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Abstract

Total dominating set, connected vertex cover and Steiner tree are well-known graph problems. Despite
the fact that they are NP-complete to optimize, it is easy (even trivial) to find some solutions, when
ignoring the optimization criterion. In this paper, we study a variant of these problems by adding
conflicts, that are pairs of vertices that cannot be both in a solution. This new constraint leads to
situations where it is NP-complete to decide if there exists a solution avoiding conflicts. We prove NP-
completeness of deciding the existence of a solution for different restricted classes of graphs and conflicts,
improving recent results. We also propose polynomial time constructions in several restricted cases and
we introduce a new parameter, the stretch, to capture the locality of the conflicts.

1 Introduction

In the field of discrete optimization, graphs problems have been extensively studied. An instance of a
problem consists of a graph G (together with other parameters), and the goal is to compute a structure S
which satisfies some constraints and whose value is optimized for a criterion. It is the case for domination
problems, connected vertex cover, and Steiner tree for which approximation algorithm is a field of active
research [2]. However, deciding the existence of some solution ignoring the optimization criterion can easily
done in polynomial time.

In the real world, there can be incompatibilities between some vertices of G because of various reasons, for
example structural incompatibilities between components of a system, security reasons, mutually exclusives
funding, interface incompatibilities and so on. These plausible applications motivated us to extend several
classical optimization problems to understand better how these incompatibilities reflect on the complexity
of these problems. To model these situations, we say that two elements u and v are in conflict, if u and
v cannot be both in a solution. G = (V,E) will be called the support graph, and the set of conflicts will
be interpreted as a graph on the same vertices, called the conflict graph C. No solution can contain both
ends of an edge of C, i.e. any solution must be an independent set of C. A pair (G,C) where G is the
support graph and C is the conflict graph will be called a graph with conflicts. In the following, we will not
make distinction between a conflict between vertex a and vertex b and the edge ab of the conflict graph C.
Given this additional constraint, deciding the existence of a solution becomes harder. In fact, we show that
deciding the existence of a solution for total dominating set with no conflicts, connected vertex cover with
no conflicts and Steiner tree with no conflicts is NP-complete even for restricted graph classes.

Problems with conflicts, also known as forbidden pairs, have been studied in numerous problems. In
a recent serie of papers [6–8, 11, 12], authors deal with conflicts between pairs of edges, in problems such
as finding a path, spanning tree, Hamiltonian path and Hamiltonian cycle. Most of the results are NP-
completeness theorems on the existence of such objects. Conflicts between vertices have also been studied
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until recently by several authors. Most of the works in [5, 9, 10, 14] study the complexity of finding paths
without conflicts. In [4], authors prove the NP-completeness of deciding the existence of the solution in some
problems with conflicts, including domination problems, connected vertex cover and Steiner tree. However,
their reductions use complex graphs, and a lot of conflicts. In an ongoing work [3], we prove the NP-
completeness of deciding the existence of a dominating set with no conflicts and independent dominating set
with no conflicts in very restricted classes of graphs.

In this paper, in sections 2, 3 and 4, we investigate the complexity of total dominating set with no
conflicts, connected vertex cover with no conflicts and Steiner tree with no conflicts for some graph classes.
The problems are trivially in NP, hence the NP-completeness proofs will only focus on the NP-hardness
of the problems. We aim to prove NP-completeness for the smallest possible classes, for both the support
graph and the conflict graph. Therefore, we refine results of [4] by drawing a more accurate picture of the
NP-completeness of the problems restricted to specific graph classes, both sparse or dense. Since we obtain
NP-completeness results for restricted classes of graphs, we introduce a new parameter to capture the locality
of conflicts: the stretch. In a graph with conflicts (G,C), for any conflict ab of C, the stretch of ab is the
distance between a and b in the support graph G. The graph with conflicts (G,C) is of stretch at most k if
no conflicts of C are of stretch strictly greater than k. A graph with conflicts (G,C) is of stretch exactly k
if any conflict of C is of stretch k.

Most of the following NP-completeness proofs use reductions from a version of 3-SAT. Let us define the
problem formally.

