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We investigate the conditional vorticity budget of fully developed three-dimensional
homogeneous isotropic turbulence with respect to coherent and incoherent flow con-
tributions. The coherent vorticity extraction based on orthogonal wavelets allows to
decompose the vorticity field into coherent and incoherent contributions, of which the
latter are noise-like. The impact of the vortex structures observed in fully developed
turbulence on statistical balance equations is quantified considering the conditional
vorticity budget. The connection between the basic structures present in the flow
and their statistical implications is thereby assessed. The results are compared to
those obtained for large- and small-scale contributions using a Fourier decomposi-
tion, which reveals pronounced differences. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3694807]

I. INTRODUCTION

The problem of turbulence remains a paradigm for non-equilibrium statistical mechanics. The
challenge comes from the spatio-temporal complexity which calls for a statistical description of the
phenomenon, moreover, the presence of coherent structures induces strong statistical correlations.
For example, already the single-point vorticity statistics displays a highly non-Gaussian shape,
which indicates pronounced spatial correlations of the vorticity field. Visualizations of vorticity in
fully developed turbulent flows show that these correlations become manifest in the form of slender
vortex tubes, which form a complex entangled global structure.1–6 Hence, one of the most interesting
problems in turbulence research is to understand the relation between the coherent structures and
their implications for statistical properties of the flow.

In this context it is particularly interesting to study dynamical rather than purely kinematic
statistical relations. Maybe the most fundamental dynamical balance equation related to vorticity
is the balance of enstrophy production and dissipation. Deriving an equation for the vorticity
probability density function (PDF) is even more informative and allows to study the conditional
budget of enstrophy production and dissipation, or equivalently the balance of conditional vortex
stretching and diffusion, where the ordinary budget equation is contained as a special case. This
budget equation was introduced by Novikov and has been studied in a number of publications.7–9 The
conditional vorticity budget allows to quantify vortex stretching and vorticity diffusion as a function
of vorticity magnitude and hence to statistically discriminate strong vorticity regions in the flow
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from weak ones. One, however, would like to go one step beyond and disentangle the influence of
coherent and incoherent flow contributions on these statistical quantities, which is possible with the
help of the orthogonal wavelet decomposition. Farge et al.10, 11 proposed a method, called coherent
vorticity extraction (CVE), to extract the coherent structures out of turbulent flows. This technique
is based on a denoising of vorticity in wavelet space. It was shown that the CVE method is more
efficient than Fourier filtering12 and that fewer wavelet coefficients are necessary to reconstruct the
coherent structures with increasing Reynolds number,13 which means that the CVE method becomes
more attractive as the flow becomes more intermittent. This method was applied to study the vortical
structures in sheared and rotating turbulence14 and mixing layers.15 For all investigated flows it was
shown that the coherent vortices are well represented with few wavelet coefficients and the statistics
of the remaining background flow exhibit more Gaussian-like behavior. Moreover, the coherent
vorticity simulation (CVS), which models turbulent flows by considering only the time evolution of
the coherent contribution while neglecting the incoherent one to model turbulent dissipation, was
introduced by Farge and co-workers.11, 16 The wavelet and Fourier nonlinear filtering methods were
compared recently.17

The aim of the present article is twofold. First, we combine the statistical analysis of the
vorticity field with the coherent vorticity extraction in order to obtain new insights on the coherent
and incoherent contributions to the statistics. This gives a characterization of the statistical impact of
coherent structures. Second, the results also serve as a benchmark to characterize the performance
of the wavelet decomposition. For example, aiming at coherent vorticity simulations, it is especially
desirable that the coherent contributions are driving the nonlinear dynamics. One of the most simple
checks consequently is to study their contributions to dynamical budget equations such as the
enstrophy budget. For comparison, we include an analysis of low and high pass Fourier-filtered
vorticity fields using the same number of degrees of freedom. This is an interesting investigation
in its own right as it yields a characterization of large- and small-scale contributions and their
interaction.

The remainder of this article is structured as follows. We first review the theoretical background
for the conditional vorticity budget, the orthogonal wavelet decomposition, and the principle of the
coherent vorticity extraction. Then, after summarizing some technical details on the direct numerical
simulations performed for this work, we will present and discuss the numerically obtained results,
before we conclude.

