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The Michelson wavemeter is a popular instrument in many experiments where the high precision

measurement of a cw laser wavelength is required. In this paper, we describe a simple and inex-

pensive way to obtain high precision measurements with this classical physicist’s tool. We exploit

the time stamp provided by the high frequency clock present in modern data acquisition cards to

measure the fractional uncertainty of the interference signal. The resulting relative uncertainty

value for our current set-up is of the order of 10−8 and can be potentially improved by a factor of 100.

I. INTRODUCTION

The accurate measurement of a laser wavelength is

an important step in many situations in experimental

physics involving resonant excitation of an atomic tran-

sition or an optical resonator, for example in laser cooling

of a trapped sample as in our experiments [3]. To this

purpose, the laser wavelength has to be adjusted within

the linewidth of the excited atomic transition, with typi-

cal values of the order of ∆νFWHM ≈ 20 MHz. A widely

used instrument to obtain such precision measurements

is the scanning Michelson wavemeter, first introduced in

1976 [6, 9]. Using this type of wavemeter, it is possible to

achieve accuracies of a few parts in 109 [13]. However,

these high accuracies are at the expenses of a complex

set-up.

In the following, we propose an alternative to the

technique used by Bennett and Gill in [1] which takes

advantage of modern data acquisition cards to achieve

a calculated wavelength uncertainty below 2 · 10−8 by

using a conventional set-up.

II. PRINCIPLE OF OPERATION OF A

WAVEMETER

A Michelson wavemeter is based on a travelling Michel-

son interferometer and is described in detail in many text-

∗jofre.pedregosa@univ-amu.fr

Useful Optical Path

Reference laser

Unknown laser PDR

PDX

D1 D1

D2 D2

FIG. 1: Principle of a Michelson wavemeter. Two laser

beams, the reference and the unknown one, are injected

into a travelling Michelson interferometer. The

interference patterns are read out by two

photo-detectors(PDX and PDR), amplified and sent to

a counter. Detectors labelled as D1 are used to change

the direction of the cubes’s carrier, while the detectors

D2 define the useful travelling path by gating the

measurement sequence.

books, see for example [5]. Therefore only a brief review

is presented here. The set-up considered (see figure 1)

involves two corner cubes mounted on the same carriage.

The translation of this carriage induces a varying path

difference between each arm of the interferometer. Two

laser beams, coming from a reference laser (R) and a laser

of unknown wavelength (X) go through the interferome-

ter on identical paths but opposite direction. The result-

ing interference patterns are measured by photodiodes,

amplified, and sent to a counter. In such a set-up the



2

ratio of the laser wavelengths is inversely proportional to

the ratio of the number of interference fringes measured

for each laser.

Each interference signal is modulated as:

S(t) = A cos

(
8πvt

λi
+ φ

)
(1)

where v is the speed of the carrier, and λi the laser wave-

length. The number of maxima, ni, for a given path

length L of the carriage, is:

2π(ni + ε) =
8πL

λi
+ φ (2)

where ε represents the fact that the path length L is

not an integer multiple of the laser half-wavelength. The

phase φ takes into account the fact that the data ac-

quisition is not necessarily started in phase with the in-

terference pattern. These two quantities, ε and φ both

represent the mismatch of the path length with the inter-

ference pattern. They are kept separate as φ represents

a mismatch at the beginning while ε happens at the end

of the measurement period, and therefore the technical

solutions to reduce them to zero are different.

The wavelength values in equation 2 are taken in air

and therefore the variation of the refractive index of air

with the wavelength is not taken into account. The error

introduced by this assumption will be discussed later.

By applying equation 2 to the reference laser (λR) and

the unknown one (λX), we obtain:

λX = λR
nR + εR − φR

2π

nX + εX − φX

2π

(3)

It is possible, with the adequate electronics, to trigger the

counter with one of the interference signals, effectively

making φR = 0. Additionally, the electronics can be

configured to count an exact number of maxima, which

means that εR = 0. Therefore, equation 3 can be simpli-

fied to:

λX
λR

=
nR

nX + εX − φX

2π

(4)

The term εX − φX

2π is often neglected due to the difficulty

of measuring φX and εX . The equation used to compute

the unknown λX is then reduced to

λX = λR
nR
nX

(5)

and the error δλX due to the neglected term is bounded

by:

δλX
λX
≤ 2

nX
(6)

where we have used that 0 <
∣∣∣ε− φ

2π

∣∣∣ < 2.

