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Abstract

Diffuse interface methods with compressible fluids, considered through hyperbolic multiphase
flow models, have demonstrated their capability to solve a wide range of complex flow situations
in severe conditions (both high and low speeds). These formulations can deal with the pres-
ence of shock waves, chemical and physical transformations, such as cavitation and detonation.
Compared to existing approaches able to consider compressible materials and interfaces, these
methods are conservative with respect to mixture mass, momentum, energy and are entropy
preserving. Thanks to these properties they are very robust. However, in many situations, typ-
ically in low transient conditions, numerical diffusion at material interfaces is excessive. Several
approaches have been developed to lower this weakness. In the present contribution, a specific
flux limiter is proposed and inserted into conventional MUSCL type schemes, in the frame of the
diffuse interface formulation of Saurel et al. (2009). With this limiter, interfaces are captured
with almost two mesh points at any time, showing significant improvement in interface represen-
tation. The method works on both structured and unstructured meshes and its implementation
in existing codes is simple. Computational examples showing method capabilities and accuracy
are presented.
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MUSCL, flux limiter.

1Corresponding author: alexandre.chiapolino@rs2n.eu

Preprint submitted to Journal of Computational Physics February 2, 2017

mailto:alexandre.chiapolino@rs2n.eu


1. Introduction

The present contribution deals with the computation of compressible flows with material
interfaces. As soon as the computational domain involves more than one fluid or material, a
fundamental difficulty arises, as an extra type of discontinuity appears in addition to shocks
and contact discontinuities, present in single phase flows. An interface separates two materials
possibly governed by the same set of balance equations (for example interfaces separating air
and liquid water) but with different thermodynamics. As soon as the interface moves in a given
cell, this latter becomes a mixture-cell and the computation of thermodynamic state becomes
problematic. The fluids have density and internal energy significantly different and different of
the density and internal energy of the mixture in the computational cell. It is not possible to
compute the cell thermodynamics and in particular the pressure without extra information. In
this frame, several approaches have been developed along several decades.

The first class of methods attempts to avoid appearance of mixture cells by maintaining sharp
interface profiles. Lagrangian [1] and ALE methods [2] track interfaces but are limited by mesh
distortions of arbitrary amplitude. Front tracking [3] attempted to reduce these distortions by
considering fixed meshes and moving interfaces, tracked by lagrangian markers. This was done
to the price of limitations, such as the management of several flow solvers, as well as interface
distortions involving geometrical singularities, resulting in computational issues.

To progress in the direction of simplicity and generality, the Level Set Method [4] was adapted
to compressible fluids and the Ghost Fluid Method [5] was used to compute approximate ther-
modynamic state in mixture cells and particularly pressure. To avoid complexity related to mesh
management with previous methods, the interface was tracked implicitly through an Eulerian
function and two sets of Euler equations were used to store and evolve the fluid variables when
needed, in particular in mixture cells. The Ghost Fluid Method is used to transfer the bound-
ary conditions at interfaces through specific extrapolations from one set of Euler equations to
the other. Although apparently simple, this method still needs efforts to improve robustness in
severe flow conditions, to maintain conservation and address extra physics.

The last family of methods devoted to mixture cells is termed “diffuse interface methods”
(DIM). Two subclasses of DIM are present in the literature. The first one considers physically
diffuse interfaces, having a visco-capillary structure [6]. Here the spatial resolution must be less
than the interface width, i.e. a few nanometers. Also, the equation of state is aimed to describe
phase transition between a liquid and its vapor through a cubic type equation of state. To the
authors’ knowledge, this approach has never shown its capability to compute interfaces between
immiscible fluids (water and air for example). Its seems restricted to small scale computations
of phase transition.

The second subclass of DIM addresses mixture cells having computational origins instead of
physical ones. Pioneering work in this direction was done with VOF methods [7] in the frame of
incompressible fluids. An extra evolution equation is added to the flow model representing the
volume fraction of a given phase. At this level, the model adopts a two-phase description of the
flow, with sub-volumes occupied by the phases and several mass balance equations. Extension
of this approach to compressible fluids was done in [8] and [9].

Contrarily to shocks, captured with the help of some artificial viscosity, the computation
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of interfaces separating materials with different thermodynamics has no viscous regularization.
As shown in [8], [9], [10], the computation of mixture thermodynamics is related to relaxation
effects in multiphase mixtures. In this frame, as pure materials, far from interfaces, are governed
by hyperbolic systems (Euler equations or more sophisticated models), it is natural to address
hyperbolic models of diffuse interfaces.

The present contribution takes place in this framework. The simplicity of the implementation
of diffuse interface methods is a key point for the computation of complex flows, with distorted
interfaces, shocks and interactions among them. Insertion of these methods into existing CFD
compressible flow codes is in general easy.

In this frame, Abgrall (1996) [11] considered interfaces separating two ideal gases. Shyue
(1998) [12] and Saurel and Abgrall (1999) [13] considered liquid-gas interfaces and added evo-
lution equations for the Stiffened-Gas equation of state parameters to compute mixture cells
thermodynamics. These methods were generalized and rationalized with the help of multiphase
flow modeling [8], [9], [14], [15], [16], [17], [18] to cite a few.

In these formulations, the aim is to solve interfaces with a unique set of partial differential
equations (an extended flow model) and a unique hyperbolic solver. The interfaces are captured
and not tracked or reconstructed. Such an approach is mandatory in most compressible flow
computations as interface deformations are arbitrarily complex.

These methods are permanently improved, for example to reduce artificial smearing and
sharpen interfaces [19], [20], [21] as well as to increase the order of approximation and global
accuracy [22].

Extra physics extensions have been addressed as well: chemical reactions [23], phase change
[24], surface tension [25], solid-fluid [26], plastic transformation [27] to cite a few.

The main limitation of these diffuse interface methods is related to their excessive numerical
diffusion, typically four mesh points and even more. This is not problematic for fast transient
flows as the interfaces are in general maintained sharp during sufficiently long time, but becomes
problematic at least for slow transient flows. Several contributions have been done to maintain
or restore sharp interfaces. Shyue (2006) [28] adapted the interface reconstruction method of
Youngs (1982) [29] to a diffuse interface model of compressible fluids. Pantano and coworkers
(2010, 2013) [19],[20] adapted the sharpening method of Olsson and Kreiss (2005) [30] to another
diffuse interface model. Kokh and Lagoutiere (2010) [31] promoted another method based on
a downwind limiter. Shyue and Xiao (2014) [21] examined another limiter, combined with a
hyperbolic tangent reconstruction. It is clear that this research area is very active and that
various directions are under investigation.

The present contribution addresses interface sharpening on unstructured meshes. With the
help of mild modifications of existing flux limiters in conventional MUSCL methods [32], inter-
faces are captured almost in two mesh points, improving significantly quality of the results, to
the price of mild code modifications.

The paper is organized as follows. The considered flow model is recalled in Section 2. The
hyperbolic flow solver on unstructured meshes is summarized in Sections 3. In the frame of un-
structured meshes and MUSCL methods, gradient computations have importance, as detailed in
Section 4. The two main ingredients constituting the present sharpening method are successively
detailed in Sections 5 and 6,
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• Development of a specific flux limiter.

• Coupling with a diffuse interface formulation.

The last sections 7 and 8 deal with validations and illustrations of the method capabilities.

