 

localization of the middle node 𝐶. 

 

Figure 27: determination of the third type middle node: 𝐶 is chosen as the middle of the segment 

[𝐼2𝑁1] (top left) and 𝐶 is chosen as the center of quadrangle 𝑁1𝑁2𝐼2𝐼1 (bottom left). The primary 

tetrahedron with the third type middle nodes in green (right). 



4th type of middle nodes 

   The last type of middle nodes are the ones located in the middle of the quadrangular faces 

approximating the iso-zero of the tangential level set. On Figure 28, we look for the middle of 

quadrangle 𝐼1𝐼2𝐼3𝐼4. The middle of segment [𝐼2𝐼4] is chosen as an initial guess and for the unit vector 

�⃗⃗�  carrying the straight search path, we choose the normalized gradient of the normal level set. 

Indeed, the gradient of the tangential level set gives the normal direction to the interface, it forms 

the best search direction. Once again, first we determine the authorized interval [𝑡𝑖𝑛𝑓 , 𝑡𝑠𝑢𝑝], 

corresponding to the intersection between the search direction and the primary tetrahedron. If the 

middle node is found out of bounds, we go back to the splitting into primary simplex cells and select 

another configuration. 

 

Figure 28: determination of the fourth type middle node in the interval [𝑡𝑖𝑛𝑓 , 𝑡𝑠𝑢𝑝] (left) and the 

primary tetrahedron with the four types of middle nodes (right). 

 

   Now that all the nodes of the integration subcells have been determined, the primary simplex cells 

are split into integration subcells according to the cutting configurations depicted in Section 2.5. The 

integration subcells are labeled with the sign of the normal level set, depending on which side of the 

discontinuity they belong to. The nodes of the integration subcells coinciding with the iso-zero of the 

normal level set are also specifically labeled. 

2.6 An extension to multi-cracked models 

   The splitting into integration subcells can be extended to multi-cracked models, in particular to 

branching discontinuities. For the elements crossed by several discontinuities, the procedure 

depicted for one interface is performed iteratively. 

   To each arbitrary discontinuity is associated a normal level set field. For branching discontinuities, 

the branched discontinuities are defined only on one side of a main discontinuity. On Figure 29, the 

second discontinuity (in green) is branched on the first discontinuity (in red) and defined only in the 

domain {𝑙𝑠𝑛1 > 0}. The third one (in blue) is branched on the second one, which was branched on 

the first one. Thus it is defined only in the domain {𝑙𝑠𝑛1 > 0} ∩ {𝑙𝑠𝑛2 > 0}.  



 

Figure 29: definition of branched arbitrary discontinuities by means of normal level set. 

   For an element crossed by several discontinuities, we proceed one discontinuity after another. For 

the first discontinuity, the procedure depicted above is normally performed. We end up with a set of 

integration subcells fitting the first discontinuity. For the cutting with respect to the second 

discontinuity, we proceed in the same way as for the first discontinuity except that the set of primary 

simplex cells is replaced by the set of integration subcells we obtained during the first cutting 

procedure. The difference lies in the fact that the edges of the integration subcells are not 

necessarily straight in the reference configuration of the parent element, contrarily to the edges of 

the primary simplex cells. In order to bypass this problem and apply the exact same procedure as for 

a single discontinuity, we work on the reference configuration of the integration subcells to perform 

the cutting procedure with respect to the second discontinuity. In this way, we always end up cutting 

simplex cells with straight edges. The procedure is summarized in Figure 30. The quadrangle is 

crossed by a main discontinuity (in red) and a branched discontinuity (in green). We work in the 

reference configuration of this quadrangle to perform the cutting with respect to the first 

discontinuity. Then we loop over the resulting integration sub-triangles. For each of them, we work in 

the reference configuration of the sub-triangle and apply the procedure depicted in Sections 2.3 to 

2.5. 

 

Figure 30: cutting procedure for a quadrangle including a branching discontinuity. 



   On Figure 31, we observe the final integration sub-triangles obtained for the quadrangle, fitting 

both discontinuities. The nodes coinciding with the first discontinuity appear in red and the nodes 

coinciding with the second discontinuity appear in green. The junction point is green and circled in 

red. 

 

Figure 31: final integration sub-triangles for the quadrangle. 

   Similarly to the single discontinuity case, the integration subcells are labeled with the signs of the 

normal level sets, depending on which side of the discontinuities they belong to. When the level set 

is not defined (in the case of branching discontinuities), the default sign is 0. The nodes of the 

integration subcells coinciding with the iso-zero of the tangential level sets are also specifically 

labeled. In particular, the junction points are labeled for both discontinuities. 

2.7 Integration over the sub-domains 

   Now that we split the elements crossed by arbitrary discontinuities into sets of integration sub-

cells, making up an accurate quadratic approximation of the sub-domains, we are in position to 

realize a domain integration. Indeed, the integration subcells were labeled depending on which sub-

domain they belong to. We can thus recover exclusively the set of elements and subcells 

approximating any sub-domain. For the volume integration over the integration subcells, we use the 

Standard Gauss integration techniques. The Gauss integration schemes we use are summarized 

hereunder. According to [Dathe**], the use of order 3 Gauss integration schemes in the linear case 

and order 5 Gauss integration schemes in the quadratic case offers satisfactory accuracy for the 

integration of the left side terms of equation (1) over tetrahedral elements. 

 Subcell Number of Gauss integration 

points per subcell 

order 

2D Linear case 3 node triangle 3 3 

Quadratic case 6 node triangle 6 5 

3D Linear case 4 node tetrahedron 5 3 

Quadratic case 10 node tetrahedron 16 5 

Table 2: Gauss integration schemes for the integration subcells. 

 

 

 



Part 3: integration on the crack surface 

 

   Now that we have designed the volumetric integration subcells in the elements crossed by arbitrary 

discontinuities, we have to obtain a reconstructed iso-zero of the normal level set to achieve 

integration on the crack. Indeed, the integration on the crack surface is useful for various 

applications of the extended finite element method. For instance, the contact efforts preventing the 

interpenetration between adjacent subdomains are usually integrated on the crack surface 

[Géniaut**][Pierrès**] as well as the cohesive efforts when the propagation of the crack is governed 

by a cohesive zone model [Ferté2**]. The consideration of a fluid pressure on the fracture walls in 

the case hydraulic fractures [Faivre**] also requires a material approximation of the zero-level set . 

The volumetric subcells were built in order to offer a quadratic approximation of the domains 

separated by the arbitrary discontinuities. Thus the approximation of the different domains includes 

an approximation of the discontinuities. We use the faces of the subcells that coincide with the 

discontinuities to build the reconstructed implicit interfaces. When the element includes a piece of a 

crack front, a final cutting procedure with respect to the tangential level set is necessary to obtain a 

reconstructed approximation of the crack surface and front. 

3.1 Overview of the recovery of the contact faces 

   The set of faces approximating an implicit interface is designed hereafter the contact faces as one 

of their main use is the integration of the contact equations between adjacent sub-domains. We 

impose an absolute fit between the integration subcells and the contact faces. The fit is clear for the 

contact faces that are directly recovered from the integration subcells. But when an element includes 

a piece of the crack front, the contact faces recovered from the integration subcells must be cut with 

respect to the normal level set associated to the crack front. In order to maintain the fit with the 

integration subcells and the quadratic accuracy throughout this final cutting procedure, we use the 

tools depicted in Part 1. In the end, the cutting procedure for the contact faces relies on the cutting 

procedure performed for the integration subcells. 

3.2 Contact faces for an element entirely cut by an interface 

   First of all, we focus on the elements entirely crossed by a single arbitrary discontinuity. These 

elements have already been split up into tetrahedral integration subcells (triangular integration sub-

cells in the 2D case). Some faces of theses subcells correspond to the quadratic approximation of the 

arbitrary discontinuity. The vertex nodes of these faces were specially labeled when we shaped the 

integration subcells because they correspond to the intersections between the discontinuity and the 

edges of the primary simplex cells. As a consequence, we only need to loop over the faces of the 

integration subcells and select those whose 3 vertex nodes are labelled as intersection nodes (see 

Figures 32 and 33). In order to get each contact face exactly once, the choice is made to extract them 

only from the subcells labeled with a negative signed distance function. 