By using this technique, a typical set-up with a trav-

elling distance of 0.5 m, using a He-Ne laser as reference

source to measure λ = 845.3460 nm, (which correspond

to a given atomic transition in our set-up) gives an error

of δλX ≈ 8 · 10−4 nm corresponding to a frequency un-

certainty ∆νX ≈ 300 MHz. This value is far above the

FWHM of the considered atomic transition. For many

atomic physics experiments, this resolution is not suffi-

cient to tune an exciting laser to a resonant line.

A standard way to improve the precision of the mea-

surement is to increase nX when using the approxima-

tion given by eq. 5, as the other parameters are fixed

(λR, λX) or bounded (φR, εR). The straightforward ap-

proach is to increment the travelling path length. This

can be achieved in a compact manner as shown in [10].

Alternatively, it is possible to multiply the nX counts by

a constant factor using a Phase Locked Loop, as it was

first demonstrated by [6]. The first solution involves a

redesign/modification of the mechanical set-up. The sec-

ond approach involves relatively advanced electronics if

one aims to obtain a precise measurement with a rate of

one per second.

Another possibility is to bring down to zero εR,

φR, εX and φX simultaneously using the coincidence

method [7, 8]. This consists in starting and stopping the

measurement at an instant when the phases of both lasers

are equal. When the interval is specified in this manner,

the precision of the frequency measurement is limited by

the temporal resolution of the electronics which detects

the phase matching.

Alternatively, εR and φR can also be determined. This

has been realized in [12] by using a least-squares fit to

the data. The implementation presented in [12] requires

to store the produced interference fringes, with a good

enough sampling of the signal for the curve fitting to be

relevant.

A more accurate way to measure εR and φR has been

given by Bennett and Gill [1]. From the electronics point

of view, the implementation presented in [1] requires
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advanced custom-made electronics.

In this manuscript, we show how this last type of mea-

surements can be easily realized using commercial acqui-

sition cards. These cards are commonly used in industry

and therefore are affordable and very well documented,

simplifying their practical implementation. Moreover, we

present an improved algorithm that allows a factor 2 gain

in uncertainty respect [1]. Experimental results of this

new technique are also provided and discussed.

III. TIME STAMP APPROACH FOR HIGH

RESOLUTION MEASUREMENTS

A. Numerical implementation of Bennett’s method

The principle of this method is illustrated in figure 2,

showing the two interference patterns after being trans-

formed to TTL pulses and the gate signal used to start

and stop the actual data acquisition. Using the time in-

tervals a, b, c and d defined on figure 2 , it is possible to

obtain εX and φX by [1]

εX −
φX
2π

=
a

b
+
d

c
(7)

This equation assumes that the velocity of the carrier

remains constant only during the measurement of a and

b and of c and d. This eliminates the need for highly

stabilized velocities during the complete measurement,

a requirement which is often found for other methods

proposed in the literature. The unknown wavelength,

λX , is obtained using:

λX = λR
nR

nX + a
b + d

c

(8)

B. Improved method

The time-stamp approach needs less measurements.

As indicated in figure 2, only four times need to be mea-

sured, instead of six in the method in III A. The total

measuring time, tm, can be written as a function of the

average period of each interference pattern, < τi >:

tm = t4 − t1 = nR < τR > (9)

tm = nXτX + (t4 − t3) + (t2 − t1) = nX < τX > +t′

SR

Gate

SX

0

0 1

2 3

a

1

b

nX

nRnR − 1

c d

nX − 1

t1 t2
t3 t4

FIG. 2: Diagram showing the different signals involved

in the measurement, together with the different times

and times intervals which need to be exactly measured

for a precise final wavelength determination.