2. Flow model

The almost sharp algorithm developed in the present paper considers the diffuse interface
model of [17]. This model is a pressure non-equilibrium variant of Kapila’s model (2001) [9]
that facilitates consideration of non-conservative terms. The sharpening algorithm can also be
applied to simplified versions of these models, such as for example, models given in [14] and [15]
as well as variants [18]. Furthermore, the method also applies to more general models such as
Baer and Nunziato’s (1986) [33]. The model of reference [17] is recalled hereafter.











































∂αk
∂t

+ u. grad (αk) = µ(pk − pI),

∂ (αkρkek)

∂t
+ div (αkρkeku) + (αkpk) div (u) = −pIµ(pk − pI),

∂ (αkρk)

∂t
+ div (αkρku) = 0,

∂ (ρu)

∂t
+ div

(

ρu⊗ u+ pI
)

= 0,

(2.1)

with k varying from 1 to the number of fluids considered. The notations are conventional in
the two-phase flow literature. αk, ρk, pk, ek denote respectively the volume fraction, density,
pressure and internal energy of phase k. u represents the center of mass velocity. The mixture
internal energy is defined as e =

∑

Ykek where Yk = (αkρk)/ρ denotes the mass fraction of phase
k. The mixture density and pressure are defined as ρ =

∑

αkρk and p =
∑

αkpk. The interfacial
pressure appearing in the right-hand side reads,

PI =

∑ pk
Zk

∑

1
Zk

, (2.2)

where Zk = ρkck denotes the acoustic impedance of fluid k. The entropy equations read,

∂ (αkρksk)

∂t
+ div(αkρksku) =

µ(pI − pk)
2

Tk
. (2.3)

It is convenient to write this system in compact form as,

∂U

∂t
+ div{F (U)}+B(U) div (u) = µS(U), (2.4)
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with,

U =









αk
αkρkek
αkρk
ρu









F (U) =









αku
αkρkeku
αkρku

ρu⊗ u+ pI









B(U) =









−αk
pk
0
0









S(U) =









pk − pI
pI(pI − pk)

0
0









(2.5)
This system is non-conservative and is subject to multiple weak solutions. Those solutions
depend on the path that links the different states associated with discontinuities. In the present
context, the conservation of the mixture total energy is used as favorite path regarding the weak
solutions. Indeed, solutions of the present system also satisfy the following equation,

∂ (ρE)

∂t
+ div

[

u (ρE + p)
]

= 0, (2.6)

with E the mixture total energy (E = e + 1
2
u2). In that sense, the evolution of the mixture

total energy is the first ingredient in the design of a preferred path. The second ingredient that
follows is the relaxation of the phase internal energies in order to remain consistent with the
phase pressures at equilibrium.

A numerical relaxation aims to mimic this enforcement constraint and the actual system to
be solved reads,











∂U

∂t
+ div{F (U)}+B(U) div (u) = µS(U) +

1

ǫ
R(U, ρE),

∂ (ρE)

∂t
+ div

[

u (ρE + p)
]

= 0,

(2.7)

where µ is a parameter that controls the rate at which pressures tend to equilibrium and ǫ is
a relaxation characteristic time. Those equations are bound by the relaxation vector R(U, ρE)
defined as,

R(U, ρE) =













0
αkρk

(

ek(p
(3), ρk)− ek

)

0
0
0













(2.8)

where p(3) is the mixture pressure projected on the path where the total mixture energy is
conserved,

p(3) = p(3)(U, ρE) =

(

ρE − 1
2
ρu · u

)

−
∑

(

αk(1−ρkbk)γkp∞,k

γk−1

)

∑

(

αk(1−ρkbk)
γk−1

) . (2.9)

The mixture EOS (2.9) can be derived explicitly or implicitly from any convex EOS pk(ρk, ek)
and definition of mixture internal energy ρe =

∑

αkρkek(pk, ρk) under pressure equilibrium
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condition p = pk. The mixture EOS (2.9) above is derived from the NASG EOS, used for each
fluid,

pk(ρk, ek) =
(γk − 1) ρkek
1− ρkbk

− γkp∞,k, (2.10)

Associated parameters are given for example in [34],[35]. The numerical approximation is
achieved with three distinct steps: hyperbolic evolution, relaxation of the phase pressures and
relaxation of the phase internal energies. Those three steps are briefly recalled hereafter.

Hyperbolic evolution

At the beginning of this step, the following relation is satisfied at the current time denoted
n,

∑

k

(αkρkek)
n = (ρE)n −

1

2
ρn‖un‖2. (2.11)

The associated dynamics is driven by the following set of non-conservative equations, describing
the evolution of U as well as the evolution of ρE,











∂U

∂t
+ div{F (U)}+B(U) div (u) = 0,

∂ (ρE)

∂t
+ div

[

u (ρE + p)
]

= 0.

(2.12)

This system is evolved during a time step δt. In the following, the upper script (1) will indicate
the output variables coming from this hyperbolic step. When this latter is fully computed, the
sum of the phase internal energies is in general different from its definition,

∑

k

(αkρkek)
(1) 6= (ρE)(1) −

1

2
ρ(1)‖u(1)‖2.

This feature is particularly true for discontinuous solutions. The following steps are devoted to
remedy to this drawback.

Pressure relaxation

At this point, the vector U (1) and (ρE)(1) are available and used as inputs of the system
(2.13). During the second step, the phase pressures are relaxed according to,











∂U

∂t
= µS(U),

∂ (ρE)

∂t
= 0.

(2.13)

The pressure relaxation parameter µ controls the rate at which pressures tend to equilibrium. In
the present context, it is assumed to tend to infinity. During this step, an evolution path where
the pressures pk as well as the interface pressure pI coincide with the final equilibrium pressure
p(2) is to be considered. The upper script (2) denotes here the solutions coming from present
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pressure relaxation step. The equilibrium pressure p(2) is yet to be determined. However, during

the relaxation process, ∂(αkρk)
∂t

= 0 and the next relation follows, ∂αk

∂t
= (αkρk)

(1)
∂( 1

ρk
)

∂t
.

In turns out that the pressure relation step consists in computing ρ
(2)
k and p(2), solutions of

the following non-linear system,























ek

(

p(2), ρ
(2)
k

)

− e
(1)
k = p(2)

(

1

ρ
(2)
k

−
1

ρ
(1)
k

)

,

∑

k

(

(αkρk)
(1)

ρ
(2)
k

)

= 1,

(2.14)

where ρ
(1)
k , αkρ

(1)
k and e

(1)
k come from the previous hyperbolic step. When only two fluids are

considered, an analytical solution is available,

p(2) =
1

2
(A1 + A2 − (p∞,1 + p∞,2)) +

√

1

4
(A2 − A1 − (p∞,2 − p∞,1))

2 + A1A2, (2.15)

with,

A1 =

α
(1)
1

γ1

(

p
(1)
1 + p∞,1

)

α
(1)
1

γ1
+

α
(1)
2

γ2

and A2 =

α
(1)
2

γ2

(

p
(1)
2 + p∞,2

)

α
(1)
1

γ1
+

α
(1)
2

γ2

. (2.16)

Rather than solving stiff ODEs, the relaxed pressure is determined on the basis of a non-
linear algebraic system having either an exact solution or a solution obtained with the Newton
method [17]. Indeed, when the SG or NASG EOS is considered with solutions of the hyperbolic
step, there exists a unique admissible solution of the non-linear system (2.14). Moreover, the
associated relaxed pressure p(2) satisfies the following maximum principle,

mink

(

p
(1)
k

)

≤ p(2) ≤ maxk

(

p
(1)
k

)

. (2.17)

When ρ
(2)
k are computed, new volume fractions are deduced as α

(2)
k = (αkρk)

(1)

ρ
(2)
k

. However, the

computed phase internal energies ek

(

p(2), ρ
(2)
k

)

are, once more, incompatible with the conserva-

tion of the mixture total energy and the next and final step attempts to remedy to this.

Internal energy relaxation

At this point, variable coming from the hyperbolic step (1) and the pressure relaxation one
(2) are available. Another relaxation process is achieved, this time regarding the internal energies
of the phases. The corresponding system is then,











∂U

∂t
=

1

ǫ
R(U, ρE),

∂ (ρE)

∂t
= 0,

(2.18)
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in the asymptotic limit where ǫ → 0. During this step, only the phase internal energies are
modified. The other variables, including the mixture pressure p(3) are unchanged,

α
(3)
k = α

(2)
k , ρ

(3)
k = ρ

(2)
k , u(3) = u(2), (ρE)(3) = (ρE)(2) ,

and
p(3) = p(3)

(

U (2), (ρE)(2)
)

.

The phase internal energies are modified as,

e
(3)
k = e

(

p(3), ρ
(3)
k

)

. (2.19)

Here the upper script (3) denotes the solution of the present internal energy relaxation step.

Because the internal energies e
(3)
k are computed with the mixture pressure p(3), those are now

compatible with the conservation of the mixture internal energy.

∑

k

(αkρkek)
(3) = (ρE)(3) −

1

2
ρ(3)‖u(3)‖2.