 

Figure 32: extracting the contact faces from a quadrangular element: triangular integration 

subcells (left) and resulting contact faces (right). 

 

Figure 33: extracting the contact faces from a hexahedral element: tetrahedral integration 

subcells (left) and resulting triangular contact faces (right). 

3.3 Contact faces for an element which includes a piece of the crack front 

   For the elements that include a piece of the crack front, another complementary cutting procedure 

is necessary. Indeed, the design of the integration subcells detailed in part 1 was realized regardless 

of the crack front. All the elements that intersect the discontinuity were split with respect to the 

normal level set. But in order to perform an integration over the surface of discontinuity, it is 

necessary to have contact faces that match the crack front depicted by the iso-zero of the tangential 

level set. 

   The first step consists in extracting the preliminary contact faces in the same manner as in the 

previous section. Then, we compute the value of the tangential level set at the vertex nodes of these 

preliminary contact faces and classify them into 3 groups: 

- the contact faces whose 3 vertex nodes satisfy 𝑙𝑠𝑡 ≥ 0 form the group 1. This group is out of 

bounds, its elements will be eliminated. 

- the contact faces whose 3 vertex nodes satisfy 𝑙𝑠𝑡 ≤ 0 form the group 2. We keep this entire 

group for the final contact faces. 

- the remaining contact faces that are necessarily intersected by the iso-zero of the tangential 

level set form the group 3. These contact faces need a further cutting out. 

   In the 2D case, the intersection between the iso-zero of the tangential level set and a preliminary 

contact face of group 3 is determined with algorithm 1 in the reference configuration of the contact 

face (so that the contact face is a straight segment). Then, the new middle node of the contact face 



(type 1 middle node) is mapped from the reference configuration of the segment to the contact face 

in the parent element. The procedure is summed up in Figure 34. 

 

 
Figure 34: extracting the contact faces from a quadrangle that includes the crack front. 

1 - amongst the preliminary contact faces, we keep those whose vertex nodes satisfy 𝑙𝑠𝑡 ≤ 0 and select the ones 
intersected by the iso-zero of the tangential level set for the cutting procedure (top left), 
2 - we determine the intersection between the contact face and the iso-zero of the tangential level set (top right), 
3 - we determine the new position of the middle node of the intersected contact face (bottom right), 
4 - we get the final contact faces(bottom left). 

 

The 3D case requires more attention, amongst the triangular contact faces of group 3, we distinguish 

3 cutting configurations: 

- the contact faces that have one vertex node satisfying 𝑙𝑠𝑡 = 0 (configuration 1) 

- the contact faces that have two vertex nodes satisfying 𝑙𝑠𝑡 < 0 (configuration 2) 

- the contact faces that have one vertex node satisfying 𝑙𝑠𝑡 < 0 (configuration 3) 



 

 Figure 35: the 3 cutting configurations for the contact faces. 
 

   The criterion we use to determine whether a contact face is entirely in the domain {𝒙|𝑙𝑠𝑡(𝒙) ≤ 0} 

or entirely in the domain {𝒙|𝑙𝑠𝑡(𝒙) ≥ 0} or intersected by the iso-zero of the tangential level set only 

lies on the vertex nodes of the contact faces. We might then face situations for which the values of 

the tangential level set at the middle nodes of the contact faces contradict this classification, giving 

away a double cancelation of the tangential level set along the edge of the contact face. At first, we 

assume these situations do not occur. The last part of this section is dedicated to the treatment of 

these annoying cases. 

   In the following, we explain the cutting procedure for the second cutting configuration. The task 

consists in cutting a triangle with respect to the tangential level set. In the reference space of the 

parent element, this triangle is not necessarily plane as it approximates the iso-zero of the normal 

level set. In order to be reduced to the cutting procedure depicted in Sections 2.3 to 2.5, we use the 

same ingredient as in the case of multi-cracked elements. We map the preliminary contact face with 

its associated reference triangle whose edges are straight. Then, we apply the classic procedure for 

the cutting of 2D triangular element (Figure 36).  

 

Figure 36: cutting a triangular primary contact face into two triangular final contact faces within a 

tetrahedral element. 

   On Figure 37, we observe the two final triangular contact faces in the primary tetrahedral element. 

They fit the iso-zero of the tangential level set. 



  

Figure 37: final contact faces in the primary tetrahedral element. 

   The cutting procedure is similar for the two other configurations. As depicted in Figure 38, they 

both give one final triangular contact face. 

 

Figure 38: the final contact faces for the 3 cutting configurations. 
 

  Finally, we look at the situations of double cancelation of the tangential level set along an edge of 

the preliminary contact faces. On Figure 39, we observe the preliminary contact faces generated by a 

planar crack in a hexahedron. 

 

Figure 39: preliminary contact faces generated by a planar crack in a hexahedron. 



   The tangential level set cannot cancel twice on the edges of the preliminary contact faces that 

coincide with a face of the parent element because we previously performed the level set 

adjustment (Section 2.2). But on the edges of the preliminary contact faces that are internal to non-

simplex parent element, we cannot prevent a potential double cancelation of the tangential level set. 

Two distinct situations may occur. The first situation is depicted in Figure 40. It corresponds to a 

double cancelation of the tangential level set along the edge of a preliminary contact face due to a 

local high convexity of the crack front. This situation is detected when we look for the middle node 𝑀 

between the two intersection points 𝐼1and 𝐼2. The middle node 𝑀 is found out of the bounds since it 

exceeds the upper limit 𝑡𝑠𝑢𝑝. Contrarily to what was done in Part 1 for the integration subcells, we 

authorize the middle node 𝑀 to go over the upper limit 𝑡𝑠𝑢𝑝. Indeed, the nearby preliminary contact 

face affected by the intrusion stands in group 1 and will be eliminated. In this way, we obtain an 

accurate quadratic approximation of the crack surface.  

 

Figure 40: situation 1. 
 

   The second situation is depicted in Figure 41. It corresponds to a double cancelation of the normal 

level set along the edge of a preliminary contact face due to a local high concavity of the crack front. 

This situation is detected when we look for the middle node 𝑀 between the two intersection points 

𝐼1and 𝐼2. The middle node 𝑀 is found out of the bounds since it exceeds the lower limit 𝑡𝑖𝑛𝑓. In this 

case, we cannot allow the intrusion of the middle node 𝑀 in the nearby preliminary contact face 

because it would bring distorted contact faces. One solution consists in making a local linear 

approximation of the tangential level set. The position of the middle node M is chosen as the initial 

guess of algorithm 1. In the reference space of the parent element, it is then the middle of the 

segment [𝐼1𝐼2]. 

 

Figure 41: situation 2. 



 
   This local linear approximation of the tangential level set seriously degrades the accuracy of our 
integration procedure. By all means, we would like to avoid it. The solution consists in going back to 
the very beginning of the cutting procedure for the parent element. We try the other eligible 
configurations for the partitioning of the parent element into primary simplex cells (Section 2.3) until 
no double cancelation of the level set is recorded. As depicted in Figure 42, these other 
configurations generate different primary simplex cells and different patterns for the preliminary 
contact faces, likely to bypass the problem depicted in Figure 41. 

 

 

Figure 42: treatment of situation 2. 
1 – first and previous configuration for the primary simplex cells (top left), 
2 - another configuration of the primary simplex cells (top right), 
3 - the new configuration of the primary simplex cells generates a new pattern of preliminary contact faces 
(bottom right), 
4 - the new pattern of preliminary contact faces allows us to accurately approximate the crack surface in the 
vicinity of the crack front  (bottom left). 