The reason to use average values for τ , is that the ve-

locity may not be constant during the measuring time,

tm. Assuming the wavelengths are fixed, we can rewrite

equation 9 as:

< τR > =
tm
nR

=
λR

4 < v1 >
(10)

< τX > =
tm − t′
nX

=
λX

4 < v2 >

where < v1 > is averaged over tm while < v2 > is av-

eraged over tm − t′. A possible difference could be in-

troduced during the extra time, t′. As t′/tm is of the

order of 10−6, we can safely assume that < v1 >=< v2 >

in that extra time t′. This assumption is equivalent to

the one made by Bennett and Gill, where the velocity

is assumed constant over two consecutive maxima at the

start and at the end of the carriage travelling.

By replacing < τX > and < τR >, we obtain the final

expression:

λX = λR
nR
nX

(
1− t′

tm

)
(11)

There is a non-negligible advantage of using the method

described by equation (11) rather than equation (8), as it

becomes clear from the error budgets, see section III D.
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C. Technical implementation

The implementation of the proposed improved scheme

is made by a National Instrument PCIe-6363 acquisition

card. The counter associated to the card’s internal clock

is started by the gate signal. Each incoming TTL pulse

generates a new register entry (stored in the card’s inter-

nal buffer), recording the number of clock cycles elapsed

since the start of the acquisition, see figure 3. This value

is referred to as the time stamp. The result is a vector of

variable size, whose dimension is the number of incoming

pulses, and whose contents are the time stamps of each

incoming pulse. The size of the two vectors created in

this way, will therefore give the values of nX and nR.

The contents are the time intervals in units of the ac-

quisition card clock’s period, giving all the information

needed to compute eq. 8 or eq. 11.

0 1 2 3 4 5 6 8 9

3 3
8

Start acquisition

Incoming TTL Pulse

Internal Card Clock

Buffer

FIG. 3: For each interference signal, the acquisition

card saves in a buffer the time stamp for every incoming

TTL pulse (SR and SX signals). In this example, two

rising edges are recorded with a time difference of 5

clock periods between both pulses.

D. Error budgets

To compare error budgets of the two presented meth-

ods, common relevant values for typical wavemeters have

been used: a travelling path of 40 cm, travelled in 1 s.

This implies for our unknown wavelength λX = 845.3 nm

an average interference signal period < τX >= 0.5µs and

a total number of fringes nX of 2.106. If ∆t is the error

on one time interval measurement, the maximum relative

uncertainty of the measurement using Bennett’s method

(eq. 8), can be written as:∣∣∣∣∆λXλX

∣∣∣∣
B

≤
∣∣∣∣ ∆t

nX

(
1

b
+
a

b2
+

1

c
+
d

c2

)∣∣∣∣+∣∣∣∣∆λRλR

∣∣∣∣+∣∣∣∣∆rr
∣∣∣∣+∣∣∣∣ δs∆s

∣∣∣∣
(12)

where the last two terms are taking into account the de-

pendency on the refraction index and misalignments [5].

Let us estimate the magnitude of each term in equa-

tion (12). The first term corresponds to the sum of er-

rors associated to the different time intervals. As each

time interval is determined by a subtraction of two time

stamps, and each time stamp has an error of half the

clock period, τcard, we obtain ∆t = τcard. By using a

100 MHz internal clock, the value of τcard is 10ns. As

a/b and d/c ≤ 1 and b and c are of the order of < τX >,

this term is bounded by 4τcard/(< τX > nX) = 4 · 10−8.

The second term of equation (12) depends on the

reference laser. A commercial, temperature-stabilized

He-Ne laser has a nominal frequency stability of 2 MHz,

leading to
∣∣∣∆λR

λR

∣∣∣ ≈ 4 · 10−9.

The third term reflects the dependency of the index

of refraction of air, n0, on the wavelength. It can be

estimated using [5]:∣∣∣∣∆rr
∣∣∣∣ ≈ 1 · 10−3|n0(λX)− n0(λR)| (13)

A value of λX = 845.3460 nm leads to
∣∣∆r
r

∣∣ ≈ 2 · 10−9.

A possible misalignment of the laser beams resulting

in signal variations is taken into account by the fourth

term, where ∆s is the optical path difference for each

arm of the interferometer and δs = ∆s(λR) − ∆s(λX).

To keep the introduced systematic relative error
∣∣ δs

∆s

∣∣
lower than 10−8, the tilt angle between the two beams

must be smaller than 2.10−4 rad [5]. Let’s point out that,

for a given alignment, this is a systematic error affecting

the accuracy but not the precision of the measurement.