The time step update is now complete and reads,

Un+1 = U (3) and (ρE)n+1 = (ρE)(3) .

It is worthwhile to note that the variables (αkρk)
n+1 , (ρu)n+1 and (ρE)n+1 are already updated

at the end of the first hyperbolic step. The pressure relaxation step provides the updates of the
volume fraction αn+1

k and the energy relaxation step provides admissible internal energies en+1
k ,



































(αkρk)
n+1 = (αkρk)

(3) = (αkρk)
(2) =(αkρk)

(1) ,

(ρu)n+1 = (ρu)(3) = (ρu)(2) =(ρu)(1) ,

(ρE)n+1 = (ρE)(3) = (ρE)(2) =(ρE)(1) ,

αn+1
k = α

(3)
k = α

(2)
k ,

en+1
k = e

(3)
k .

(2.20)

The overall method can thus be summarized as follows. Considering the flow model,



























































∂αk
∂t

+ u. grad (αk) = µ(pk − pI),

∂ (αkρkek)

∂t
+ div (αkρkeku) + (αkpk) div (u) = −pIµ(pk − pI),

∂ (αkρk)

∂t
+ div (αkρku) = 0,

∂ (ρu)

∂t
+ div

(

ρu⊗ u+ pI
)

= 0,

∂ (ρE)

∂t
+ div

[

u (ρE + p)
]

= 0,

(2.21)
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where a new quasi-conservative-variable vector U is defined, as well as a primitive-variable vector
W ,

U =













αk
αkρkek
αkρk
ρu
ρE













, W =









αk
ρk
pk
u









. (2.22)

The combination of the internal energy equations with mass and momentum equations results
in the additional mixture energy equation appearing in System (2.21).

System (2.21) is hyperbolic with wave speeds u, u+ c and u− c. The sound speed is defined
as: c2 =

∑

Ykc
2
k. This system is overdetermined by the last equation of System (2.21). This

feature is used to correct the inaccuracies that appear with the non-conservative internal energy
equations during a numerical time step. Indeed the method consists in:

• Solving the Riemann problem of System (2.21)(without relaxation terms) at each cell
boundary with favorite solver. The HLLC solver [36] is recommended as System (2.21) in-
volves 3 waves only. Such solver preserves positivity of density, mass and volume fractions.

• Evolve all flow variables with a Godunov type method (or higher order variants).

• Determine the relaxed pressure resulting of pressure relaxation terms. The relaxed pressure
is determined easily and does not require any formula for the parameter µ.

• Compute the mixture pressure with the mixture equation of state, EOS (2.9).

• Reset the internal energies with the computed pressure from Eq.(2.9) and respective EOS,
ek = ek(ρk, p). During this step, the internal energies are computed by the mixture pres-
sure, determined itself by the mixture internal energy, computed from the mixture total
energy equation which is conservative and unambiguously updated.

With this method, the internal energies are just used to determine the volume fractions at
the end of the pressure relaxation process. They are certainly not perfectly accurate (as non-
conservative), but the reset based on mixture energy prevents skid effects. Numerical computa-
tions even in extreme conditions have shown perfect convergence to exact solutions for interface
computations, separating (nearly pure) fluids.

The interface sharpening algorithm developed in the present paper acts only during the
hyperbolic step. The pressure relaxation and reset steps being unchanged and detailed in [17],
the reader is referred to that reference. The hyperbolic step is recalled hereafter and the new
flux limiter, rendering interfaces sharp is presented afterward.

3. Hyperbolic solver on unstructured meshes

To develop the interface sharpening algorithm, numerical resolution of the non-conservative
system (Eqs. (2.21)) has to be addressed. The Godunov-type method given in [17] is extended
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hereafter to unstructured meshes. Second-order type extension is done with a MUSCL-type
method summarized hereafter. Denoting by Vi(Pi) and Vj(Pj) two elements with cell centers Pi
and Pj delimited by the boundary Sij (see Fig 1), the space-time Taylor expansion at the point
Pij, barycenter of Sij , from the point Pi of a primitive variable W reads,

WL(Pij) = W (Pi) + ~rij.∇W (Pi) +△t
∂W (Pi)

∂t
, ~rij =

−−−→
PiPij . (3.1)

Similar expansion at Pij from Pj reads,

WR(Pij) = W (Pj) + ~rji.∇W (Pj) +△t
∂W (Pj)

∂t
, ~rji =

−−−→
PjPij. (3.2)

P3

P03

P0

P1

P2

P02 P01

W (Pj)W (Pi)

WR(Pij)WL(Pij)

Riemann

Figure 1: Schematic representation of an unstructured mesh made of triangles. • centers of the cells, N centers
of the faces. The Riemann problem is solved on each face of the triangles.

The reconstructed solution at left, WL(Pij) and at right, WR(Pij) are used as initial conditions
for the Riemann problems in order to obtain more accurate numerical fluxes. The MUSCL-
Hancock scheme takes into account both space and time evolution with the following sequence
of computations:

Spatial reconstruction at cell boundaries

The spatial reconstruction step uses the preceding formulas (3.1), (3.2) without the time
derivative, this one being approximated in the next predictor step,

W n
L (Pij) = W n(Pi) + ~rij .∇W

n(Pi), ~rij =
−−−→
PiPij. (3.3)

Similar expansion at Pij from Pj reads,

W n
R(Pij) =W n(Pj) + ~rji.∇W

n(Pj), ~rji =
−−−→
PjPij . (3.4)

Upper script n denotes the current time step. During this step the gradients ∇W n(Pi) and
∇W n(Pj) are computed with the method recalled in Section 4. The primitive variables W
are preferred to quasi-conservative ones U as they preserve constant velocity and pressure at
interfaces. Extrapolation (3.3) and (3.4) yields a second-order-in-space discretization. At this
time, reconstructed variables are available at left W n

L (Pij) and right W n
R(Pij) of the cell faces.
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Half-time step evolution

The cell-center-variable-state vector Un
i is evolved during a half-time step with the conven-

tional Godunov method, requiring Riemann problems: resolutions at cell faces,

U
n+1/2
i = Un

i −
△t

2Vi

N faces
∑

j=1

(

SijF
∗n
ij

)

. (3.5)

Superscript ∗ denotes the solution of the Riemann problem. During this step, the primitive
variables at leftW n

L (Pij) and rightW n
R(Pij) (Eqs. (3.3), (3.4)) of cell faces come from the previous

spatial-reconstruction-at-cell-boundary step and are used as initial data of the Riemann problems
providing the fluxes F ∗n

ij at the cell faces. The non-conservative volume fraction equation is
evolved with the following scheme:

α
n+1/2
i = αni −

△t

2Vi

N faces
∑

j=1

[

(Smα)
∗n
ij − αni S

∗n
m ij

]

, (3.6)

with Sm, the contact wave speed projected along the face normal vector, solution of the Riemann
problem. Regarding the non-conservative internal energy equations, similar approximation of
the corresponding equations is used by assuming the product (αp) constant during the time step,

(αρe)
n+1/2
i = (αρe)ni −

△t

2Vi

N faces
∑

j=1

[

(αρeSm)
∗n
ij + (αp)ni S

∗n
m ij

]

. (3.7)

The lack of accuracy in the internal energy computation resulting from the present scheme is
not crucial. The internal energies are only used to estimate the pressure of the phases at the
end of the hyperbolic step, before relaxation. The relaxation step gives a first correction to the
internal energies, in agreement with the second law of thermodynamics. A second correction is
made with the help of the total mixture energy and mixture EOS (2.9) [17]. Thereby, a single
value of the pressure is available for the next step and for the various phases.