II. PDF EQUATION AND CONDITIONAL VORTICITY BUDGET

The dynamics of incompressible flows can be described in terms of the vorticity field ω(x, t)
= ∇ × u(x, t), defined as the curl of the velocity field. Its evolution equation takes the form

∂

∂t
ω + u · ∇ω = Sω + ν�ω + ∇ × F, (1)

where S(x, t) = 1
2

[∇u(x, t) + (∇u(x, t))T
]

denotes the rate-of-strain tensor, ν denotes the kine-
matic viscosity, and F(x, t) represents an external large-scale forcing applied to the flow in order to
maintain a statistically stationary flow. As we are dealing with incompressible flows, we additionally
have

∇ · u = 0. (2)

If one is now interested in the single-point statistics of the vorticity, a comprehensive characterization
can be obtained by studying the evolution equation of the vorticity probability density function. The
vorticity PDF can be introduced as an ensemble average (〈 · 〉) over the fine-grained PDF (the delta
distribution) according to18

f (�; x, t) = 〈
δ(ω(x, t) − �)

〉
, (3)

by which we have introduced the sample space variable �. In general this PDF will be a function
of space and time, but for statistically homogeneous and stationary turbulence the PDF becomes
independent of these variables. For isotropic turbulence the PDF only depends on the magnitude �
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of the vorticity, such that the PDF of the vorticity vector, f (�), can be expressed in terms of the
PDF of the magnitude of the vorticity, f̌ (�), according to

f̌ (�) = 4π�2 f (�). (4)

Consequently the single-point statistics of statistically stationary homogeneous isotropic turbulence
is fully characterized by the PDF of the vorticity magnitude only.

Regarding the evolution of this quantity, standard PDF methods allow to derive an evolution
equation for the single-point vorticity PDF of homogeneous turbulence which takes the form18–21

∂

∂t
f (�; t) = −∇� · [〈

Sω + ν�ω + ∇ × F
∣∣�〉

f (�; t)
]
. (5)

The temporal change of the vorticity PDF is accordingly given by the divergence of the conditionally
averaged right-hand side of Eq. (1) times the vorticity PDF, such that this equation takes the form
of a continuity equation (or conservation law) for the probability density. That means, the closure
problem of turbulence in this formulation appears in terms of the unknown conditional averages
of the vortex stretching term, the diffusive term, and the external forcing. Once these functions are
known, Eq. (5) is closed. For isotropic turbulence these terms can be simplified further as they have
to take the form 〈

Sω
∣∣�〉 = s(�, t) �̂ s(�, t) = 〈

ω̂ · Sω
∣∣�〉

, (6)

〈
ν�ω

∣∣�〉 = d(�, t) �̂ d(�, t) = 〈
νω̂ · �ω

∣∣�〉
, (7)

〈∇ × F
∣∣�〉 = e(�, t) �̂ e(�, t) = 〈

ω̂ · (∇ × F)
∣∣�〉

, (8)

in order to maintain invariance under arbitrary rotations (and reflections). This shows that these terms
can be characterized by scalar-valued functions depending only on the magnitude of vorticity, which
can be obtained by projecting the vectorial conditional averages on the direction of the vorticity,
ω̂ = ω/ω, where ω = ‖ω‖. For a more detailed account on the exploitation of statistical symmetries,
we would like to refer the reader to Wilczek et al.22 If we insert these expressions together with
relation (4) into the PDF equation (5), we obtain the transport equation for the PDF of the magnitude
of vorticity

∂

∂t
f̌ (�; t) = − ∂

∂�
[s(�, t) + d(�, t) + e(�, t)] f̌ (�; t), (9)

by which the problem becomes eventually one-dimensional; the temporal evolution of the vorticity
PDF may fully be characterized by knowing the functions s, d, and e, which are related to the
vortex stretching term, the diffusive term, and the external forcing term, respectively. When we now
consider statistically stationary turbulence, this equation implies

s(�) + d(�) + e(�) = 0 (10)

as the probability current for this type of stationary one-dimensional problem has to vanish. Further-
more, it has been shown in a number of publications7, 8, 21 that the conditional vortex stretching and
diffusive term balance at sufficiently high Reynolds numbers. Compared to those terms, the external
forcing has a negligible effect, such that we obtain the approximation

s(�) + d(�) ≈ 0, (11)

or equivalently

[s(�) + d(�)] �̂ = 〈
Sω

∣∣�〉 + 〈
ν�ω

∣∣�〉 ≈ 0. (12)