 
   As for the design of the integration subcells, we can imagine there might be some extreme cases 
for which no configuration succeeds in bypassing the problem of double cancelation of the level sets 
along an edge of a primary integration subcell and along an edge of a preliminary contact face. In 
that case, we perform local linear approximations of the discretized level set. But these insolvable 
cases would definitely present very twisted level sets. A mesh refinement would surely solve the 
problem. 
 
   Please note that these contact faces also allow us to obtain an accurate quadratic reconstruction of 

the crack front as a chain of 3 node segments for 3D models. It may be useful for fracture mechanics 

post-processing. 

3.4 Contact faces for multi-cracked elements 

   In this section, we detail the recovery of the contact faces for multi-cracked elements. We only 

consider multi-cracked elements that do not include crack fronts. In order to recover the contact 



faces of multi-cracked elements that include crack fronts, we would have to combine the procedure 

depicted in this section with the procedure depicted in the previous section. 

   The multi-cracked elements have already been split up into tetrahedral integration subcells 

(triangular integration subcells in the 2D case). As for the single-cracked elements, some faces of 

these subcells correspond to the quadratic approximation of arbitrary discontinuities. The vertex 

nodes of these faces were specifically labeled distinctly for each discontinuity when we shaped the 

integration subcells. In particular, the junction points were labelled for the two discontinuities 

forming the junction. So for each discontinuity, we proceed exactly as for a single discontinuity. We 

loop over the faces of the integration subcells and select those whose 3 vertex nodes are labelled as 

intersection nodes for the current discontinuity. In the case of a single discontinuity, the choice was 

made to loop only over the integration subcells labeled with a negative signed distance function in 

order to recover the contact faces exactly once. For multi-cracked elements, it is necessary to modify 

this rule for the main discontinuities. The main discontinuities are defined as the discontinuities on 

which another discontinuity is branched. For these discontinuities, we decide to recover the contact 

faces from the integration subcells labeled whether with a negative or a positive sign distance 

function depending on the position of the branched interface. We chose the sign corresponding to 

the side where the interface is branched. Then we loop over the integration subcells labeled with the 

corresponding sign to recover the contact faces for the main discontinuity. On Figure 43, we observe 

a quadrangular element including a branching discontinuity and the resulting triangular integration 

subcells fitting both discontinuities. The main discontinuity and the branched discontinuity delimit 

three distinct domains 𝛺1, 𝛺2 and 𝛺3 over the quadrangular element. On Figure 44, we observe the 

resulting contact faces when we extract the contact faces for the main discontuity from the 

integration subcells labeled with a sign that does not correspond to the branching (left) and that 

does correspond to the branching discontinuity (right). In the first case, we end up with two contact 

faces for the main interface as if the branching was not existing. Then the contact face whose end 

nodes are 𝐼2 and 𝐼3 does not fit the junction as it was extracted from an integration subcell which is 

not on the side of the branching discontinuity. In the second case, we end up with 3 contact faces for 

the main interface. They fit the discontinuity junction because they where extracted from integration 

subcells located on the side of the branched discontinuity. It is essential to obtain contact faces that 

fit  both discontuities. For instance, we may want to perform a surface integration exclusively on the 

boundary separating 𝛺1 from 𝛺3. This is feasible provided that the contact faces for the main 

discontinuity fit the branched discontinuity. 

     

Figure 43: a quadrangular element including a branching discontinuity (left) and the resulting 

integration subcells (right). 



                       

Figure 44 : the resulting contact faces when we extract the contact faces of the main interface from 

the integration subcells located above (left) and below (right) the main interface. 

   When several discontinuities are branched on the same main discontinuity within an element, we 

may not be able to properly recover contact faces fitting all the junctions. On Figure 45 (left), we 

observe a quadrangular element crossed by a main interface (red) with two branched discontinuities. 

The discontuities are branched on both sides of the main interface. We also observe the resulting 

integration subcells. Neither the integration subcells located below the main interface neither the 

ones located above generate contact faces fitting both junctions for the main interface. This 

configuration can not be solved so that we forbid the presence of two distinct fracture junctions 

within the same element. This can easily be avoided by refining the mesh. However, we can still have 

branched fractures within the same element if the different junctions coincide (Figure 45 right). 

  

Figure 45: a quadrangular element including two discontinuity junctions and the resulting integration 

subcells in the case of not coinciding junctions (left) and coinciding junctions (right). 

3.5 Integration over the contact faces 

   Now that we have built contact faces that accurately approximate the immersed boundaries, we 

are in position to perform surface integrations over the sub-domain boundaries. For this aim, we use 

classical Gauss integration techniques. For each contact face, the positions of the Gauss integration 

points are interpolated from the position of the nodes of the contact face. Furthermore, the surface 

integration often requires the normal direction to the contact face (for instance to take into account a 

fluid pressure in the fracture). So for each Gauss point we build a unit normal vector to the contact 



face (oriented along the gradient of the normal level set) from the position of the nodes of the 

contact face (see Figure 46). 

               

Figure 46: integration over the curved contact faces of a quadrangle (left) and a hexahedron 

(right). 

   The Gauss integration schemes used for the surface integration are summarized hereunder. 

According to [Dathe**], the use of order 3 Gauss integration schemes in the linear case and order 5 

Gauss integration schemes in the quadratic case offers satisfactory accuracy for the integration of 

the right side terms of equation (1) over triangular elements. 

 

 Contact face type Number of Gauss integration 

points per contact face 

order 

2D Linear case 2 node segment 2 3 

Quadratic case 3 node segment 3 5 

3D Linear case 3 node triangle 3 3 

Quadratic case 6 node triangle 6 5 

Table 3: Gauss integration schemes for the contact faces. 

    

Part 4: validation of the integration method 

 

   In the following discussion, we present some numerical results in order to illustrate and validate 

the accuracy and robustness of the integration method detailed in the first two sections. In 

particular, we perform several convergence analyses. The convergence rates we get are in 

accordance with the theory. First of all, we present the XFEM formulation we combined to our 

integration procedure to perform the numerical tests. 

4.1 Description of the XFEM formulation used 

   In the literature there are many formulations to model strong discontinuities in continuous media. 

In the paper of Ndeffo et al. [Ndeffo**], a thorough analysis has been made and numerical issues 

have been investigated, at least concerning quadratic elements. It has been established that partition 



of unity based formulations don’t behave well in asymptotic configurations (when the discontinuity 

gets close to the nodes of the approximation mesh). Therefore, conditioning and accuracy issues 

need a special care when modeling higher order strong discontinuities. Hence, Ndeffo et al. suggests 

a convenient formulation to deal with the condition number swift increase. In this section, we extend 

the suggested formulation to the case of branching discontinuities. Before describing more precisely 

the aforementioned formulation, let’s focus on the definition of branching discontinuities. In the 

literature, there are two methods to define branched cracks: 

 The use of sign fields called likewise “junction” functions: there are encountered in the 

framework of X-FEM and level-sets [Daux**]. 

 The use of non-overlapping domains in the “neighborhood” of the branched discontinuity: 

there are encountered in the framework of GFEM [Reno**].  

   The X-FEM defines iteratively the “junction” functions based on level-sets, to represent the 

branched crack kinematics. GFEM fits for the description of branching discontinuity when the 

information about domains is available; typically, in the case of polycrystals modeling, where 

partitions of the whole domain are well labeled [Poly**]. As we use level-sets to model discontinuity 

in this paper, an X-FEM description is more convenient. 

   However, the X-FEM enrichment functions perform poorly in terms of conditioning and accuracy 

for higher order elements, as shown in [Ndeffo**]. Formulations based on the partition in domains 

[Hansbo**],[Reno**], have a better numerical behavior. Thus our enrichment strategy should 

combine both features: the X-FEM its convenience and the formulations based on domains 

partitioning to deal with conditioning issues. As explained in [Ndeffo**], these two approaches are 

intermingled. Hence, we can switch from the description of branched discontinuities using level sets 

to the description using domain partitioning, more fitted for higher order elements. Before solving 

afore-mentioned conditioning issues, let’s stress again on the definition and assembling of X-FEM 

junction d.o.f. 