Full-time step evolution

The previous cell-center and quasi-conservative vector U
n+1/2
i is converted into the primitive

one W
n+1/2
i as this latter is preferable for the extrapolation step:

W
n+1/2
L (Pij) = W n+1/2(Pi) + ~rij .∇W

n(Pi), ~rij =
−−−→
PiPij. (3.8)

Similar expansion at Pij from Pj reads,

W
n+1/2
R (Pij) =W n+1/2(Pj) + ~rji.∇W

n(Pj), ~rji =
−−−→
PjPij . (3.9)

The gradients ∇W n(Pi) and ∇W n(Pj) come from the first spatial reconstruction step and add
robustness to the method as no combination of gradients computed at time tn and tn+1/2 is
made. From the extrapolated variables at left W

n+1/2
L (Pij) and right W

n+1/2
R (Pij), a second

Riemann problem is solved yielding more accurate numerical fluxes. The solution vector is
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then evolved during the full-time step with the conventional Godunov method for the various
quasi-conservative variables,

Un+1
i = Un

i −
△t

Vi

N faces
∑

j=1

(

SijF
∗n+1/2
ij

)

, (3.10)

while spacial care is taken for the non-conservative variables,



























αn+1
i = αni −

△t

Vi

N faces
∑

j=1

[

(Smα)
∗n+1/2
ij − α

n+1/2
i S

∗n+1/2
mij

]

,

(αρe)n+1
i = (αρe)ni −

△t

Vi

N faces
∑

j=1

[

(αρeSm)
∗n+1/2
ij + (αp)

n+1/2
i S

∗n+1/2
mij

]

.

(3.11)

Then, another pressure relaxation step is done followed by mixture EOS (2.9) pressure compu-
tation and internal energies reset.
This MUSCL-Hancock type scheme is thus summarized in three steps,

• Spatial reconstruction at cell boundaries.

• Half-time step evolution (prediction) followed by pressure relaxation.

• Full-time step evolution with another pressure relaxation step.

Fig 2 displays a schematic representation of the procedure. The MUSCL-Hancock scheme pre-
viously presented requires to solve two Riemann problems per time step but only one gradient
computation of the various flow variables. This last point is addressed in the following section.
Other MUSCL-type second-order schemes can be considered and have been tested in this work.
Those led the same conclusions but for the sake of space restriction, only the previous version
is presented.

4. Gradient computation on unstructured meshes

A robust and accurate method for the computation of gradient variables is based on least
squares approximation. This method is probably the simplest and the cheapest approach on
unstructured grids. It is based on multiple Taylor expansions about Pi and a cloud of neighboring
cells,

Wj = Wi +
−−→
PiPj. ~ex

∂Wi

∂x
+
−−→
PiPj. ~ey

∂Wi

∂y
+
−−→
PiPj. ~ez

∂Wi

∂z
+O

(

‖
−−→
PiPj‖

2
)

= Wi +△xij
∂Wi

∂x
+△yij

∂Wi

∂y
+△zij

∂Wi

∂z
+O

(

‖
−−→
PiPj‖

2
)

(4.1)
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tn+1/2

tn+1

Ūn
iW n

L (Pij) W n
R(Pij)

U
n+1/2
i

Un+1
i

△t
2

t

W
n+1/2
L (Pij)

W
n+1/2
R (Pij)

Figure 2: Schematic representation of the MUSCL type numerical scheme. At time tn, values at the facesWn
L (Pij)

andWn
R(Pij) (Eqs. (3.3), (3.4)), reconstructed via the gradients ∇Wn(Pi), are used as initial data of a Riemann

problem providing fluxes F ∗n
ij . The solution evolves at time tn+1/2 via the Godunov-type scheme (Eqs. (3.5),

(3.6), (3.7)). At this intermediate time, the previous gradients are used to reconstruct the solution at the faces

W
n+1/2
L (Pij) and W

n+1/2
R (Pij), (Eqs. (3.8), (3.9)). Those states are used as initial data of a second Riemann

problem providing fluxes F
∗n+1/2
ij . Finally, values at cell center Un

i are updated to Un+1

i with Godunov-type

scheme using F
∗n+1/2
ij , (Eqs. (3.10), (3.11)).

Using Eq. (4.1) with a set of neighbors results in the following system:







w1△xi1 · · · w1△ziN
...

. . .
...

wN△xiN · · · wN△ziN











∂Wi

∂x
∂Wi

∂y
∂Wi

∂z



 =







w1 (W1 −Wi)
...

wN (WN −Wi)






⇔ AX = B, (4.2)

with,

wj =
1

△x2ij +△y2ij +△z2ij
j = 1, · · · , N

where N is the number of neighboring elements. The introduction of weights wj allows to
control numerical instabilities (division by small numbers) when the mesh is skewed. In three
dimensions, a minimum of three neighboring elements is necessary to solve the system. When
the number of available neighbors is greater than three, then the system is over-determined
and solution of minimum residual ‖AX − B‖ is addressed. A classical way to solve this over-
determined system is to multiply both sides by the transpose matrix. A square system (the
so-called normal equations) is obtained: AX = B, ATAX = ATB, and the solutions reads,
X = (ATA)−1ATB.

The main issue regarding this methodology is linked with the condition number of the matrix
A, cond(A). If it is big (ill-conditioned) then the system of normal equations ATAX = ATB
yields a condition number even bigger, cond(A)2. A large condition number is highly undesirable
as its numerical solution may be very difficult to achieve accurately. A second approach is to use
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a QR decomposition. Q is an orthogonal matrix (QTQ = I) and R is an upper-triangle matrix:

AX = B, QRX = B, RX = QTB, X = R−1QTB.

In this framework, QR decomposition is performed using Gram-Schmidt algorithm. It is
important to note that for non-moving meshes, the factors (ATA)−1AT or R−1QT are computed
once for all at the beginning of the computation, so that the whole least squares method only
yields one matrix-vector product per element.

The direct neighbors of the considered cell are used. Nevertheless, some configurations may
require to extend the gradient computation to the indirect neighbors. This configuration is
slightly more complex but may sometimes be necessary. This situation is depicted in Fig 3.

P3

P0

P1

P2

P3

P0

P1

P2

P9

P8

P4

P5

P6
P7

Figure 3: Schematic representation of the direct and indirect neighbors of the cell P0 on a unstructured mesh
made of triangles, for gradient computation. The cell of interest P0 is represented as the shaded cell. On the left,
only the direct neighbors are represented as the darker cells. On the right, the indirect neighbors are represented
in addition as the darkest cells.

In the presence of discontinuities, the solution vector cannot be decomposed into Taylor
series. In order to avoid oscillation appearances, the gradients are limited. In this framework,
an approach based on Barth and Jespersen (1989) [37] is employed. To avoid reconstructed
solution at the face exceeding minimum or maximum values at cell centers on each side of the
face (TVD property consequence), the gradient is scaled by factor Θ. The primitive variables
W are used during this step,

W =









αk
ρk
pk
u









The reconstruction at the center of the face separating Pi and Pj “to the left” becomes,

W lim
ij =Wi +Θi~rij.∇Wi,
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with
Θi = min (θ (φij)) , j ∈ neigh(i),

and,

φij =















Wmax−Wi

2(Wn lim
ij −Wi)

if
(

W n lim
ij −Wi

)

> 0,

Wmin−Wi

2(Wn lim
ij −Wi)

if
(

W n lim
ij −Wi

)

< 0,

1 if
(

W n lim
ij −Wi

)

= 0,

(4.3)

withW n lim
ij = Wi+~rij.∇Wi, the unlimited reconstruction solution andWmax,Wmin respectively

the maximum and minimum value between the current cell and all its direct neighbors.
θ (φij) is limiter dependent. For instance,

θ (φij) = max
[

0, min(βφij, 1), min(φij, β)
]

, (4.4)

gives the Minmod limiter [38] for β = 1 and the Superbee limiter [39] for β = 2. In the
sharpening method that follows, a specific limiter is used for the volume fraction computation
in the vicinity of interfaces only.

5. Development of a new limiter for discontinuities

The present interface-sharpening algorithm consists in a specific flux limiter to insert into
the former MUSCL type scheme. Many gradient limiters are available in the literature in order
to prevent local extrema and sharpen discontinuities. Among them the Minmod, van Leer or
Superbee limiters are often used. The Ultrabee limiter is another one [39], very accurate for
one-dimensional advection of discontinuous profiles. It handles discontinuities in one point only
(see for example Leonard (1991) [40], Toro (1997) [41]).

However, when dealing with smooth functions, the Ultrabee limiter produces unacceptable
results. It adds “negative numerical viscosity” (locally) and results in wrong “steepening” and
“squaring” of the solution profiles.