This central relation states that vortex stretching and vorticity diffusion tend to cancel for a fixed
magnitude of vorticity on the statistical average. This balance has been extensively discussed by
Novikov and co-workers.7–9 Recently its relation to the shape and evolution of the vorticity PDF
was investigated.21
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The conditional balance is much more informative than the ordinary enstrophy balance as
we, for example, can discuss the results as a function of vorticity magnitude highlighting possible
correlations. Of course, the average enstrophy balance (discussed, e.g., by Tennekes and Lumley23)
is obtained from Eq. (12) by multiplying with � f (�) and integrating out �,〈

ω · Sω
〉 + 〈

νω · �ω
〉 =

∫
� · [〈

Sω
∣∣�〉 + 〈

ν�ω
∣∣�〉]

f (�) d� (13)

=
∫ ∞

0
� [s(�) + d(�)] f̌ (�) d� ≈ 0. (14)

Higher-order moment relations can also be obtained in the same manner. The fact that conditional
averaging allows to study the vorticity budget as a function of the vorticity eventually permits to
discriminate the statistics of strong vorticity events from weak vorticity events as demonstrated later
on.

If we now want to establish a connection between this conditional balance and the coherent vor-
ticity structures present in the flow, we have to discriminate coherent from incoherent contributions
to the vorticity field. The challenge in this context is to define what exactly a coherent structure is, and
many different approaches have been introduced in recent years.24, 25 A conceptually different way
to determine the coherent contributions is to analyze the vorticity field in terms of CVE introduced
by Farge and co-workers10, 11, 16 which is based on a denoising approach.

To this end, we decompose the vorticity field into coherent and incoherent contributions accord-
ing to

ω(x, t) = ωc(x, t) + ωi (x, t) (15)

using an orthogonal wavelet decomposition as described in Sec. III. By this decomposition we obtain
for the conditional diffusive term〈

ν�ω
∣∣�〉 = 〈

ν�ωc
∣∣�〉 + 〈

ν�ωi
∣∣�〉 = [

dc(�) + di (�)
]
�̂, (16)

such that we get two separate contributions from the coherent and incoherent parts of all fields of
the ensemble. This decomposition, for instance, allows to quantify how much enstrophy dissipation
is contained in the two terms.

The nonlinear vortex stretching term turns out to be more complicated as the rate-of-strain
tensor contains both coherent and incoherent contributions. This can be seen by noting that we can
calculate the coherent and incoherent velocity, uc(x, t) and ui (x, t), from the decomposed vorticity
field via Biot-Savart’s law and subsequently the coherent and incoherent rate-of-strain tensor Sc(x, t)
and Si (x, t). Hence, the vortex stretching term may be split up into four terms containing all possible
combinations of coherent and incoherent parts of the vorticity and the rate-of-strain tensor,〈

Sω
∣∣�〉 = 〈

Scωc
∣∣�〉 + 〈

Scωi
∣∣�〉 + 〈

Siωc
∣∣�〉 + 〈

Siωi
∣∣�〉

(17)

= [
scc(�) + sci (�) + sic(�) + sii (�)

]
�̂. (18)

The interesting fact now is that the different functions characterize the interaction of coherent and
incoherent contributions of the rate-of-strain field with coherent and incoherent contributions of the
vorticity field. This will, for instance, eventually allow to quantify if vortex stretching is mainly
caused by coherent structures or not.