Definition X-FEM/GFEM approximation spaces 

    In the case of multiple cracks, following the notations of equation (2), the GFEM/X-FEM 

approximation of the displacement field could be summarized as follows: 

𝑢ℎ(𝑥) = ∑ 𝜑𝑖(𝑥)𝑢𝑖
𝑖∈𝑁/𝑁𝑔

+ ∑ ∑ 𝜑𝑗(𝑥)�̃�𝑗,𝑘(𝑥)𝑎𝑗,𝑘
𝑘=1,𝑐𝑎𝑟𝑑𝑗𝑗∈𝑁𝑔

 

where 𝑁𝑔 represents the set of enriched nodes; 𝑁/𝑁𝑔 the set of non enriched nodes; 𝑐𝑎𝑟𝑑𝑗 the 

node-wise number of d.o.f. for an enriched node, which depends of the number cracks intersecting 

the support of the node, and 𝑎𝑗,𝑘 the related d.o.f. �̃�𝑗,𝑘 is a generic notation for whether X-FEM or 

GFEM node-wise enrichment functions defined in the table below: 
 

 Single crack Single junction Double junction 

X-FEM {𝜑, 𝐻1𝜑} {𝜑, 𝐻1𝜑,𝐻2𝜑} {𝜑, 𝐻1𝜑, 𝐻2𝜑,𝐻3𝜑} 

GFEM {𝜒𝛺1𝜑, 𝜒𝛺2𝜑} {𝜒𝛺1𝜑, 𝜒𝛺2𝜑, 𝜒𝛺3𝜑} {𝜒𝛺1𝜑, 𝜒𝛺2𝜑, 𝜒𝛺3𝜑, 𝜒𝛺4𝜑} 

NEW {𝜑, 𝜒𝛺2𝜑} {𝜑, 𝜒𝛺2𝜑, 𝜒𝛺3𝜑} {𝜑, 𝜒𝛺2𝜑, 𝜒𝛺3𝜑, 𝜒𝛺4𝜑} 

Table 4 : comparison between node-wise enrichment functions in the case of X-FEM, GFEM and the 

NEW enrichment strategy proposed; where 𝐻𝑖 represents a sign-function and 𝜒𝛺𝑖  the characteristic 

function of domain 𝛺𝑖. 



              

Figure 47: Heaviside functions and domains definitions. In the case of junctions, only the nodes whose 

support is intersected by multiple cracks are enriched with junction enrichment functions. 

   The X-FEM and GFEM formulations describe exactly the same approximation space and so does the 

new enrichment strategy proposed (see table 4), which is an extension to junctions of the 

formulation proposed in [Ndeffo**]. The motivation for this new enrichment strategy is the 

following. When the crack surface gets close to the nodes of the mesh, condition number soars with 

quadratic elements. Thus, a special treatment is needed to improve the numerical behavior of the 

approximation space. Ndeffo et al suggested that X-FEM signs functions performed rather poorly and 

may lead to bad results. Therefore, X-FEM couldn’t be used directly even if the X-FEM junction 

functions are more convenient when level-sets information is used. So, we considered a reshape of 

X-FEM approximation to solve those conditioning issues. The construction of the new enrichment 

suggested above follows the principle of complementary element or complementary nodes that is 

encountered also in the literature [AFEM**].  For the same arguments underlined in the paper of 

Ndeffo et al, this new formulation combines features of both X-FEM and GFEM: 

 the convenience of the X-FEM for implementation: the X-FEM exploits fully the formalism of 

level-sets to describe branched discontinuities. 

 the good numerical properties of Hansbo’s formulation: standard shape functions and 

enrichment are almost orthogonal when the interface gets close to the nodes. 

Dealing with X-FEM conditioning issue 

   Nevertheless, those enrichment functions need additional treatment given their asymptotic 

behavior, particularly because their domain of definition are inclined to cancel out when the crack 

surface gets close to the nodes. Therefore, a preconditioner is needed to scale-up the related 

degrees of freedom. Then, we use the simple pre-conditioner suggested in [Ndeffo**].The matrix 

notation of the finite element problem 𝐾𝑢 = 𝑓 is replaced by: 

𝐾′𝑢′ = 𝑓′         with        {

𝐾′ = 𝐷𝑐𝐾𝐷𝑐
𝑢 = 𝐷𝑐𝑢′

𝑓′ = 𝐷𝑐𝑓

 

where 
cD  is defined as: 

[𝐷𝑐]𝑖,𝑖 =
𝑑
√𝐾𝑖,𝑖
⁄       with     𝑑 = √

max(𝐾𝑖,𝑖)+max (𝐾𝑖,𝑖)

2
 

   Finally, given the coupling between quadratic enrichment functions, some redundant degrees of 

freedom have to be removed to prevent the condition number soaring. Thus, some middle nodes 



shape functions are removed within the partition of unity set of functions. Our elimination strategy 

relies on the use of the “stiffness criterion” suggested by [Siavelis**].  

The degree of freedom 𝑎𝑗,𝑘 is eliminated if: 

∫ ‖𝜑𝑗,𝑋‖
2
𝑑𝛺

𝑆𝑢𝑝𝑝(𝑗)∩𝛺𝑘

∫ ‖𝜑𝑗,𝑋‖
2
𝑑𝛺

𝑆𝑢𝑝𝑝(𝑗)

≤ 10−9 

Where 𝑆𝑢𝑝𝑝(𝑗) is the support of node 𝑗, 𝜑𝑗,𝑋 is the derivative of the classical shape function 

associated to node 𝑗 in the global coordinate basis 𝑋 and ‖𝜑𝑗,𝑋‖ its usual Euclidian norm 𝐿2. 

Remark: the elimination criterion above has a negligible impact on the accuracy of the elements, as 

shown in section 4.6. Therefore, a sensitivity analysis around the threshold isn’t relevant here. 

From level-sets to local domains 

   The "complementary" domain enrichment detailed here requires partitioning into domains 

[Reno**], which cannot be extracted straightforwardly from level-sets information within elements. 

At the elementary level, one needs to label partitions of global domains intersecting the support of 

each node. In contrast, the X-FEM's branching relies on the local behavior of Heaviside-function 

[Daux**] rather than on the global domains. Then, for the new enrichment formulation we adopt, 

the local sign field information must be transposed into domain mapping. This is feasible with several 

loops over the elements to compare partitions of domain between different elements. 

   The use of this formulation ensures good performances in terms of conditioning for the numerical 

examples presented below. The following numerical tests are performed with Code_Aster 

(http://web-code-aster.org). First of all, we focus on the approximated geometry of the sub-domains. 

We perform some tests with very highly curved and non-convex zero-level set in order to appreciate 

the ability of our cutting procedure to handle exotic implicit geometries. Then we introduce error 

measurements for the approximated sub-domains. Convergence analyses on the resolution of the 

approximated interfaces are performed for 2D and 3D models including branching discontinuities. A 

convergence analysis is also performed on the resolution of a curved approximated crack front. 

Finally we proceed to nonlinear mechanical test including curved interfaces. Convergence analyses 

are performed for the displacement field and the energy error. 

 

4.2 Preliminary examples 

 

    On Figure 49, we observe 3 examples which demonstrate the ability of the cutting procedure 

described in the first two parts to handle highly curved and non-convex interfaces. The three 

examples are performed with regular meshes formed of quadratic hexahedral elements. The 

equations associated to the analytical normal level set used are specified for each example. In 

particular, we observe the faces of the integration subcells that accurately represent the arbitrary 

boundaries of the different domains. 