Nevertheless, flows involving non-miscible fluids present volume fraction discontinuities at
interfaces rendering the Ultrabee limiter an interesting candidate. The Ultrabee limiter has
been intensively used in the sharpening method of Kokh and Lagoutiere (2010) [31]. However,
this method seems restricted to Cartesian grids.

The present paper aims at computing “sharp-but-still-diffuse” interfaces on unstructured
meshes. To this end, a specific limiter is considered and inserted into the compressible two-
phase flow model considered previously.

The sough-after function is aimed to deal with multi-dimensional computations, compressive
enough to sharpen discontinuous profiles, but diffusive enough to ensure stability. As stated in
Sidilkover and Roe (1995) [42], “artificial compression” may be used in multi-dimensional com-
putations to improve the resolution of discontinuities. This feature is not to be used in smooth
regions as some undesirable effects may appear. However it can lead significant improvements
in resolving discontinuous profiles.
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The investigation of the “artificial compression or interface sharpening” prompted the work
of this paper. In the present manuscript, several modifications of the Superbee limiter are
examined in order to:

• Sharpen discontinuities for simple transport equations.

• Maintain stability.

• Work on multi-D with unstructured meshes.

Flux limiters are well understood in 1D (van Leer (1979) [32], Sweby (1984) [43]) but a clear
theory is lacking for multi-dimensional computations. The present investigations are based on
numerical experiments, in one and two dimensions, with and without coupling with the diffuse
interface flow model. Various modifications of the Superbee limiter are considered as option A,
B, C, D, E and F shown in Fig 5. In this figure, the first-order TVD region is presented as the
shaded region. The TVD property is briefly recalled afterward, for more details or discussions,
the reader is referred to [41], [43], [44], [45], [46], [47], [48] for example.

Ideally, a second order accuracy is used while guaranteeing that no nonphysical oscillations
arise. The notion of total variation (TV) is a measurement of oscillations in the solutions. The
total variation of a solution Q is defined by,

TV (Qn) =
∞
∑

i=−∞

|Qn
i −Qn

i−1|,

and the method is called total variation diminishing (TVD) if, for any set of data Qn, the values
Qn+1 computed by the method satisfy,

TV (Qn+1) ≤ TV (Qn). (5.1)

The TVD notion was first presented in the original work of Harten (1983) [45] who proposed this
concept to characterize oscillation free schemes. In the same contribution, Harten introduced a
fundamental tool to obtain an algebraic proof that the resulting method is TVD.

Later, the Lax-Wendroff scheme (1960) [49] prompted the work of Sweby (1984) [43] who
introduced the first and second order TVD regions. Lax-Wendroff scheme is known to be non-
TVD and [43] attempted to remedy to this drawback by introducing a function θ(φ). φ is a ratio
of gradient variables, as it will be detailed further.

To design a TVD method, the function θ(φ) should satisfy the following relations,

0 ≤
θ (φ)

φ
≤ 2 and 0 ≤ θ (φ) ≤ 2.

These constraints are rewritten concisely as,

0 ≤ θ(φ) ≤ minmod(2, 2φ). (5.2)

This defines the first-order TVD region in a φ-θ plane. The curve θ(φ) must lie in this region,
shown as the shaded region in Fig 4.
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Figure 4: Sweby TVD regions. The shaded region of the left figure represents the Sweby region of first-order
TVD methods. The dashed line θ = 1 (Lax-Wendroff (1960) [49]) and the dashed-dotted line θ = φ (Beam-
Warming (1976)[50]) are displayed and led to the Sweby region of second-order TVD methods [43] represented
as the shaded region of the right figure.

17



This graphical analysis of (5.2) was first presented by Sweby (1984) [43], who analyzed a wide
class of flux-limiter methods. In the same reference, Sweby introduced the second-order TVD
region depicted in Fig 4 as well. According to [43], for any second-order accurate method, it is
better to take θ as a convex combination of θ = 1 (Lax-Wendroff (1960) [49]) and θ = φ (Beam-
Warming (1976)[50]). Other choices apparently give too much compression and smooth data
such as a sine wave tends to turn into a square wave as time evolves. Imposing this additional
restriction provides the second-order TVD region of Sweby depicted in Fig 4.

However, as only discontinuities are aimed to be sharpened in the present framework, those
other choices are to be reconsidered as they may provide compression of discontinuities. In that
sense, the second-order TVD region of Sweby may no longer be a restriction and the first-order
TVD region is to be reconsidered. As this latter goes beyond the second-order area, it may
provide extra compression while remaining TVD. The first numerical experiments are depicted
in Fig 5.
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Figure 5: Modifications of the Superbee limiter (A, B, C, D, E and F) considered for the various numerical
experiments. The dashed lines represent the various options and the full lines represent the conventional Superbee
limiter. The first-order TVD region is shown as the shaded region
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In the following, one-dimensional advection of a Heaviside function ψ at prescribed velocity
is computed as a reference test. Numerical solutions of this equation are examined in 1D first
and multi-D secondly. The corresponding advection equation reads,

∂ψ

∂t
+ u

∂ψ

∂x
= 0. (5.3)

Nevertheless, it is demonstrated (see Leveque (1992) [51], Toro (1997) [41] for details) that the
actual equation solved by a Godunov type scheme is,

∂ψ

∂t
+ u

∂ψ

∂x
= ζ

∂2ψ

∂x2
with ζ =

1

2
∆xu (1− |c|) and c =

u∆t

∆x
. (5.4)

The viscous term ζ ∂
2ψ
∂x2

corresponds to the numerical viscosity of the scheme and vanishes when
∆x tends to zero. It also vanishes when |c| = 1, which is only of the academic importance. It
thus appears that both dependence of cell size and CFL numbers have to be considered with
the various experimental limiters. The results of the first test series are given in Fig 6 with
a CFL number of 0.8. As the present paper is based on MUSCL schemes and unstructured
meshes, gradient computations have to be specified. As mentioned earlier, least squares approx-
imation is appropriate for unstructured meshes and its 1D analogue corresponds to the centered
approximation,

(

∂ψ

∂x

)

i

=
1

2△x
(ψi+1 − ψi−1) , (5.5)

with i denoting the current cell.
All tests presented in Fig 6 use this approximation for gradient computation and show much

better results than the conventional Superbee limiter thanks to their first order TVD behavior.
While test F tends to Superbee as it is quite close, all other variants present comparable

results and capture the discontinuities with two mesh points.
In the following, it would be interesting to build a limiter which can be reduced to the upper

boundary of the second-order TVD area, that corresponds to the Superbee limiter, and can be
increased to the extreme boundary of the first-order TVD region as well, in order to provide a
class of compressible flux limiters for discontinuities.

To this end, option A is selected as it lies along both first and second order TVD boundaries
with an intermediate constant region. Fig 7 examines various variant of option A by experiment-
ing various levels of the plateau region. Those tests are named G, H, I and J and are presented
in Fig 7. Fig 8 displays the results with CFL = 0.8.

Again, all tests present much better results than the conventional Superbee limiter. In the
following, this first order TVD boundary (test J) keeps being analyzed by modifying the mesh
size and the CFL number. Fig 9 provides the results obtained with limiter of test J for meshes
of 100, 1000 and 10, 000 cells with CFL = 0.8.