It is also useful to compare the results obtained by wavelet filtering to another more classical
filtering technique. To this end we make use of Fourier decomposition into ideal low pass filtered
and high pass filtered contributions of the vorticity field according to

ω(x, t) = ωl(x, t) + ωh(x, t). (19)

The cutoff wavenumber is determined such that the number of Fourier modes representing the
low pass filtered vorticity field approximately corresponds to the number of wavelet coefficients
representing the coherent vorticity field. More details on the wavelet filtering technique will be
given in Sec. III.
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III. COHERENT VORTICITY EXTRACTION

In the following, the notation for the orthogonal wavelet decomposition of a three-dimensional
vector-valued field is presented, and the main ideas of CVE are explained. For more details, the
reader is referred to the original paper by Farge et al.10

The vector field vorticity is considered, ω(x) = (ω1, ω2, ω3), x = (x1, x2, x3) ∈ [0, 2π ]3 given
at resolution N = 23J, where J is the number of octaves in each space direction. The decomposition
of ω into an orthogonal wavelet series yields

ω(x) =
∑
λε�

ω̃λ ψλ(x), (20)

where the multi-index λ = ( j, ix , iy, iz, μ) denotes the scale index j, the position index i = (ix , iy, iz),
and the seven directions μ = 1, 2, . . . , 7 of the wavelets, respectively. The corresponding index set
� is given by

� = {λ = ( j, ix , iy, iz, μ); j = 0, . . . , J − 1; ix , iy, iz = 0, . . . , 2J − 1; and μ = 1, . . . , 7}.
(21)

The orthogonality of the chosen wavelets implies that the coefficients are given by ω̃λ

= ∫
[0,2π]3 ω(x)ψλ(x) dx. The coefficients measure fluctuations of ω around scale 2−j and around

position 2π i/2 j in one of the seven possible directions μ. The fast wavelet transform, which has
linear complexity, is used to compute efficiently the N−1 wavelet coefficients ω̃λ (and the mean
value which vanishes in the present case) from the N grid point values of ω. The Coiflet 30 wavelet26

is chosen in this study; it has 10 vanishing moments and is well adapted to our case. In past
publications11, 13 also Coiflet 12 wavelets have been used. It has, however, been checked that statis-
tical results are robust with respect to this particular choice. The main steps of the CVE method and
our analysis are summarized in the following:

(1) The wavelet coefficients of the vorticity field, ω̃λ, are obtained by computing the fast wavelet
transform of each component of the vorticity vector.

(2) Then we threshold the wavelet coefficients ω̃λ, and the field can thus be split into two contri-
butions. The wavelet coefficients of the coherent part are defined as

ω̃c
λ =

⎧⎨
⎩ ω̃λ if ‖ω̃λ‖ > ε =

√
2σ 2

f ln N

0 else
(22)

and those of the incoherent part as the remainder. Here σ f = √〈(ωi )2〉 f /3 is the standard
deviation of the individual incoherent vorticity field (〈 · 〉f denotes the spatial average over
a single field) and N the total number of grid points. The threshold ε is motivated as an
optimal method for denoising signals of inhomogeneous regularity27 and is sometimes called
“universal” as it does not depend on the signal, but only on the sampling size and on the
variance of the noise. However, as the variance of the noise, which equals two-third of the
enstrophy of the incoherent field, is unknown, a first threshold is calculated from the total field
and the thresholding is applied. In the next step, the total field is then split with a threshold
calculated from the incoherent field. An iterative algorithm was developed to obtain the optimal
threshold by Azzalini et al.28 In the present work, we have chosen to perform one iteration in
order to privilege a good compression rate rather than a perfectly denoised contribution.

(3) The fast inverse wavelet transform is applied to reconstruct the coherent vorticity ωc. The
incoherent vorticity ωi is obtained by subtracting ωc pointwise, such as ωi = ω − ωc. Since
by construction the two fields ωc and ωi are orthogonal, the separation of the total enstrophy
Z = 〈ω2〉/2 into Z = Zc + Zi is ensured because the interaction term

∫
[0,2π]3 ωc(x) · ωi (x) dx

vanishes.
(4) Biot-Savart’s law u = −∇ × (∇−2ω) is used to obtain the corresponding total, coherent, and

incoherent velocities, where again we have u = uc + ui . However, as the Biot-Savart operator
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TABLE I. Simulation parameters. Number of grid points N, Reynolds number based on the Taylor micro-scale Rλ, root-
mean-square velocity urms, kinematic viscosity ν, integral length scale L, large-eddy turnover time T, Kolmogorov length
scale η, and Kolmogorov time scale τη .