With those values, the estimated maximum relative

uncertainty of λX = 845 nm is 4 · 10−8, corresponding

to a frequency uncertainty ∆νX = 14 MHz.

The proposed improved method relies on the measure-

ment of the full measurement time tm. The extra time

t′ can not be longer than 2 interference signal periods
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< τX >. It induces that t′/tm ≤ 10−6 and the maxi-

mum relative uncertainty of the λX , expressed by eq. 11

is given by:∣∣∣∣ ∆

λX

∣∣∣∣ ≤ ∣∣∣∣∆tm t′

t2m

∣∣∣∣+

∣∣∣∣∆t′tm

∣∣∣∣+

∣∣∣∣∆λRλR

∣∣∣∣+

∣∣∣∣∆rr
∣∣∣∣+

∣∣∣∣ δs∆s

∣∣∣∣ (14)

where the last three terms have the same meaning as

in equation (12), while the first two terms describe

uncertainties due to the technical implementation of

the method. The first term is due to the error on

the total measuring time. It is determined by the

on-board clock of the acquisition card. Our card has an

internal 100 MHz clock with a nominal uncertainty of

50 ppm. This uncertainty is the dominating term for

acquisition times much longer than the clock period.

For the chosen measurement time of 1 s, we can consider

∆tm ≈ 50µs. Furthermore, the extra time t′ is the sum

of two measured intervals whose duration is of the order

of < τX > leading to
∣∣∣∆tm t′

t2m

∣∣∣ ≤ ∣∣∣∆tm 2<τX>
t2m

∣∣∣ ≈ 5 ·10−11.

The second term arises from the measurement uncer-

tainty ∆t′ of the two intervals (t4 − t3) and (t2 − t1)

which are similar to the a, b, c and d intervals of eq. 12.

The uncertainty now counts twice instead of 4 times and

∆t′ is then equal to 2τcard and
∣∣∣∆t′

tm

∣∣∣ = 2τcard

tm
= 2 · 10−8.

The total estimated maximum relative uncertainty for

the digital implementation is dominated by this contri-

bution. For this method, the uncertainty related to the

measurement of the full time tm is negligible compared

to the contribution of the extra time, t′, measurement.

As the term < τX > nX is nearly equal to tm, for both

methods presented above, the leading term for measure-

ment uncertainty scales like τcard/tm, with a factor 2 in-

stead of 4 in the improved proposed method because only

2 intervals are needed instead of 4. The acquisition card

technology limits τcard and it may be improved in the

future. The precision of the measurement can be easily

increased by taking a longer measurement time tm. Note

that the budget error given by eq. 12 does not depend on

the total tm, but on nx, which depends only on the length

L and not on the speed of the carrier. For tm larger than

100 s, the uncertainty budget is limited by other contri-

butions. To improve the error arising from the reference

laser it is possible to use one of the several existing tech-

niques to improve the stability of a laser [4]. Indeed, with

a highly-stabilized 100 kHz He-Ne reference laser,
∣∣∣∆λR

λR

∣∣∣

is reduced to < 10−10. Regarding, the refractive index

of air, several set-ups [2] exist where the wavemeter is

under vacuum, making the corresponding term in the to-

tal error budget negligible. Furthermore, advanced tech-

niques, as shown in [12], allow to reduce the systematic

error induced by misalignment. Therefore, in a system

making use of the various cited techniques, it is possible

to imagine a motorized set-up that can be operated in a

”low” precision measurements (∆ν/ν ≈ 2 · 10−8) every

second, and, if needed, with a simple switch, in a ”high”

precision measurement (∆ν/ν ≈ 2 · 10−10) by decreasing

the carrier’s speed by a factor of 100.