 

http://web-code-aster.org/


                        
Figure 49: the concentric wavelets (top left), the ellipsoid (bottom left) and the saddle (right) 

 

   The quality of the approximation of the sub-domains seems satisfactory, given the fact that the 

meshes we use are relatively coarse compared to the curvature of the analytical normal level set we 

have chosen. In order to measure the accuracy of the approximated sub-domains, we compute the 

resolution 𝜀 defined as follow: 

𝜀 = 𝑚𝑎𝑥𝒙∈𝛤(𝑚𝑖𝑛�̃�∈Г̃|𝒙 − �̃�|) 

where Г is the analytical interface and Г̃ is the approximated interface, or the set of contact faces 

approximating the interface. For each point 𝒙 of the theoretical interface 𝛤, we compute the 

distance to the approximated interface 𝑚𝑖𝑛𝒙′∈Г̃|𝒙 − �̃�|. Finally, we take the maximum over 𝒙 ∈ 𝛤. 

The resolution 𝜀 is then the maximal distance between the analytical interface and the approximated 

inteface. The interface is thus said to be 𝜀-resolved. 

  We may also use the relative volume error defined as follow: 

𝑣𝑜𝑙𝑢𝑚𝑒 𝑒𝑟𝑟𝑜𝑟 = |
𝛺 − 𝛺ℎ
𝛺

| 

where 𝛺 is the analytical volume of the sub-domain and 𝛺ℎ is the volume of the approximated sub-

domain. It is clear from their definition that both error measures should have the same order of 

convergence. But as explained in [Ferté1**], higher rates of convergence are often observed for the 

𝑙𝑠𝑛(𝑥, 𝑦, 𝑧) = (𝑥 3⁄ )
2+(

𝑦
6⁄ )
2+(𝑧 2⁄ )

2 − 1 𝑙𝑠𝑛(𝑥, 𝑦, 𝑧) = 𝑧 − 𝑥2 + 𝑦2 

𝑙𝑠𝑛(𝑥, 𝑦, 𝑧) = 𝑧 − 2 ∗ cos (√𝑥2 + 𝑦2) 

𝑥 

𝑦 𝑧 

𝑥 

𝑦 

𝑧 

𝑧 

𝑦 
𝑥 



area error because of compensation phenomena. Therefore we favour the measurement of the 

resolution for the upcoming convergence analyses. 

   On the table below, we give the error measurements for the 3 examples depicted in Figure 48: 

 Volume error (%) Resolution 

Concentric wavelets 0,32 0,0065 

Ellipsoid 0,27 0,018 

Saddle 0,076 0,0028 

Table 5: Volume error and resolution for the examples of Figure 49. 

 

   In the following paragraph, we perform convergence analyses on the resolution for 2D and 3D 

models including branching discontinuities. 

4.3 Convergence analyses for the approximated sub-domains 

   It is a 2D model of a square domain crossed by an horizontal interface and two vertical interfaces 

branched on the first one. The geometry and the boundary conditions are depicted on Figure 50.  

 

Figure 50: geometry and boundary conditions. 

   The dimension of the square is 10𝑚x10𝑚. The origin of the cartesian coordinates system is located 

at the center of the square. The equations of the normal level sets associated to the 3 fractures are: 

{
 
 
 
 

 
 
 
               𝑙𝑠𝑛1(𝑥, 𝑦) = 𝑦 + 2,69 − 4,3 ∗ sin (

𝑥 + 5

4,2
)

𝑙𝑠𝑛2(𝑥, 𝑦) = 𝑥 + 5 ∗ exp (
𝑦 − 2

3
)

                     𝑙𝑠𝑛3(𝑥, 𝑦) = √(𝑥 − 10)
2 + (𝑦 + 2)2 − 10,68

 

   The second fracture is defined in the domain {𝑙𝑠𝑛1(𝑥, 𝑦) < 0} and the third fracture is defined in the 

domain {𝑙𝑠𝑛1(𝑥, 𝑦) > 0}. The loading consists in a uniform mechanical pressure 𝑝 applied on both 

walls of the three fractures. The material we use is elastic and we expect an isotropic compression in 

each block. To perform the test, we use regular meshes formed of quadrangular elements, the 



parameter ℎ denoting the number of elements in each direction. We obtain the exact displacements 

for this problem as the solution we expect is linear in each block. This demonstrates the ability of our 

model to handle  the volume and surface integrations in presence of fracture junctions.  

   According to [Ferté1**], the order of convergence we should obtain for the resolution 𝜀 are 

respectively 2 in the linear case and 3 in the quadratic case. Indeed we are able to appreciate the 

resolution error 𝜀 as the theoretical level set we have chosen are a  sine curve, an exponential curve 

and a circular arc. It is not perfectly solved by the linear nor the quadratic cutting procedure we have 

used so far. On figure 51, we observe the zoomed deformed shape and the integration meshes in the 

quadratic case for ℎ = 4 and ℎ = 16. 

 

Figure 51: defomed mesh (x80) and displacement norm for ℎ = 4 (left) and ℎ = 16 (right) on the 

integration mesh for the quadratic case. 

   We plot the resolution for different values of ℎ. The convergence rates we get for the linear and the 

quadratic model are close to the expected analytical rates. For the quadratic case, the error level is 

tremendously lower compared to the linear case. The quadratic cutting procedure we use proves to 

be highly efficient and accurate at approximating curved domain boundaries including junctions. 

  

   We perform a similar analysis in the extruded 3D case whose geometry is depicted in Figure 52. The 

thickness of the square is 2 𝑚.  



 

Figure 52: geometry of the 3D case. 

The equations of the normal level sets associated to the 3 fractures are: 

{
 
 
 
 

 
 
 
                              𝑙𝑠𝑛1(𝑥, 𝑦, 𝑧) = 𝑧 + 2,69 − 4,3 ∗ sin (

𝑥 + 5

4,2
) + 0,12 ∗ (𝑦 − 1)2

𝑙𝑠𝑛2(𝑥, 𝑦, 𝑧) = 𝑥 + 5 ∗ exp (
𝑦 − 2

3
) − 0,3 ∗ 𝑦2

                                𝑙𝑠𝑛3(𝑥, 𝑦, 𝑧) = √(𝑧 − 3)
2 + (𝑥 + 5)2 − 7,1 + 0,45 ∗ cos (𝑦 − 1)

 

The loading and the boundary conditions are identical to the 2D case. We use regular meshes formed 

of hexahedral elements, the parameter ℎ denoting the number of elements in directions (𝑂𝑥) and 

(𝑂𝑧). The number of elements in the thickness of the square is ℎ 5⁄ . On figure 53, we observe the 

zoomed deformed shape and the integration meshes in the quadratic case for ℎ = 5 and ℎ = 10. We 

can especially appreciate the design of the quadratic integration subcells whose faces coincide with 

the different interfaces.  
  

 

Figure 53: deformed mesh (x80) and displacement norm for h=5 and h=10. 

   We plot the resolution for different values of ℎ. The convergence rates we get for the linear and the 

quadratic model are once again close to the expected analytical rates. 



 

4.4 Convergence analysis for a curved approximated crack front 

   The next convergence analysis we perform concerns the fracture front, modeled by means of a 

normal level set and a tangential level set. The geometry is depicted on Figure 54. A cube of size 

1 𝑚 is cut at mid height by a plane crack whose front is sinusoidal. We do not perform any 

mechanical simulations; we only focus on the computed surface of the crack in order to validate our 

integration technique for crack fronts. The crack is defined by two level set functions, a normal level 

set and a tangential level set: 

{
    𝑙𝑠𝑛(𝑥, 𝑦, 𝑧) = 𝑧 − 1 2⁄                                        

𝑙𝑠𝑡(𝑥, 𝑦, 𝑧) = 1 − 𝑦 − 0,75 ∗ sin (𝑥 − 0,4)
 

The crack corresponds to the surface {𝑙𝑠𝑛 = 0} ∩ {𝑙𝑠𝑡 < 0} and the crack front to the curve {𝑙𝑠𝑛 = 0} ∩
{𝑙𝑠𝑡 = 0} 

 

Figure 54: geometry of the problem. 