N Rλ urms ν L T η τη

5123 112 0.543 0.001 1.55 2.86 9.92 × 10−3 9.85 × 10−2

is not diagonal in wavelet space, the decomposition of the turbulent kinetic energy E = 〈u2〉/2
is E = Ec + Ei + εE where εE 	= 0 but small.11

(5) From the decomposed velocity field we then can calculate the total rate-of-strain tensor S
= 1

2

[∇u + (∇u)T
]
, as well as the coherent and incoherent contributions according to Sc

= 1
2

[∇uc + (∇uc)T
]

and Si = 1
2

[∇ui + (∇ui )T
]
, respectively.

(6) Finally, also the Laplacian of total, as well as the coherent and incoherent contributions of the
vorticity field is calculated.

IV. DIRECT NUMERICAL SIMULATION

The presented flow is generated with a standard, dealiased Fourier pseudospectral code29, 30 for
the vorticity equation. The integration domain is a triply periodic box of side-length 2π . The time
stepping scheme is a third-order Runge-Kutta scheme.31 For the statistically stationary simulations
a large-scale forcing is applied to the flow. Here, care has to be taken in order to fulfill the statistical
symmetries we make use of in our theoretical framework.22 After numerous tests, we chose a
large-scale forcing which conserves the kinetic energy of the flow by amplifying the magnitude of
Fourier modes in a wavenumber band and letting their phases evolve freely. This forcing has been
found to deliver satisfactory results concerning the statistical symmetries. The numerical results
presented in the following are obtained from a simulation whose simulation parameters are listed in
Table I.

For the numerical evaluation, we average over 20 realizations of the vorticity field to ensure
a good statistical quality. Furthermore, the presented data stem from a well-resolved simulation
(kmaxη ≈ 2), which is necessary as, e.g., second derivatives of the vorticity field will be consid-
ered. We also refer to the discussion in the literature32, 33 regarding the importance of the spatial
resolution.

V. RESULTS

Before coming to the investigation of the conditional vorticity budget, we show some benchmark
results. Details on the CVE and Fourier filtering are summed up in Tables II and III. For example, it
can be seen that with about 2.3% retained coefficients still about 99% of the enstrophy is contained
in the coherent contribution. Due to the high cutoff wavenumber the Fourier filtering performs
comparable. Furthermore, CVE represents the minimum and maximum values of the vorticity
components to a better extent than the Fourier filtering. In Figure 1 volume visualizations of the
total, coherent, incoherent, low pass filtered, and high pass filtered contributions of the vorticity are

TABLE II. Enstrophy and percentage of retained coefficients of the total, coherent, and incoherent contributions obtained
using CVE. Mean value of the threshold ε = 9.74. ω� denotes the components of vorticity. All values are averaged over the
fields of the ensemble.

Z %Z min ω� max ω� % of retained coeff.

Total: 51.6 100 −118 123 100
Coherent: 51.0 98.8 −118 122 2.31
Incoherent: 0.643 1.25 −10.7 10.5 97.7
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TABLE III. Enstrophy and percentage of retained coefficients of the total, low pass, and high pass filtered contributions

obtained using Fourier filtering with cutoff wavenumber kc = 91, which was calculated as kc = ( 3
4π

N · cr
)1/3 ≈ 91, where

cr = 2.31% is the percentage of retained coefficients for the CVE. All values are averaged over the fields of the ensemble.

Z %Z min ω� max ω� % of retained coeff.

Total: 51.6 100 −118 123 100
Low pass filtered: 50.1 97.2 −96.9 98.1 2.41
High pass filtered: 1.47 2.85 −47.7 49.5 97.6

shown. It can be seen that both the coherent and low pass filtered contributions represent the global
structure of the total vorticity field to a good extent, differences are only visible in the details. When
comparing incoherent and high pass filtered contributions, differences become more pronounced.
While the incoherent contributions appear very noisy and small in amplitude, the high pass filtered
contributions have a much larger amplitude and appear more structured. The color scales for the
visualization of the incoherent and high pass filtered fields have been adjusted to account for that
issue. A zoom into the fields, however, also indicates differences in the low pass filtered contribution
compared to the total field, as presented in Figure 2. Although the shape of the vortex structures is
captured quite well, it can, for example, be seen that the amplitude of the vortex cores sometimes is
underestimated in the low pass filtered contribution.