In addition, it is interesting to see the behavior of the present compressive limiter when the
gradients are computed according to the upwind (ψi+1−ψi) and downwind formulas (ψi−ψi−1).
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Figure 6: Comparison of the various limiters A, B, C, D, E and F shown in Fig 5 (full circle symbols •) to the
Superbee limiter (diamond symbols ⋄) for the simple transport of a Heaviside function ψ at prescribed velocity.
The advection speed is 100 m.s−1. The dashed lines represent the initial condition and the full lines represent
the exact solution. Here ∆x = 0.01m corresponding to 100 cells. The final time is t ≈ 4 ms and CFL = 0.8.
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Figure 7: Modifications of the Superbee limiter (G, H, I and J) considered for the various numerical experiments.
The first-order TVD region of Sweby is presented in this figure as the shaded region. The dashed lines represent
the various options and the full lines represent the Superbee limiter.
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Figure 8: Comparison of the various limiters G, H, I and J shown in Fig 7 (full circle symbols •) to the Superbee
limiter (diamond symbols ⋄) for the simple transport of a Heaviside function ψ at prescribed velocity. The
advection speed is 100 m.s−1. The dashed lines represent the initial condition and the full lines represent the
exact solution. Here ∆x = 0.01m corresponding to 100 cells. The final time is t ≈ 4 ms and CFL = 0.8.
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Their ratio,

φi =
ψi+1 − ψi
ψi − ψi−1

, (5.6)

is used as argument in the limiter as it is the conventional method for one dimensional compu-
tations (see Toro (1997) [41] for example).
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Figure 9: Comparison of the limiter J shown in Fig 7 (full circle • and square � symbols) to the Superbee limiter
(diamond ⋄ and triangle △ symbols) for the simple transport of a Heaviside function ψ at prescribed velocity.
The advection speed is 100 m.s−1. The dashed lines represent the initial condition. The full lines represent the
exact solution. The left column displays the results with gradients computed with the least squares method (Eq.
(5.5)) and the right column with the upwind-downwind formulas (Eq. (5.6)). Final time: t ≈ 4 ms. Meshes: 100
cells (top), 1000 cells (middle) , 10, 000 cells (bottom). CFL = 0.8.

When the upwind and downwind formulas (Eq. (5.6)) are used with the Superbee limiter,
discontinuities are captured with four points (results of the right column of Fig 9) while the
first-order TVD method (option J of Fig 8) requires two points only.
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However, multi-slope computation as Eq. (5.6) is inappropriate for unstructured meshes.
The least squares method (Eq. (5.5)) is convenient for unstructured meshes but the numerical
diffusion is excessive as seen in Fig 9. The present limiter captures the discontinuities with the
same amount of cells whether the least squares method (Eq. (5.5)) or the upwind-downwind
formulas (Eq. (5.6)) are used. This is a major feature as only two mesh points are required to
capture the discontinuities for all mesh resolutions.

The next test (Fig 10) uses a 100-cell mesh and a longer simulation time. The final time is
about 10 times longer than the previous tests and CFLs of 0.8 and 0.1 are considered with gra-
dients computed with the least squares method (Eq. (5.5)) and the upwind-downwind formulas
(Eq. (5.6)). The boundary conditions are periodic.
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Figure 10: Comparison of the limiter J shown in Fig 7 (full circle • and square � symbols) to the Superbee
limiter (diamond ⋄ and triangle △ symbols) for the simple transport of a Heaviside function ψ at prescribed
velocity (100 m.s−1). The dashed lines represent the initial condition. The full lines represent the exact solution.
The graphs at top display the results with gradients computed with the least squares method (Eq. (5.5)) and
the graphs at bottom with the upwind-downwind formulas (Eq. (5.6)). Final time: t ≈ 44 ms. Mesh: 100 cells,
CFL = 0.8 (left figures) and CFL = 0.1 (right figures).

24



The present limiter handles both high and low CFL numbers. Again the number of points
required to capture the discontinuities remains the same for both gradient computation methods
(least squares method and downwind formulas) whereas the Superbee limiter presents signifi-
cantly different results.

The Superbee limiter lies along the upper boundary of the second-order TVD region of Sweby.
This region is able to deal with discontinuities as well as smooth solutions. However, when dealing
with discontinuities only, according to the numerical experiments, the upper boundary of the
first-order TVD region seems to be the actual restriction and provides significant improvement
over the second-order TVD region.

Similarly to Sweby who introduced a class of flux limiters which include both extremes of
the upper and lower boundaries of the second-order TVD region with the limiter,

θ (φij) = max
[

0, min(βφij, 1), min(φij, β)
]

, 1 ≤ β ≤ 2, (5.7)

we propose the following limiter that includes the upper boundaries of the first and second order
TVD regions,

θ (φij) = max
[

0, min
[

2, 2φij, max
[

min(2φij , β), min{(2−β)φij+2(β−1), φij}
]

]]

, 1 ≤ β ≤ 2.

(5.8)
Both limiters (5.7) and (5.8) are depicted in Fig 11. Many other compressive limiters can be
considered according to the numerical experiments. The present limiter is proposed here as Eq.
(5.8) is convenient. For β = 1, it reduces to the upper boundary of the second-order TVD
region corresponding to the Superbee limiter. For β = 2, it increases to the upper boundary
of the first-order TVD region. Because of this feature, the proposed limiter could be named
“Overbee”. The parameter β corresponds to the height of the constant region of the present
limiter and controls the amount of artificial compression while remaining TVD as the constraint
0 ≤ θ(φ) ≤ minmod(2, 2φ) is satisfied.

Two-dimensional transport

Two-dimensional computations are now considered. In the following, the previously devel-
oped limiter (5.8) is used with β = 2. The limiter then lies along the boundary of the first-order
TVD region. β = 2 will be used in all the following tests as it corresponds to the maximum
value of interest and to the maximum amount of artificial compression while remaining TVD.

The various tests are schematically depicted in Fig 12. In this section, 2D-Cartesian-
structured meshes are used.

The first test deals with the rotation of Zalesak’s disk. Inside the disk, function ψ is set to
1 and −1 outside. With 2D Cartesian grids made of squares, the least squares method (Eq 4.2)
reads,

∇ψij =

( ∂ψ
∂x
∂ψ
∂y

)

ij

=

( 1
2△x

(ψi+1,j − ψi−1,j)
1

2△y
(ψi,j+1 − ψi,j−1)

)

. (5.9)
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Figure 11: Graphical representation of the proposed limiter (5.8) on the left and Sweby’s limiter (5.7) on the
right. Both limiters use β = 1.5 for this example. The dark gray shaded region represents the region of first-order
TVD methods (left figure). The light gray shaded region represents the region of second-order TVD methods
(left and right figures).
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Figure 12: Schematic representation of the initial conditions of simple transport tests on a two-dimensional-
Cartesian-structured grid. On the left, the rotation of Zalesak’s disk is studied. In this configuration, the
velocity is set to ux = y − 0.5 and uy = 0.5 − x with x, y the coordinates of the cell centers. Non-reflecting
boundary conditions are used. The mesh consists in 100 × 100 cells. On the right, the advection of a square
profile along a diagonal is studied. The advection speed is 100 m.s−1 in both directions (x, y). Non-reflecting
boundary conditions are used. The mesh consists in 200× 200 cells.
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Fig 13 compares the results of the Superbee limiter and the previously developed function with
CFL number of 0.5. The discontinuity is clearly sharpened with the new limiter whereas the
least squares method with Superbee limiter produces much more diffusion.

Figure 13: Comparison of the Superbee limiter (left column) and the new limiter (right column) with β = 2.
Rotation of Zalesak’s disk with the situation depicted in Fig 12. The isocontours of ψ are displayed. The results
are given at t ≈ 6.3 s (one full rotation). Mesh: 100× 100 Cartesian square cells, CFL = 0.5.

The next test examines the advection of a square profile along a diagonal. As previously,
inside the square, function ψ is set to 1 and −1 outside. For this test, as a consequence of
transport along diagonal direction, the influence of the indirect neighbors is studied in addition
to the direct ones. As the mesh is made of squares, the stencil used in the computation of
gradients is depicted in Fig 14.

i, ji − 1, j i + 1, j

i, j + 1
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i, ji − 1, j i + 1, j

i, j + 1

i, j − 1

i − 1, j + 1 i + 1, j + 1

i − 1, j − 1 i + 1, j − 1
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j

Figure 14: Schematic representation of the direct and indirect neighbors of the cell (i, j) on a Cartesian structured
mesh, for gradient computation. The cell of interest (i, j) is represented as the shaded cell. On the left, only
the direct neighbors are represented as the darker cells. On the right, the indirect neighbors are represented in
addition as the darkest cells.
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Gradient computation with the least squares method reduces to,

∇ψij =

( ∂ψ
∂x
∂ψ
∂y

)

ij

=

( 1
6△x

(ψi+1,j + ψi+1,j−1 + ψi+1,j+1 − ψi−1,j − ψi−1,j+1 − ψi−1,j−1)
1

6△y
(ψi,j+1 + ψi+1,j+1 + ψi−1,j+1 − ψi,j−1 − ψi+1,j−1 − ψi−1,j−1)

)

.