   We use regular meshes formed of hexaedra, the parameter ℎ denoting the number of elements in 

each direction. The theoretical tangential level set we choose is a  sine curve which is not perfectly 

solved by the linear nor the quadratic cutting procedure we use. We perform a convergence analysis 

on the crack front resolution 𝜀 defined previously. 

The resolution for the crack front area is plotted with repect to ℎ: 



 

   The convergence rates we get for the linear and the quadratic models are entirely satifactory. Once 

again, for the quadratic case, the error level is lower than the one of the linear case. For the 

quadratic case, the relative error we get for ℎ = 3 is close to 10−4, which seems very low. This is due 

to an artificial refinement of the approximated crack front. The design of the contact faces in an 

hexahedral element that contains the crack front is summarized in Figure 55:  

 

Figure 55: building of the contact faces in a hexahedral element that contains the crack front: 

                                         1 - the hexahedron is cut with respect to the normal level set 

                                         2 - we extract 8 triangular preliminary contact faces from the hexahedron 

                                         3 - the preliminary contact faces are cut with respect to the normal level set 

                                         4 - the 10 final triangular contact faces of the hexahedron 

  

   So in the case depicted in Figure 55, considering an horizontal normal level set, for one hexahedral 

element we get 8 preliminary contact faces, 10 final contact faces and the crack front is 



approximated by 6 three nodes segments. This artificial refinement of the approximated crack front 

explain the very good accuracy we obtain for the geometrical resolution of the crack front. 

4.5 Spherical interface on a radial mesh 

   The  test consists in a spherical cap divided by a concentric interface. The external part of the cap is 

clamped and its internal part is submitted to a constant pressure 𝑝. On the interface, the theoretical 

contact pressure is applied mechanically on each side. Indeed, the choice has been made to exclude 

proper contact formulations in the following experiments, so that we can focus on the accuracy of 

the integration procedure, independently from the convergence of a contact algorithm. We take 

advantage of the symmetry of the problem and model only a quarter of hemisphere. The orthoradial 

displacements are then prescribed on the lateral boundaries of the domain (Figure 56). The material 

is linear elastic. 

 

Figure 56: geometry and boundary conditions. 

   If the exact theoretical contact pressure is applied on the interface, the cap should behave likewise 

a one-piece cap. The displacements for this very classical problem only depend on the distance 𝑟 to 

the center and are then given by: 

{

𝑢𝑟(𝒓) = 𝐶1𝑟 +
𝐶2

𝑟2

𝑢𝜃(𝒓) = 0

𝑢𝜑(𝒓) = 0

        with             {

𝐶1 =
−𝑝

𝐸(2∗
𝑅𝑒
3

𝑅𝑖
3+1)

𝐶2 = −𝐶1𝑅𝑒
3

 

   Considering the spherical coordinates system (𝑟, 𝜃, 𝜑), the stress tensor is given by: 

{
 
 

 
 𝜎𝑟𝑟(𝑟) = 𝐸

𝑑𝑢𝑟(𝑟)

𝑑𝑟

𝜎𝜃𝜃(𝑟) = 𝜎𝜑𝜑(𝑟) = 𝐸
𝑢𝑟(𝑟)

𝑟
𝜎𝑟𝜃 = 𝜎𝑟𝜑 = 𝜎𝜃𝜑 = 0

 

   The contact pressure we must enforce on the interface is then: 

−𝒆𝒓. 𝝈(𝑅). 𝒆𝒓 = −𝜎𝑟𝑟(𝑅) = −𝐸 (𝐶1 − 2 ∗
𝐶2
𝑅3
) = −𝐸𝐶1 (1 + 2 ∗

𝑅𝑒
3

𝑅3
) = 𝑝 ∗

1 + 2 ∗
𝑅𝑒

3

𝑅3

1 +
𝑅𝑒

3

𝑅𝑖
3

 



  This pressure is applied on each side of the interface.  

  We choose the following set of parameters:  

𝑅𝑖 = 1,𝑅𝑒 = 2,𝑅 = 1.5, 𝐸 = 5,8. 10
9, 𝜈 = 0, 𝑝 = 106 

   The meshes we have chosen are radial (see Figure 57 left). The parameter ℎ denotes the number of 

volumetric elements in the thickness of the cap. It also corresponds to the number of volumetric 

elements in the angular directions. 

 

Figure 57: the quadratic mesh used for h=5, formed of 100 hexahedra and 25 pentahedra (left) and 

the obtained displacements norm (right). 

   On Figure 57 (right), we observe the displacements magnitude on the post-processing mesh for the 

quadratic case. In particular, we can see clearly the edges of the integration subcells generated 

around the interface. 

   We perform a convergence analysis for both the linear and the quadratic case on the displacement 

error rate and the energy error rate. The displacement relative error we compute is: 

𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 =
√∫ (𝒖ℎ,1 − 𝒖ℎ)

2
𝛺ℎ

√∫ 𝒖ℎ,1
2

𝛺ℎ

  

where 𝛺ℎ is the approximated domain (the domain covered by the integration mesh), 𝒖ℎ,1is the 

analytical solution projected on the displacements approximation space and 𝒖ℎ is the displacement 

field we obtained. . The energy relative error we compute is: 

𝑒𝑛𝑒𝑟𝑔𝑦 𝑒𝑟𝑟𝑜𝑟 =
√∫ 𝜺(𝒖ℎ,1 − 𝒖ℎ):𝑨: 𝜺(𝒖ℎ,1 − 𝒖ℎ)𝛺ℎ

√∫ 𝜺(𝒖ℎ,1):𝑨: 𝜺(𝒖ℎ,1)𝛺ℎ

  

where 𝜺 is the Lagrangian strain tensor and 𝑨 is linear elastic Hooke tensor. 

   According to [Ferté1**], the convergence rates we expect for the displacement error and the 

energy error are respectively 2 and 3 in the quadratic case and 1 and 2 in the linear case. 

   Hereunder we display the energy error and the displacement error for different values of ℎ. 



 

   The convergence rates we obtain are close to the analytical values. 

   In order to emphasize the importance of the quadratic approximation of the level set, we perform 

the same convergence analysis with a quadratic displacement field and a linear approximation of the 

interface. The convergence rates we get are also in agreement with the theory [Ferté1**]. The rate 

jumps from 3 to 2 for the relative error of the displacement norm and from 2 to 1.5 for the relative 

error of the energy norm. Finally, in order to confirm the relevance of the Standard Gauss integration 

schemes we use, we perform a last convergence analysis with a quadratic approximation space for 

the displacement field but Standard Gauss integration schemes corresponding to the linear case for 

the volumetric integration subcells and triangular contact faces. The convergence rates we get are 

once again deteriorated. The optimal Gauss integration schemes we had chosen in the first place are 

then necessary to observe the optimal theoretical convergence rates. 

 

 

4.6 Spherical interface on an arbitrary mesh 

   This last analysis focuses on the robustness of the cutting algorithms. The problem is similar to the 

previous case but the mesh we use is no longer radial. For this aim we model a cube extruded from 

the spherical cap. The geometry of the problem is depicted on Figure 58. The size of the cube is 1 𝑚 

and the radius of the spherical interface centered in A is 𝑅 = 1,2 𝑚.  The internal radius of the 

spherical cap is 𝑅𝑖 = 0,3 𝑚 and its external radius is 𝑅𝑒 = 0,3 + √3 𝑚. The displacements are still 

clamped on the external boundary of the spherical cap and a mechanical pressure  𝑝 is imposed on 



its internal boundary. The solution is then identical to the previous case. The theoretical contact 

pressure is still applied on both sides of the interface. 

  On faces EFGH, BCGF and DCGH, we impose the theoretical displacements of this problem. On faces 

ABCD, ABFE and ADHE, the exact Neumann boundary conditions are imposed. Finally, on three points 

of the block located inside the spherical interface, the theoretical displacements are imposed in 

order to prevent rigid block displacements. 