This observation can be made more quantitative by investigating the PDF of the magnitude of
the vorticity which is presented in Figure 3. This figure shows that the PDF of the coherent part of
the vorticity yields a PDF almost indistinguishable from the total PDF. The PDF of the incoherent
part has a largely reduced variance and displays a nearly exponential decay consistent with previous

FIG. 1. Volume visualization of a wavelet-decomposed (upper panels) and Fourier-decomposed (lower panels) vorticity
field (shown are the magnitudes). The upper left shows the total field, the pictures in the middle show the coherent/low pass
filtered contribution, whereas the right pictures show the incoherent/high pass filtered contributions. The lower left picture
indicates the different color scales used (the standard deviation of the ensemble of total fields is σ =

√
〈ω2〉/3 = 5.87). The

visualizations have been produced with the free software package VAPOR (www.vapor.ucar.edu).

http://www.vapor.ucar.edu
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FIG. 2. Same visualization as in Figure 1, but in a close-up view. Both the coherent and low pass filtered contributions
represent the structure of the vorticity field rather well, the low pass filtered contribution tends to underestimate, for example,
the core of coherent vortex structures. These contributions are contained in the high pass filtered contribution.

findings.10–12 Compared to that, the Fourier filter does not perform as well because the PDF of the low
pass filtered part of the vorticity field is clearly distinguishable from the total PDF.12 Furthermore,
the high pass filtered component of the vorticity field has a much larger variance compared to the
PDF of the incoherent part and displays a stretched exponential shape.

To quantify the two-point statistics of the field, Figure 4 shows the longitudinal correlation
function of the different contributions. It can be seen that both the coherent and low pass filtered
contributions of the vorticity field almost coincide with the correlation function of the total field.
Differences, however, become apparent when comparing the incoherent and high pass filtered con-
tributions. Although both correlation functions decay rapidly (compared to the correlation function
of the total field), a long-ranging oscillation of the autocorrelation function of the incoherent field
can be observed. These oscillations may also be seen in the visualizations (Figures 1 and 2) in form
of a very fine-scaled structure of the incoherent field.

These observations are also supported by studying the enstrophy spectra of the different contri-
butions, c.f. Figure 5. The enstrophy spectra of the total and coherent flows perfectly superimpose
all along the inertial range. In the dissipative range, for wavenumbers larger than k > 60, we observe
a departure, i.e., the enstrophy spectrum of the coherent flows decays faster than the one of the total
flow. In contrary, the enstrophy spectrum of the incoherent flow has a much weaker amplitude and
exhibits a slope close to k4. After reaching its maximum value at k = 90, it rapidly decays. For reason
of comparison, we also plotted the cutoff wavenumber kc = 91 corresponding to the black vertical
line; this line divides the enstrophy spectrum of the total flow into large-scale contributions k < kc

and small-scale contributions k ≥ kc. According to the Wiener-Khinchin theorem, the spectra cor-
respond to the Fourier transform of the autocorrelation functions. Hence, the oscillations observed
in the longitudinal vorticity autocorrelation functions (see Figure 4) for both, the incoherent and the
small-scale contribution are related to the maximum values in the corresponding spectra, i.e., the
wavenumber of the oscillations is given by kmax = (2π )/ lr where lr denotes the wavelength of the
oscillations and kmax the maximum in the spectrum.
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FIG. 3. Top: PDFs of the magnitude of the total vorticity, the coherent part, and the incoherent part of the wavelet-decomposed
fields. Bottom: PDFs of the total, low pass filtered, and high pass filtered Fourier-decomposed fields. The PDFs are highly non-
Gaussian with stretched exponential tails in the case of the total and coherent vorticity. The incoherent part displays a much
lower amplitude. Inset: Close-up of the PDF of the incoherent/high pass filtered vorticity. The nearly exponential/stretched
exponential tail of the PDF indicates that also the incoherent/high pass filtered part is non-Gaussian. Note that the PDFs
have been normalized by the standard deviation of the total vorticity, σ . The magnitude PDF corresponding to a Gaussian
distributed vorticity field with standard deviation σ is shown for reference.