IV. EXPERIMENTAL IMPLEMENTATION

The main advantage of the proposed method is

the small number of modifications that an exisiting

travelling Michelson wavemeter set-up needs. In our

particular case, we had an existing implementation

with the carriage being pulled back and forth by a DC

motor. The carrier moves on a V-rail using an air flow

to minimize friction. Two photo-detectors sensitive to

the passage of the carriage at each end of the rail inverse

the sense of the motor (D1 on figure 1). To make sure

to count fringes when the carriage velocity is nearly

uniform, two additional detectors (D2) are placed at a

shorter distance, creating the “gate” signal for the in-

terference signal processing. This gate is used to trigger

and stop/reset a HAMEG-8122 counter, which provides

a TTL output for each interference fringe. The gate and

the two TTL signals are fed into the acquisition card. A

computer code, in our case developed in LabVIEW [11],

computes equation 11, providing a wavelength measure-

ment every 1.5 s. Therefore, provided the acquisition

card is present, the only hardware modifications needed

for the implementation of the numerical method is the

incorporation of three BNC cables with respect to the

classical configuration based only on the counter itself.

In order to test this method, a diode laser emitting

around 845 nm was used. The laser light was split

and sent to the wavemeter and inside a ppKTP crystal

for frequency-doubling to reach the 4s2 → 4s4p transi-

tion of Ca. The frequency doubled laser beam cross an
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FIG. 4: Time evolution of the wavelength of a laser

beam whose first harmonic is locked on the resonance

transition of calcium. The wavelength is measured with

the described improved method.

atomic beam of neutral calcium in a vacuum chamber in

a Doppler-free configuration. The fluorescence signal of

the calcium resonance line was monitored by a photomul-

tiplier. The diode laser was locked to the maximum of

this fluorescence signal, keeping the 845 nm laser short-

term frequency fluctuations lower than 3 MHz over the

whole duration of the measurement. The evolution of

the wavelength measurement residuals (λ− < λ >) is

shown in figure 4. The observed linear drift in figure 4 is

probably due to a drift of the lock, while the slow oscilla-

tions are correlated to the room temperature variations

due to the air conditioning cycle. The He-Ne reference

laser was temperature stabilized, providing an estimated

stability of ≈ 4 MHz. This leads to a theoretical un-

certainty of
∣∣∆λ
λ

∣∣
the

= 2.8 · 10−8. The data in figure 4

gives
∣∣∆λ
λ

∣∣
exp

= 2σλ/λ̄ = 5 · 10−8, which is in very good

agreement with the expected value taking into account

the measurement uncertainty, the short term fluctuations

of the laser frequency and its long term drift.

For comparison, the theoretical uncertainty for one

measurement using the apparatus from [1] is
∣∣∆λ
λ

(
|the =

4.0 · 10−8 with a measuring time of 20s and a clock of

5MHz. After 60 measurements, an experimental uncer-

tainty of
∣∣∆λ
λ

∣∣
exp

= 2σλ/λ̄ = 2 · 10−8 is reported, when

using as reference and as unknown lasers two He-Neon

lasers, both of them locked to the same hyperfine line of

molecular iodine-127 [1]. More complex implementations

obtain similar results. For example, a vertical version of

the wavemeter [13] provides a ∆ν = 1.5 MHz with a mea-

suring time of 1 hour, while Kowalski et. al. [9] obtained

∆ν = 8 MHz with a measured time of 1 day (the reference

does not give more details). By comparing our estimated

error with those values, the method proposed here pro-

vides an excellent precision with only 1.5 s of measuring

time and very little technical complexity. This is possi-

ble by using the fast clock available on the acquisition

card. If a slower clock had to be used, the same method

proposed will still be applicable, but the speed, v, of the

carrier would have to be reduced in order to achieve the

same performance, thus decreasing the rate at which a

measurement is obtained.

V. CONCLUSION

A new computer-controlled method has been presented

that allows for high resolution measurement by a travel-

ling Michelson wavemeter with a relative simple set-up,

possibly improving by two orders of magnitude the initial

precision of the apparatus. The simultaneous counting of

the number of interference fringes and their time stamp

allows a precision of the order of 10 MHz in the near-

infrared domain, when using a 4 MHz He-Ne reference

laser and a 100 MHz acquisition clock. The simplicity

of the method compared with those found in the litera-

ture, make it an appealing option when building a new

wavemeter. A major advantage of the presented scheme

is the possibility to work either in ”low” precision mode

with a high repetition rate, or in a ”high” precision mode

with a low measurement rate. Moreover, this technique

constitutes a very simple upgrade for an existing Michel-

son wavemeter whose interference signal is simply pro-

cessed by a counter.
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