 

Figure 58: geometry of the problem. 

     We use regular meshes formed of hexaedra. Thus the elements are arbitrarily cut by the spherical 

interface. As a consequence, many cutting configurations are likely to happen. The test is realized for 

both linear and quadratic elements. ℎ denotes here the number of elements on each edge of the 

cube. On Figure 59, we observe the displacements on the integration mesh for ℎ = 5 in the quadratic 

case. In particular, we observe the edges of the volumetric integration subcells surrounding the 

spherical interface. 

 

Figure 59: displacements norm on the integration mesh for h=5 in the quadratic case. 

   A convergence analysis is performed in order to prove the robustness of our integration procedure 

when a curved interface arbitrarily crosses a regular mesh. The relative error for the displacements 



and the energy is plotted below for various values of ℎ, in the linear case as well as in the quadratic 

case. 

 

   In the linear case, the order of convergence we get are in perfect agreement with the theory. In the 

quadratic case, we observe a superconvergence for the displacements norm compared to the 

theoretical order we should get. The exact same convergence rate and error level is obtained using 

classical quadratic finite elements on the same meshes. Once more,the convergence rates are in 

accordance with the theory, demonstrating the accuracy and reliability of the integration procedure. 

For large values of ℎ, a great number of hexahedral elements are arbitrarily cut by a curved interface, 

testing the limits of our model. The conditioning is also really put to the test as the interface often 

passes very close to the nodes of the approximation mesh. For ℎ > 8, some degrees are freedom are 

systematically eliminated according to the “stiffness criterion” presented in Section 4.1. These 

eliminations do not disrupt the convergence. 

 

Conclusion 

   A robust strategy for the accurate quadratic integration of implicitly defined geometries within the 

framework of the eXtended Finite Element Method has been proposed. The elements of the mesh 

crossed by arbitrary discontinuities are split into simplex integration subcells whose faces accurately 

approximate the sub-domain boundaries, so that we can integrate exclusively in each sub-domain. 

The choice is made to offer a never failing technique: the integration strategy performs without 

remeshing, under the assumption that the user is aware of the relative size of the elements of the 

mesh compared with the pattern of the arbitrary interfaces. For this aim, we systematically reduce 

the problem to a few topologically distinct cutting configurations at the price of eventual shifts for 

the interpolated zero-level set. The design of the integration subcells is systematically performed in 

the associated reference element, so that overall the cutting procedure is handled by a one-

dimensional root-finding algorithm. Problematic cases have to be handled with thorough 

consideration.  For the surface integration, the contact faces are directly recovered as the faces of 

the integration subcells coinciding with the interpolated interfaces. Optimal convergence rates are 

obtained in three dimensions for both linear and quadratic models. Our integration technique is 

flexible with respect to the method used. It may be used in a number of methods that use implicitly 

defined geometries. Finally, our cutting procedure may be combined with the techniques depicted in 

[Mousavi**] and [Ventura**] that use a fixed sample of integration points within the elements 

crossed by arbitrary interfaces. The relative weights of the integration points are estimated upon the 

approximated sub-domains. These techniques offer excellent performances and present the 

advantage of reducing the number of integration points in the vicinity of the interfaces. 

 



Annex 1: Overview of the whole cutting procedure 

   The overall cutting procedure, including the design of the integration subcells and the recovery of 

the contact faces, is summarized hereunder: 

 Loop over the elements of the mesh 
Step 1: Identify the elements that need to be cut 

 Loop over the arbitrary discontinuities defined by means of level set functions 
 The elements that are entirely crossed by the discontinuity are labeled as “interface 

elements” for the current discontinuity. 
 The elements that are cut by the discontinuity and include a piece of the crack front 

are labeled as “crack-tip elements” for the current discontinuity. 
Step 2: Cut the elements into volumetric subcells which fit the arbitrary discontinuities 

The variable 𝑗 is introduced in order to mark the configuration chosen to split the element into 

primary simplex cells. 𝑗 is initialized to 1 and cannot go past 𝑗𝑚𝑎𝑥 which corresponds to the 

number of eligible configurations for the current type of mesh. 

 Loop over the discontinuities for which the current element was labeled (at this stage, we 
do not distinguish the “crack-tip elements” from the “interface elements”) 
o If the element is cut for the first time (first discontinuity for this element) 

 The element is split up into primary simplex cells  according to configuration 𝑗 
 For each primary simplex cell, we determine the intersections with the zero-

level set in the reference space of the parent element using algorithm 1 and 
shape the integration subcells generated by each primary simplex cell. If a 
double cancelation of the normal level set along the edge of a primary simplex 
subcell is detected and 𝑗 < 𝑗𝑚𝑎𝑥 go back to the previous step with 
𝒋 = 𝒋 + 𝟏. 

 We obtain a set of integration subcells fitting the current discontinuity. 
 The nodes of the integration subcells that coincide with the discontinuity are 

specifically labeled. 
 Each integration subcell is labeled with the local sign of the normal level set. 

o Else (the element has already been split into integration subcells) 
 We map each integration subcell with its associated reference element and 

determine the intersections with the zero-level set using algorithm 1. Then we 
shape the integration subcells generated by each integration subcell. 

 We obtain a set of integration subcells fitting not only the current discontinuity 
but also the previous ones. 

 The nodes of the integration subcells that coincide with the current 
discontinuity are specifically labeled. 

 Each integration subcell is labeled with the local sign of the current normal 
level set . 

 
Step 3: Recover the contact faces 

 Loop over the discontinuities for which the current element was labeled 
o If the element is an “interface element” for the current discontinuity 

 Determine the sign of the normal level set associated to the side of the 
interface chosen for the recovery of the preliminary contact faces. 

 Loop over the integration subcells labeled with the corresponding sign and 
determine the faces that coincide with the iso-zero of the normal level set. 

 We obtain the set of contact faces for the current discontinuity. 



o Else, the element is a “crack-tip” element for the current discontinuity 

 Determine the sign of the normal level set associated to the side of the 
interface chosen for the recovery of the preliminary contact faces. 

 Loop over the integration subcells labeled with the corresponding sign and 
determine the faces that coincide with the iso-zero of the normal level set. 

 We obtain a set of preliminary contact faces for the current discontinuity. 
 Classify the preliminary contact faces into 3 groups : 
 The group of preliminary contact faces satisfying 𝑙𝑠𝑡 > 0. The elements of 

this group are out of the bounds. 
 The group of preliminary contact faces satisfying 𝑙𝑠𝑡 < 0. We select this 

entire group for the final contact faces. 
 The group of preliminary contact faces intersected by the iso-zero of the 

tangential level set. 
 The elements of this last group need a further cutting. We map the preliminary 

contact faces with their associated reference element and use algorithm 1 to 
cut these preliminary contact faces with respect to the iso-zero of the 
tangential level set. If a double cancelation of the tangential level set along the 
edge of a preliminary contact face is detected and 𝑗 < 𝑗𝑚𝑎𝑥 go back to the 
beginning of step 2 and 𝒋 = 𝒋 + 𝟏. 

 We obtain the set of final contact faces for the current discontinuity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



References 

[Ndeffo] 

M. Ndeffo, P. Massin, N. Moës, A. Martin, S. Gopalakrishnan, On the construction of approximation 

space to model discontinuities and cracks with linear and quadratic elements, IJNME, submitted 

[Daux] 

J. Dolbow N. Sukumar C. Daux, N. Moës and T. Belytschko. Arbitrary branched and intersecting cracks 

with the extended finite element method. Int. J. Numer. Meth. Engng., Vol 48, p 1741-1760, (2000). 

[Duarte] 

Duarte, C. A., L. G. Reno, et A. Simone. A high-order generalized fem for through-the-thickness 

branched cracks. Int. J. Numer. Meth. Engng, Vol 72, p 325–351, (2007). 