We now come to the conditional vorticity budget and start with an investigation of the functional
form of s(�) and d(�) presented in Figure 6. It can be seen that the vortex stretching term is positively
correlated with the vorticity, whereas the diffusive term is negatively correlated. This is physically
quite intuitive as it mirrors the fact that the vortex stretching term tends to amplify vorticity, while the
dissipative term depletes vorticity. The fact that the sum of both averages nearly identically vanishes
represents a posteriori justification for the approximation leading to the relation (12). In the same
figure, the functions expected for the case where the rate-of-strain tensor is assumed statistically
independent of the vorticity and the corresponding diffusive term balances this term are shown
for comparison. The slope of these linear functions is obtained such that these functions yield the
correct ordinary enstrophy budget (12). The difference compared to the functions obtained from the
DNS demonstrates, as expected, that pronounced correlations between the fields of the rate-of-strain
tensor, the Laplacian of the vorticity, and the vorticity, respectively, exist.

To now quantify the contributions of the coherent structures, we start with investigating the
diffusive term, which is presented in Figure 7. It is observed that this term is almost fully represented
by the coherent part of the field, while the incoherent contribution appears significantly smaller. As
the Laplacian of a field enhances its small-scale features, this demonstrates that the CVE captures
these features especially well. This is also supplemented by the observation made for the Fourier
decomposition. It can be seen that the high pass filtered component is smaller, but not negligible for
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FIG. 7. Coherent and incoherent parts of the diffusive term compared to the total one (top: wavelet decomposition, bottom:
Fourier decomposition). In the case of the wavelet decomposition the coherent part contributes the most, however, the
incoherent part is small, but non-vanishing. In the case of the Fourier-decomposed fields the low pass filtered and high pass
filtered contributions do not separate that well. As a benchmark, the sum of both contributions is shown to add up to the total
diffusive term, which has been calculated for reference.
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TABLE IV. Relative contributions of the different decomposed terms of the budget Eq. (12) to the average enstrophy budget.

〈ω · Sc/ lωc/ l 〉 〈ω · Sc/ lωi/h〉 〈ω · Si/hωc/ l 〉 〈ω · Si/hωi/h〉 〈νω · �ωc/ l 〉 〈νω · �ωi/h〉

Wavelet: 0.978 2.75 × 10−2 −5.85 × 10−3 3.71 × 10−4 0.913 8.70 × 10−2

Fourier: 0.931 8.35 × 10−2 −1.48 × 10−2 4.62 × 10−4 0.764 0.236

low magnitudes of vorticity, which means that both fields contribute to the enstrophy dissipation. To
make this more quantitative, these contributions have been calculated and are presented in Table IV.
It can be seen there that the low pass filtered component contributes only about 76% to the total
dissipation of enstrophy compared to 91% in the case of the coherent vorticity.

Similar observations can be made for the terms related to the conditional vortex stretching term,
which are shown in Figure 8. Also for this term the coherent contribution matches almost perfectly
the total contribution, about 98% of the enstrophy production is contained within this term (see
Table IV). The remaining terms are strongly reduced in amplitude, still an investigation of their
comparably small contributions is interesting, as can be seen in Figure 9. It becomes apparent from
this figure that the interaction of the coherent part of the rate-of-strain field with the incoherent part
of the vorticity field is positively correlated with the vorticity, i.e., a positive contribution to the
average enstrophy budget originates from this term. An interesting interpretation of this observation
is that the rate-of-strain field produced by the coherent vortex structures is able to produce additional
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FIG. 8. Coherent and incoherent contributions to the conditional average related to the vortex stretching term (top: wavelet
decomposition, bottom: Fourier decomposition). For the wavelet-decomposed fields the coherent-coherent contribution is
dominant and almost identical to the total term. This indicates that vortex stretching is predominantly caused by both the
coherent vorticity and the rate-of-strain tensor induced by the coherent vorticity. For the Fourier-decomposed fields the low
pass-low pass contribution deviates significantly from the total one.
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FIG. 9. Contributions to the conditional vortex stretching term with at least one incoherent quantity (top: wavelet decom-
position, bottom: Fourier decomposition). The conditionally averaged coherent part of the rate-of-strain tensor times the
incoherent part of the vorticity contributes positively to the conditionally averaged vortex stretching term. In contrast to that,
the term involving the incoherent rate-of-strain tensor times the coherent vorticity tends to deplete the vorticity. The term with
both quantities incoherent seems to be negligible compared to the remaining terms. Note that the amplitude is significantly
lower in the case of the wavelet-decomposed fields.

coherent vortex structures; in a sense coherent structures breed coherent structures. In contrast to
that, the interaction of the rate-of-strain field induced by the incoherent vorticity with the coherent
vorticity has a depleting effect, such that it can be concluded that the incoherent rate-of-strain field
destroys coherent vortex structures and hence has a dissipative character. The contribution of the
incoherent rate-of-strain tensor times the incoherent vorticity field is negligible in view of its very
low amplitude.