• Instance: (X,Cl) where X is a set of boolean variables and Cl a set of disjunctive 3-clauses over X.

• Question: Is there an assignment on X satisfying Cl?

The 3-SAT problem is NP-complete, even if each variable appears in at most 4 clauses [13] (in a positive
or a negative form). This result will be useful to reduce the maximum degree of support graph or conflict
graph in several reductions. Moreover, one can suppose without loss of generality that each literal appears
in at most 3 clauses: otherwise its negation cannot appear and the literal can be set to true and the variable
removed from the instance together with clauses in which it appears.

In this paper we need several additional notations and graph classes. If G = (V,E) is a graph and X ⊆ V
then G[X] is the graph induced by X in G. Two vertices linked by an edge are neighbors. The neighborhood
of u in G is noted NG(u) or N(u) when there is no ambiguities. The path on n vertices is denoted by Pn.

A graph of n vertices is a Dirac graph if each vertex has degree at least n/2. A graph is a split graph
if it can be partitioned into an independent set and a clique. A caterpillar is a tree that has a dominating
path. A claw is a star graph with 4 vertices. A graph is chordal if every cycle of length at least 4 has a
chord. Figure 1 summarizes new results from this paper and from other works to provide a wider picture of
the complexity of problems with conflicts.

2 Total Dominating Set

Given (G,C) where G = (V,E) is the support graph and C the conflict graph, a total dominating set with
no conflicts (TDSwnC) is a subset of vertices S ⊆ V such that:

- for each x ∈ V ∃y ∈ S with xy ∈ E
- for each xy ∈ C, x /∈ S or y /∈ S
We first prove a NP-completeness result when the stretch is exactly 2. This result shows that the problem

is hard even when the conflicts are very local.

Theorem 1. Given (G,C) a graph with conflicts, deciding whether there exists a TDSwnC is NP-complete
even if G is a bipartite graph of maximum degree 4 and C is a graph of maximum degree 1 and of stretch
exactly 2.

Proof. Let (X,Cl) be a 3-SAT instance where each variable is in at most 4 clauses. Suppose without loss of
generality that each literal is in at most 3 clauses. Construct (G,C) an instance of TDSwnC as follows: for
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Support graph G Conflict graph C Complexity Reference
Class max degree Class Stretch

TOTAL DOMINATING SET (TDSwnC)
Bipartite 4 Maximum degree 1 = 2 NPC Thm 1

Caterpillar 3 Maximum degree 1 Finite NPC Thm 2
- 2 - - P Thm 3

CONNECTED VERTEX COVER (CVCwnC)
Bipartite 4 Maximum degree 1 = 2 NPC Thm 4

Minimal degree (1/2− ε) · n - - - NPC Thm 6
Tree - - Finite P Rmk 1
Split - - - P Thm 5

STEINER TREE (STwnC)
Bipartite 4 Maximum degree 1 = 2 NPC Thm 7

Tree - - Finite P Rmk 2
Planar bipartite 3 Maximum degree 1 - NPC Thm 8
Planar chordal 4

⋃
complete bipartite ≤ 4 Finite NPC Thm 9

Split - Maximum degree 1 = 1 NPC Thm 10
Dirac - P1,P2 and P3 ≤ 2 NPC Thm 11
Dirac - Dirac ≤ 2 NPC Thm 12

VERTEX COVER (VCwnC)
- - - - P [4]

Finding a path (PwnC)
- - - - NPC [14]

INDEPENDANT DOMINATING SET (IDSwnC)
Bipartite 5 Maximum degree 1 = 2 NPC [3]

Path 2 Maximum degree 1 Finite NPC [3]
Path 2 Dirac Finite NPC [3]
Dirac - P2 and P4 ≤ 2 NPC [3]
Dirac - Dirac ≤ 2 NPC [3]

DOMINATING SET (DwnC)
Bipartite 4 Maximum degree 1 = 2 NPC [3]

Path 2
⋃
P3 Finite NPC [3]