[Simone] 

A. Simone, C.A. Duarte, E. Van der Giessen. A generalized Finite Element Method for polycristals with 

discontinuous gran boundaries, Int. J. Numer. Meth. Engng, Vol 67, p1122-1145, (2006) 

[Siavelis] 

P. Massin M. Siavelis, M.L.E. Guiton and N. Moës. Large sliding contact along branched discontinuities 

with X-FEM. International Journal for Numerical Methods in Engineering, Vol 52, p 201-219, (2013). 

[Ferté1] 

Guilhem Ferté, Patrick Massin and Nicolas Moës. Convergence analysis of linear or quadratic X-FEM 

for curved free boundaries. Computer Methods in Applied Mechanics and Engineering, Vol 278, p 

794-827, (2014) 

 [Ventura] 

Ventura G, Gracie R, Belytschko T. Fast integration and weight function blending in the extended 
finite element method. International Journal for Numerical Methods in Engineering 2009; 77:1–29. 
 
[Mousavi] 

Mousavi S.E., Sukumar N. Numerical integration of polynomials and discontinuous functions on 
irregular convex polygons and polyhedrons. Computational Mechanics 2011; 47:535–554. 
 
[Faivre] 
 
M. Faivre, B. Paul, F. Golfier, R. Giot, P. Massin, D. Colombo, 2D coupled HM-XFEM modeling with 
cohesive zone model and applications to fluid driven fracture network, Engineering Fracture 
Mechanics, accepted (2016) 
 
[Géniaut] 
 
S. Géniaut, P. Massin, N. Moës, A stable 3D contact formulation using X-FEM, European Journal of 
Computational Mechanics, DOI :10.3166/remn.16.259-275 (2012) 
 
[Pierrès] 
 



E. Pierrès, M. C. Baietto, A. Gravouil, A two-scale extended finite element method for modeling 3D 
crack growth with interfacial contact,  Comput. Methods Appl. Mech. Engrg. 199 1165–1177 (2010) 
 
[Ferté2] 
 
G. Ferté, P. Massin, N. Moës, 3D crack propagation with cohesive elements in the extended finite 
element method, Comput. Methods Appl. Mech. Engrg. http://dx.doi.org/10.1016/j.cma.2015.11.018 
(2015) 
 
[Hansbo] 
A. Hansbo, P. Hansbo. A finite element method for the simulation of strong and weak discontinuities 
in solid mechanics, Comput. Methods Appl. Mech. Engrg., volume 193, 3523–3540, (2004) 
 
[Dathe] 
 
G. Dhatt, G. Touzot, E. Lefrançois, Une présentation de la méthode des éléments finis, Editions 
Lavoisier (1981) 
 
[Béchet] 
 
E. Béchet, H. Minnebo, N. Moës, B. Burgardt Improved implementation and robustness study of the 
X-FEM for stress analysis around cracks. Int. J. Numer. Meth. Engng. 64(8), 1033-1056 (2009) 
 
[Fries] 

Fries T.P., Omerovic S. Higher-order accurate integration of implicit geometries. Int .J. for Numer. 

Meth. Engng 2015, 10.1002/nme.5121 

[Moës] 

N. Moës, A. Gravouil, T . Belytschko, Non-planar 3D crack growth by the extended finite element and 

level sets-Part 1 : Mechanical Model, Int. J. Numer. Meth. Engng. 53:2549-2568 (DOI: 

10.1002/nme.429) (2002) 

[Minnebo] 

H. Minnebo, Three-dimensional integration strategies of singular functions introduced by the XFEM 

in the LEFM, Int. J. Numer. Meth. Engng. 92:1117-1138 (DOI: 10.1002/nme.4378) (2012) 

[Legrain1] 

G. Legrain, R. Allais, P. Cartraud, On the use of the extended finite element method with 

quadtree/octree meshes, Int. J. Numer. Meth. Engng. 86:717-743 (DOI: 10.1002/nme.3070) (2010) 

[Dolbow] 

J. Dolbow N. Moës and T. Belytschko. A finite element method for crack growth without remeshing. 

International Journal for Numerical Methods in Engineering, Vol 46, p 131-150, (1999). 

[Melenk] 

J.M. Melenk, I. Babuska, The partition of unity finite element method: basic theory and applications, 

Comput. Methods Appl. Mech. Engrg. 39 (1996) 289-314. 

[Stazi] 

http://dx.doi.org/10.1016/j.cma.2015.11.018


Stazi FL, Budyn E, Chessa J, Belytschko T. An extended finite element method with higher-order 
elements for curved cracks. Computational Mechanics 2003; 31:38–48. 
 
[Chessa] 
 
J. Chessa, H. Wang, T. Belytschko, On the construction of blending elements for local partition of 
unity enriched finite elements, Internat. J. Numer. Methods Engrg. 57 (2003) 1015–1038. 
 
[Legay] 
 
Legay A,Wang HW, Belytschko T. Strong and weak arbitrary discontinuities in spectral finite 
elements. International Journal for Numerical Methods in Engineering 2005; 64:991–1008. 
 
[Cheng] 
 
Cheng KW, Fries TP. Higher-order XFEM for curved strong and weak discontinuities. International 
Journal for Numerical Methods in Engineering 2010; 82:564–590. 
 
[Dréau] 
 
Dréau K, Chevaugeon N, Moës N. Studied X-FEM enrichment to handle material interfaces with 
higher order finite element. Computer Methods in Applied Mechanics and Engineering 2010; 
199:1922–1936. 
 
[Legrain2] 
 
Legrain G, Chevaugeon N, Dréau K. High order X-FEM and level sets for complex microstructures: 
uncoupling geometry and approximation. Computer Methods in Applied Mechanics and Engineering 
2012; 241-244:172–189. 
 
[Moumnassi] 
 
Moumnassi M, Belouettar S, Béchet É, Bordas SPA, Quoirin D, Potier-FerryM. Finite element analysis 
on implicitly defined domains: an accurate representation based on arbitrary parametric surfaces. 
Computer Methods in Applied Mechanics and Engineering 2011; 200:774–796. 
 
[Osher] 
 
S. Osher, J.A. Sethian, Fronts propagation with curvature dependent speed: algorithms based on 

Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1998) 12-49 

[Huerta] 

Sala-Lardies E, Fernández-Méndez S, Huerta A. Optimally convergent high-order X-FEM for problems 
with voids and inclusion. Proceedings of the ECCOMAS 2012, Vienna, Austria, 2012; 1–14. 
 
[Sethian] 
 
JA. Sethain Level Set Methods and Fast Marching Methods (2nd edn). Cambridge University Press: 
Cambridge, 1999. 
 
[Laborde] 



 
Laborde P, Pommier J, Renard Y, Salaün M. High-order extended finite element method for cracked 
domains. International Journal for Numerical Methods in Engineering 2005; 64:354–381. 
 
[AFEM] 

D. Ling, Q. Yang, B. Cox An augmented finite element method for modelling arbitrary discontinuities 

in composite materials, Int. J. Fract. 156 53-73 (2009) 

[Chahine] 

E. Chahine, P. Laborde, Y. Renard crack-tip enrichment in the XFEM method using a cutt-off function, 

Internat. J. Numer. Methods Engrg. 75 629-646 (2008) 

[Chevaugeon] 

N. Chevaugeon, N. Moës, H. Minnebo, Improved crack-tip enrichment functionsand integration for 

crack modeling using the extended finite element method, J. Multiscale Comput. Eng. 11 597-631 

( 2013)  

[Nicaise] 

S. Nicaise, Y. Renard, E. Chahine, Optimal convergence analysis for the extended finite element 

method, Internat. J. Numer. Methods. Engrg. 84 1115-1138 (2010)  

[Béchet**] 

E. Béchet, H. Minnebo, N. Moës, B. Burgardt, Improved implementation and robustness study of the 

X-FEM for stress analysis around cracks, Internat. J. Numer. Methods Engrg. 64 1033-1056 (2005) 


	DAP_An integration_PAUL_2016
	article_3D_an integration_PAUL_2016