(5.10)
The results are given in Fig 15 with CFL = 0.5. Again the least squares method with the
conventional Superbee limiter provides a much more diffused discontinuity than the developed
new limiter.

Figure 15: Comparison of the Superbee limiter (left column) and the new limiter (right column) with β = 2.
Advection of a square along the diagonal with the situation depicted in Fig 12. The results at top are computed
with gradients based on direct neighbors. At bottom, the intermediate neighbors are used in addition. The
isocontours of ψ are displayed. The results are given at t ≈ 7 ms. Mesh: 200 × 200 Cartesian square cells,
CFL = 0.5. Direct and intermediate neighbors are mandatory to keep the correct shape, at least for this
example.

Diagonal transport induces distortions when only the direct neighbors are used in the gradient
computation via Eq. (5.9). The present limiter does its part nonetheless. This drawback is linked
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to the mesh geometry and the advection direction. It can hardly be seen when the conventional
Superbee limiter is used as the square is quite diffused. Nevertheless, this drawback is fixed
when the indirect neighbor cells are used in addition via Eq. (5.10). The square keeps its shape
and remains sharp.

We now have in hands a simple MUSCL type method to transport accurately discontinuities
with limited diffusion, independent of time and CFL.

6. Coupling with the diffuse interface formulation

The aim of this section is to use the previously developed limiter to sharpen interfaces in the
diffuse interface formulation (2.21). However, because it goes beyond the second-order region of
TVD methods (Fig 4) this limiter fails with continuous waves. Therefore, interfaces have to be
detected, and the “Overbee” limiter has to be used at interfaces only.

At interfaces, pressure and velocity must be invariant while volume fractions must be as
sharp as possible. Near interfaces, the pressure and velocity gradients are very weak but the
density gradient is not. To avoid oscillations resulting from bad limiter combinations, all flow
variables are computed with zero gradient at interfaces, except volume fractions. It is therefore
important to detect interfaces and use a specific procedure in corresponding cells.

To this end, an interface indicator is developed. The interfaces are detected with the help of
the volume fractions as follows,

αnkα
n
j > ǫ, and j 6= k. (6.1)

It consists in using the products of phase volume fractions that correspond to Gaussian functions
centered at interfaces. According to the numerical experiments, using ǫ ≃ 10−2 seems a fair
choice.

7. Validations

The “Overbee” limiter is now used in two-phase flow computations. The capabilities of the
present method are first highlighted on one-dimensional tests. The SG EOS (2.9) is used in
this paper with the parameters given in Table 1. Note that with the SG EOS, the co-volume
parameter bk is not used and is set to 0.

Fluid water air gas krypton detonation products

γ 4.4 1.4 1.4 1.67 3
p∞ (Pa) 6. 108 0 0 0 0

Table 1: Stiffened gas coefficients of the tested fluids.
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Advection problem

First let us consider a pure advection problem. A column of liquid water is advected at
velocity 100 m.s−1. The initial density of liquid water is set to 1000 kg.m−3. The second fluid
is air with initial density set to 1 kg.m−3. The atmospheric conditions are considered (p = 0.1
MPa). Nearly pure fluid conditions are initially used as αair = 10−6 in the liquid phase and
αwater = 1 − 10−6 in the gas phase. The results are given in Fig 16 at time t ≈ 5 ms. The
Superbee flux limiter (Eq. (5.7) with β = 2) is used in the flow solver except regarding the
volume fractions computed alternatively with the “Overbee” limiter (Eq. (5.8) with β = 2).
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Figure 16: Comparison of the present interface-sharpening method versus the conventional method (without
sharpening) with Superbee limiter. Advection of a liquid water column. The advection speed is 100 m.s−1. The
dashed lines represent the initial conditions: p = 0.1 MPa, ρwater = 1000 kg.m−3, ρair = 1 kg.m−3, u = 100
m.s−1. The diamond symbols ⋄ represent the solution with the Superbee limiter used for all flow variables. The
full circle symbols • represent the solution when interface sharpening is used in addition (Eq. (5.8), β = 2). The
full lines represent the exact solution. Final time: t ≈ 5 ms. Mesh: 100 cells. CFL = 0.8.

This test is the analogue of the previous advection of a Heaviside function ψ. Fig 16 shows
that the mixture pressure and velocity are free of spurious oscillations. The volume fractions
and the mixture density are clearly sharpened compared to the least squares method with the
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conventional Superbee limiter. In the following, the method is tested on situations involving
continuous and shock waves in addition to interfaces.

Liquid-gas shock tube test

A two-phase shock tube test is now considered. It consists in a one-meter long tube containing
two chambers separated by an interface at the location x = 0.75 m. Each chamber contains
nearly pure fluid. The liquid is water with initial density, ρwater = 1000 kg.m−3 and the initial
density of the gas phase, ρgas = 10 kg.m−3.

The left chamber contains a very small amount of gas, αgas = 10−6 and the initial pressure
is set to 1 GPa. The right chamber contains the same fluids but the volume fractions are
reversed. The initial pressure is set to 0.1 MPa. In both chambers, the fluids are initially at
rest. The results are shown in Fig 17 at time t ≈ 240 µs with a 200-cell mesh. A close-up
view of the interface capture is displayed in Fig 18. The Sweby flux limiter (Eq. (5.7)) is used
in the hydrodynamic solver with β = 1.35, except with respect to the volume fractions, when
sharpening is active. When the interface is detected, Eq. (5.8) is used with β = 2.

The mixture density and volume fraction graphs show that the interface is sharpened with
the new limiter. In addition, Fig 18 shows that the pressure and velocity are unchanged in the
interface region.

8. Illustrations on unstructured meshes

In the following, the capabilities on the present limiter are highlighted with two-phase flow
computations on unstructured meshes. In these computations, only the direct neighbors are
used during the gradient computation step (Fig 3 left).

Advection

This test consists in advecting a liquid water column initially shaped as Zalesak’s disc, into
surrounding air. The numerical domain is a square of 1m by 1m. The initial conditions are
schematically represented in Fig 19. A mesh made of about 60.000 triangles is used. The
initial density of liquid water and air are set to 1000 kg.m−3 and 1 kg.m−3 respectively. The
atmospheric conditions are considered (p = 0.1 MPa). Nearly pure fluid conditions are initially
used as αmin = 10−6 and αmax = 1− 10−6. The advection speed is 100 m.s−1 in both directions
(x, y). Fig 20 displays the results obtained with the Superbee limiter (Eq. (5.7), β = 2) and the
new function (Eq. (5.8), β = 2). The isocontours of volume fractions are presented, showing
enhancements of the present method. Fig 21 shows the interface cells activated by filter (6.1),
when the new limiter is active.

Air-krypton-shock-interaction

This test addresses both interfaces and shocks. As pressure and density gradients are not
collinear, vorticity appears through Richtmyer Meshkov instabilities [52], [53]. In this section
a bubble filled with krypton is considered. The surrounding gas is air. The SG parameters
are given in Table 1. The geometry is schematically represented in Fig 19 and the initial
conditions are given in Table 2. Those conditions consist in a low pressure chamber filled with
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Figure 17: Liquid-gas shock tube computation with and without interface sharpening. The dashed lines represent
the initial conditions: pleft = 1 GPa, pright = 0.1 MPa, ρwater = 1000 kg.m−3, ρgas = 10 kg.m−3, uleft = uright =

0 m.s−1, αleft
1

= 1 − 10−6, αright
1

= 10−6. The diamond symbols ⋄ represent the solution with Sweby’s limiter
(Eq. (5.7), β = 1.35). The full circle symbols • represent the solution when interface sharpening is used in
addition (Eq. (5.8), β = 2). The full lines represent the exact solution. Final time: t ≈ 240 µs. Mesh: 200 cells.
CFL = 0.5.
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Final time: t ≈ 240 µs. Mesh: 200 cells. CFL = 0.5.
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Figure 19: Schematic representation of the various two-dimensional tests. The figure on the left represents an
advection test of a liquid water column shaped as Zalesak’s disc. Non-reflecting boundary conditions are used
for this test. The figure in the middle represents a shock tube test where the interface is accelerated by a shock
wave moving toward a krypton bubble. The krypton bubble is initially located at x = 0.26m and y = 0.04m.
Wall boundaries are considered except for the right one considered as non-reflecting. The figure on the right
represents an underwater explosion test. The boundaries are non-reflecting.