Union of paths 2 Maximum degree 1 - NPC [3]
Path 2 Maximum degree 1 Finite O(1) [3]
Path 2 Dirac Finite NPC [3]
Dirac - Dirac ≤ 2 NPC [3]

Figure 1: Complexity results for problems with conflicts.
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Figure 2: Reduction from the 3-SAT instance (x1 ∨ x̄2 ∨x3)∧ (x1 ∨x2 ∨ x̄3) to an instance of TDSwnC. The
dashed edges denote conflicts.

each variable xi ∈ X vertices xi, x̄i and ri are created along with the edges xiri and x̄iri, and the conflict
xix̄i. For each clause cm = (a∨ b∨ c) where a, b, c are literals, vertex cm and edges cma, cmb, cmc are created.
Vertices ri are of degree 2, vertices cm of degree 3, and vertices xi and x̄i of degree at most 4 (neighbors
from ri and at most 3 clauses). An example is given in Figure 2.

Let A be an assignment on X satisfying Cl. Construct S a TDSwnC of (G,C). For each i, ri ∈ S. Thus,
the only vertices of G not yet dominated are the vertices cm for each clause, and the vertices ri. For each
xi = 1 of A, set xi ∈ S. For each x̄i = 1 of A, set x̄i ∈ S. Since A is an assignment, it does not induce
conflicts in S. Moreover, each clause is satisfied, thus each cm has a neighbor in S. For each variable xi,
either xi or x̄i is set to 1, thus each ri is dominated. Then S is a TDSwnC of (G,C).

Let S be a TDSwnC of (G,C) and let A be the following assignment on X: xi = 1 if xi ∈ S and xi = 0 if
x̄i ∈ S. For each vertex ci there exists a vertex xj ∈ S connected to ci to dominate it, thus the corresponding
clause is satisfied by A. Moreover, xi and x̄i are in conflict, thus the assignment is consistent.

We now prove the NP-completeness for caterpillars of maximum degree 3 when the conflict graph is of
maximum degree 1. To achieve this result, we first prove a weaker one in Lemma 1 and then in Lemmas 2
and 3 we present gadgets to simplify both the support graph and the conflict graph.

Lemma 1. Given (G,C) a graph with conflicts, deciding whether there exists a TDSwnC is NP-complete
even if G is a disjoint union of claws and C is a disjoint union of complete bipartite graphs of at most 4
vertices.

Proof. Let (X,Cl) be a 3-SAT instance where each variable is in at most 4 clauses. Construct (G,C) an
instance of TDSwnC. For each clause ci = (a ∨ b ∨ c) where a, b, c are literals, construct a star of center ci
with 3 leaves a, b, c. For each pair {a, ā} of vertices, create the conflict aā. The graph G is then an union of
claws (which are caterpillars of maximum degree 3) and the conflict graph is an union of complete bipartite
graphs of at most 4 vertices (because each variable is in at most 4 clauses). An example of this reduction is
shown in Figure 3.

Let A be an assignment on X satisfying Cl. Construct S =
⋃
i{ci} ∪ P where P is the set of vertices

corresponding to the positive literals of A. Since A is an assignment, a vertex corresponding to a literal and
a vertex corresponding to its negation cannot be in S simultaneously. Thus S is without conflicts. For each
claw, leaves are dominated by the center. Moreover, each clause is satisfied thus for each claw, a leaf belongs
to S and the center is dominated. Thus S is a TDSwnC of G.

Let S be a TDSwnC of (G,C). Let A be the following assignment : li = 1 if li ∈ S, li = 0 otherwise. A
conflict exists for each pair a, ā, thus a literal and its negation cannot be set simultaneously to 1, hence the
assignment is consistent. Moreover, for each clause ci, there is a claw which center can only be dominated
by a vertex representing one of its literals, thus each clause is satisfied.

In the above reduction, the conflict graph is a disjoint union of small complete bipartite graphs. Next
lemma presents gadgets to decompose these bipartites graphs into graphs of maximum degree 1.
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Figure 3: Graph equivalent to the 3-SAT formula (ā ∨ b ∨ c) ∧ (a ∨ b̄ ∨ c̄) ∧ (a ∨ b ∨ c). The dashed edges
denote conflicts.