For the Fourier filtering it can be seen that the low pass filtered contribution of the rate-of-strain
field times the low pass filtered contribution of the vorticity field does not fully represent the total
vortex stretching term. However, still about 93% of enstrophy production is contained within this
term (see Table IV). Although distinct differences compared to the CVE are apparent, Table IV shows
that these differences almost vanish in the average. This exemplifies that more detailed insights can
be obtained by studying conditional averages instead of ordinary averages. For the cross-terms
similar observations can be made as in the case of the wavelet analysis. The contribution of the low
pass filtered rate-of-strain field and the high pass filtered vorticity field is positively correlated with
the vorticity, whereas the opposite is observed for the case of the high pass filtered rate-of-strain
tensor contribution and the low pass filtered vorticity field. Apart from the comparison to the wavelet
filtered data, this is a physically interesting observation on its own as it quantifies the interaction
of large- and small-scale contributions within the flow fields. The contributions involving high pass
filtered fields also remain small in the case of the Fourier-filtered data. Still, they are significantly



035108-14 Wilczek et al. Phys. Fluids 24, 035108 (2012)

larger than the corresponding terms of the wavelet decomposition; the scale in Figure 9 differs by
more than an order of magnitude between the wavelet and Fourier decomposition.

VI. CONCLUSION

To summarize, we presented a detailed analysis of the conditional vorticity budget in terms
of coherent vorticity. For this purpose we made use of the CVE technique to separate the noisy
incoherent contributions of the vorticity field from the coherent ones. It was shown, in accordance
with previous results, that CVE yields an excellent representation of the total flow using a strongly
reduced number of degrees of freedom. This is particularly interesting as the conditional budget
of vortex stretching and vorticity diffusion represents a dynamical rather than a purely kinematic
relation. To further quantify the performance of the wavelet filtering method, we have performed a
comparison to an ideal Fourier filter, where the fields have been low and high pass filtered.

Although visualizations did not show strong discrepancies between Fourier and wavelet filtering,
the investigation of the conditional averages revealed more pronounced differences. It has been
shown that most of the enstrophy production can be accounted to the coherent vorticity and the
correspondingly induced rate-of-strain field. Interestingly, we have found that the incoherent rate-
of-strain field tends to deplete vorticity, i.e., it tends to destroy coherent structures, while the rate-
of-strain field induced by the coherent vorticity contributes positively. However, these contributions
are small compared to the coherent-coherent contribution. In this sense, the coherent structures are
able to maintain or even amplify themselves, whereas the incoherent contributions tend to have
a dissipative effect. Our analysis hence also quantifies the interaction of coherent and incoherent
contributions to the flow. Consistent results have been found for the Fourier filtering. It has been
shown, however, that this kind of filtering does not separate coherent contributions as well as wavelet
filtering does, which is in agreement with previous studies.

These findings motivate to further develop CVS, where neglecting the incoherent flow contri-
butions is assumed to be sufficient to model turbulent dissipation. With respect to the performance
of this method, it should be noted that coherent vorticity simulations using adaptive wavelet bases
require, however, the use of a safety zone to account for the generation of wavelet coefficients in scale
and space due to the nonlinear flow dynamics. This increases the number of retained coefficients in
actual simulations by a factor 2–8 depending on the choice of the safety zone. For a discussion on
possible choices and their influence on the flow statistics we refer the reader to a recent work.34 The
Lagrangian particle-wavelet method35 would allow to perform CVS without safety zone. Note that
in simulations using Fourier spectral methods the number of modes has also to be increased by a
certain factor in each spatial direction depending on the used dealiasing technique to remove high
wavenumber modes for computing the nonlinear term.
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