Figure 20: Comparison of the present interface-sharpening method (right graph) versus the Superbee limiter
(left graph). Two dimensional advection test of Zalesak-disc shaped liquid water column. The isocontours of
mixture density are displayed. The initial conditions are p = 0.1 MPa, ρwater = 1000 kg.m3, ρair = 1 kg.m3,
ux = uy = 100 m.s−1. Final time: t ≈ 7 ms. Mesh ≈ 60.000 triangles. CFL = 0.8.
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Figure 21: Two dimensional advection test of Zalesak-disc shaped liquid water column of Fig 20 . The graph
at left represents the interface cells computed by the interface indicator (Eq. (6.1)). On the right, cells of pure
water are shown. The results are shown at times: t ≈ 0.7 ms. Mesh ≈ 60.000 triangles.

air at atmospheric pressure. The second chamber is filled with shocked air, resulting in the
propagation of a left facing shock at Mach number M ≈ 1.5. The Mach number is defined
as M = σ/c0 with σ the speed of the incident shock wave and c0 the speed of sound in the
surrounding air at atmospheric conditions. The bubble of krypton at atmospheric conditions is
initially set in the low pressure chamber. Again, nearly pure fluid conditions are initially used
as αmin = 10−6 and αmax = 1− 10−6.

Location Density (kg.m−3) Pressure (Pa) ux (m.s−1) uy (m.s−1)

Air (post-shock) 2.35 252, 840 −230.3 0
Air (pre-shock) 1.29 101, 325 0 0

Krypton 3.506 101, 325 0 0

Table 2: Initial conditions of the interface-shock interaction test.

Fig 22 presents the corresponding computed results at various times. A mesh of about
120, 000 triangles is used. The Superbee limiter (Eq. (5.7), β = 2) is used in the hydrodynamic
solver with both computations (conventional and sharpening). In this flow configuration, the
bubble is filled with krypton which is heavier than the surrounding air (ρkrypton = 3.506 kg.m−3

and ρair = 1.29 kg.m−3). The gas properties (densities and acoustic impedances Z = ρc) are
strongly different. In addition to these differences, combination of pressure and density gradients
induces vorticity as shown in Fig 22. However, at first instants, these effects are dominated by
compression ones. During that stage, the transmitted shock wave through krypton is slower
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than the incident one through air. At further instants, vorticity effects develop and become
dominant. As shown in Fig 22, filaments are created initially at top and bottom of the bubble in
the flow direction. Then a vortex ring issued from their rolling-up gets formed and grows with
time. For more details on the physics of this interaction, see [54] for instance.

The benefit of the present method is clearly seen in Fig 22. The mixture zone is much reduced
at the interface when the volume fraction computation is done with the “Overbee” limiter (Eq.
(5.8), β = 2). The numerical gain is especially visible at the rolling regions of the krypton
bubble. As time goes on, the numerical dissipation gets more intense with the conventional
method, while the interface and the rolls are clearly distinguishable with the new method. Fig
23 presents the interface cells detected by the interface indicator (Eq. (6.1)).

Underwater explosion

The computational test that follows corresponds to a high pressure gas bubble settled un-
derwater, close to the water-air surface. Such a situation occurs when an underwater explosion
bubble reaches the surface. Relevant literature on the subject may be found in Holt (1977)
[55], Grove and Menikoff (1990) [56]. The detonation is treated as a constant volume explosion
resulting in high pressure gas products at high density. Liquid water surrounding the charge
is considered initially at atmospheric conditions. The air above is at rest and at atmospheric
conditions as well. The initial situation is shown in Fig 19 and the initial data are summarized
in Table 3. Three different fluids are considered with thermodynamic data given in Table 1.
Near pure fluid conditions are initially used as αmin = 10−6 and αmax = 1− 2.10−6.

Material Density (kg.m−3) Pressure (Pa)

Air 1.225 101, 325
Detonation products 1250 109

Water 1000 101, 325

Table 3: Initial conditions of the underwater explosion test.

Due to the high pressure differential between detonation products and surrounding water, a
strong shock is emitted into the water while an expansion wave propagates into the gas. The
liquid-gas interface is set to intense motion and the bubble deforms. Another wave diffraction
occurs at the liquid-air interface, resulting in the motion of the two liquid-gas interfaces. The
bubble grows intensively resulting in a thin liquid layer appearance between the air and the
detonation products. This layer is stretched during time evolution and finally breaks into several
fragments. This break-up is due to cavitation-type effects that result in local sub-scale bubble
growth. As the diffuse interface model (Eqs. (2.21)) is able to deal with dynamic interface
appearance, as a result of pressure relaxation effects, such break-up is done automatically as
a result of stretching [17]. Phase transition has not been considered in these computations.
Here, cavitation is treated as a mechanical process only, where sub-scale bubbles (solute gas
for example) grow under pressure differential to maintain positivity of pressure. Such simplified
modeling of cavitation is in principle representative enough in explosion situations such as the
present case.
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Figure 22: Comparison of the present interface-sharpening method (Eq. (5.8), β = 2) versus Superbee limiter (Eq.
(5.7), β = 2). The test consists in a krypton-bubble/air configuration where a left facing shock wave moving at
M = 1.5 interacts with the interface. The volume fraction isocontours are displayed. The left column corresponds
to the results with the Superbee limiter and the right column with the present compressive limiter. The results
are shown at times: t ≈ 0.013 ms, t ≈ 0.155 ms and t ≈ 0.297 ms. The reference time t0 = 0 corresponds to the
moment when the shock wave interacts with the interface. Mesh ≈ 120.000 triangles. CFL = 0.5.
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Figure 23: Krypton bubble shock interaction test of Fig 22. The figure on the left represents the interface cells
computed by the interface indicator (Eq. (6.1)). On the right, the krypton bubble cells are displayed. The results
are given at times: t ≈ 0.155 ms. The reference time t0 = 0 corresponds to the moment when the shock wave
interacts with the interface. Mesh ≈ 120.000 triangles.

Fig 24 shows the isocontours of the liquid water volume fraction. The mesh consists in
approximately 150, 000 triangles. The Minmod limiter (Eq. (5.7) with β = 1) is used in the
hydrodynamic solver for both methods (conventional and sharpening). When an interface is
located via filter (6.1), the Superbee or the Overbee functions are used for volume fraction
computation. The improvement with the present method is clearly visible. At the end of the
simulation, the break-up of the liquid water layer is barely seen with the conventional Superbee
limiter whereas the fragmentation process is clearly observable with the new limiter.

9. Conclusion

A simple interface sharpening method bas been built, especially devoted to the computation
of compressible two-phase flows. The method has been presented in the context of Saurel et
al. (2009) [17] diffuse interface model but can be implemented in the models of Allaire et al.
(2002) [14], Massoni et al. (2002) [15], Pelanti and Shyue (2014) [18] and many others. The
method relies on a specific limiter for the volume fraction computation in MUSCL type schemes.
This limiter is TVD and deals with discontinuities only as it is compressive but diffusive enough
to behave satisfactorily in multi-D computations. Insertion of this limiter into diffuse interface
formulations requires detection of interfaces. A simple indicator function is used in this aim.
The developed algorithm thus uses two main ingredients,

• localization of interfaces via an interface indicator,

• volume fraction gradient limitations with the “Overbee” limiter (a first-order TVD limiter).
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Figure 24: Comparison of the present compressive limiter (Eq. (5.8), β = 2) versus the Superbee limiter (Eq.
(5.7), β = 2). Underwater explosion test. The liquid water volume fraction isocontours are displayed. The left
column corresponds to the results with the Superbee limiter and the right column to the present limiter. The
results are shown at times: t ≈ 1.8 ms, t ≈ 22 ms and t ≈ 29 ms. Mesh ≈ 150.000 triangles. CFL = 0.1.
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Computational examples have shown capabilities of the present method. It is able to capture
interfaces in two mesh points, improving significantly quality of the results, to the price of slight
modifications. The present work has been developed in the context of two-phase flows with
inmiscible fluids. The next step will be to address interfaces with phase transition [57], [58].
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