Figure 4: Gadget used to split K1,2(left), K2,2 (middle) and K1,3 (right) of conflicts into graphs of maximum
degree 1. The dashed edges denote conflicts.

Lemma 2. Given (G,C) a graph with conflicts where G is a disjoint union of caterpillars of maximum
degree δ > 1 and C an union of complete bipartite graph of at most 4 vertices, it is possible to construct
(G′, C ′) where G is a disjoint union of caterpillars of maximum degree δ and C a graph of maximum degree
1 such that (G,C) has a TDSwnC if and only if (G′, C ′) has a TDSwnC.

Proof. Let (G,C) be a graph with conflicts where G is a disjoint union of caterpillars of maximum degree
δ > 1 and C a disjoint union of complete bipartite graphs of at most 4 vertices. Split K1,2, K1,3 and K2,2 of
conflicts into graphs of maximum degree 1 using gadgets from Figure 4. One can see by exhaustive search
that the choice of a vertex a forbids all the vertices ā (and conversely), and that the new paths can be
dominated regardless of the choice of a or ā. Only paths were created in this transformation, hence the
maximum degree of the support graph did not changed and the conflict graph is of maximum degree 1.

The conflict graph is now of maximum degree 1 but the support graph is not connected. The next result
shows how to connect the disjoint caterpillars using gadgets.

Lemma 3. Given (G,C) a graph with conflicts where G is a disjoint union of caterpillars of maximum
degree δ > 2 and C a graph of maximum degree 1, it is possible to construct (G′, C ′) where G′ is a connected
caterpillar of maximum degree δ and C ′ a graph of maximum degree 1 such that (G,C) has a TDSwnC if
and only if (G′, C ′) has a TDSwnC.

Proof. Let (G,C) be a graph with conflicts where G is a disjoint union of caterpillars of maximum degree
δ > 2 and C is a graph of maximum degree 1. If G is a single caterpillar, the lemma is true. Otherwise,
let p1 and p2 be two caterpillars of G and let (G1, C1) be the graph with conflicts where p1 and p2 are
connected by p, where p is the caterpillar shown in Figure 5. More specifically, connect vertices 1 and 4
of p to the extremities of the longest path of the caterpillars p1 and p2. Thus, the graph is still an union
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Figure 5: Gadget used to connect two connected components without changing the existence of a solution.
The dashed edges denote conflicts.

of caterpillars. The extremities of paths are leaves, their degrees change from 1 to 2, hence the maximum
degree of the graph does not change. Moreover, p can be dominated only if 1 and 4 do not belong to the
TDSwnC. This can be proved by exhaustive search of the TDSwnC of the gadget. Thus it can be used to
connect two caterpillars without changing the existence of a solution. Moreover, G1 has one less caterpillar
than G. Repeat this transformation until there is only one caterpillar.

Theorem 2. Given (G,C) a graph with conflicts, deciding whether there exists a TDSwnC is NP-complete,
even if G is a caterpillar of maximum degree 3 and C a graph of maximum degree 1.

Proof. Since claws are caterpillars of maximum degree 3, Theorem 2 follows from Lemmas 1, 2 and 3.

Previous results proved that TDSwnC is NP-complete in caterpillar of maximum degree 3. We now
prove that this result is in some way the strongest possible, since the problem becomes polynomial when the
maximum degree is 2.

Theorem 3. If G is a graph of maximum degree 2 then deciding whether (G,C) has a TDSwnC can be done
in polynomial time.

Proof. We reduce the problem to 2-SAT for which polynomial-time algorithms are known (see [1]). Let
(G = (V,E), C) be an instance of TDSwnC where G has maximum degree 2. Suppose without loss of
generality that there is no isolated vertex (otherwise the graph has no TDSwnC). Construct (X,Cl) the
following SAT instance: X = V and Cl =

∧
x∈V (

∨
y∈N(x) y)

∧
ab∈C(ā ∨ b̄). Each vertex has at most 2

neighbors hence we obtain a 2-SAT instance.
Let A be an assignment on X satisfying Cl. Then S = {x | x = 1} is without conflicts in C since for

each conflict ab the clause ā ∨ b̄ exists. Moreover, for each x ∈ V , the clause
∨
y∈N(x) y exists, hence x is

dominated by one of its neighbors. Thus S is a TDSwnC.
Let S be a TDSwnC of (G,C). Construct A an assignment on X as follows: x is set to 1 if x ∈ S, x is

set to 0 otherwise. For each clause c, there exists a vertex of V which can only be dominated by vertices
representing literals of the clause. One of these vertices belongs to S, thus the clause is satisfied. For each
clause ā ∨ b̄, there exists a conflict ab, thus at most one vertex belongs to S, hence the clause is satisfied.
Thus A satisfies Cl.

3 Connected Vertex Cover

Given (G,C) where G = (V,E), a connected vertex cover with no conflicts (CVCwnC) is a subset of vertices
S ⊆ V such that:

- for each xy ∈ E, x ∈ S or y ∈ S
- for each xy ∈ C, x /∈ S or y /∈ S
- G[S] is connected.

Theorem 4. Given (G,C) a graph with conflicts, deciding whether there exists a CVCwnC is NP-complete
even if G is a bipartite graph of maximum degree 4 and C is a graph of maximum degree 1 of stretch exactly
2.
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Figure 6: Graph equivalent to the 3-SAT formula (a∨ b̄∨ c)∧ (a∨ b∨ d̄). The dashed edges denote conflicts.

Proof. Let (X,Cl) be a 3-SAT instance where each variable is in at most 4 clauses. Construct (G,C) an
instance of CVCwnC as follows: for each variable α, vertices α, ᾱ and rα are created, along with the edges
αrα and ᾱrα and the conflict αᾱ. Vertices rα are connected by intermediate vertices ri. For each clause
ci = (a ∨ b ∨ c), vertices ci and c′i are created, along with the edges cic

′
i, cia, cib, cic. Thus G is bipartite

of maximum degree 4 and conflicts are a graph of maximum degree 1 of stretch exactly 2. An example is
shown in Figure 6.

Let A be an assignment on X satisfying Cl. Let S be the set of vertices corresponding to the positive
literals of A. Vertices rα and ri and ci are also added to S. Thus S is a vertex cover. Moreover, it is
without conflicts since a literal and its negation cannot be set to 1 simultaneously. Vertices rα, ri and
vertices corresponding to literals are connected, and for each clause ci = (a ∨ b ∨ c), a, b or c belong to S,
thus ci is connected.

Let S be a CVCwnC of (G,C). Literals corresponding to vertices of S are set to 1, other variables are
set to 0. Since conflicts exist between each literal and its negation, we obtain an assignment. Moreover,
vertices ci necessarily belong to S, and each needs to be connected by a vertex corresponding to a literal of
the associated clause. Thus, each clause is satisfied.

Let us point out two graph classes in which deciding the existence of a CVCwnC can be done in polynomial
time.

Remark 1. Deciding the existence of CVCwnC is polynomial in trees. There exists a unique Connected
Vertex Cover minimal for inclusion, the set of internal vertices of the tree: it is sufficient to test if it is
without conflicts.

Theorem 5. Given (G,C) a graph with conflicts, deciding whether there exists a CVCwnC can be done in
polynomial time if G is a split graph.

Proof. Let G = (V,E) be a split graph where V = K ∪ I where K is a clique and I is an independent set
and C the conflict graph.

- If K is without conflicts, then K is a CVCwnC of (G,C).
- If C[K] is a star of center a, then if S = (K − a) ∪NG(a) is without conflicts, S is a CVCwnC. (Two

possibilities for the center a if the star is an edge). If (K − a) ∪NG(a) has a conflict, then (G,C) does not
have a CVCwnC.

- If C[K] is not a star, then at least 2 vertices a and b of K cannot be in the solution: the edge ab will
not be covered and thus there is no CVCwnC.

In Theorem 4 we proved NP-completeness for bipartite graphs. We are now interested in dense graphs,
and prove NP-completeness for dense graphs.

Theorem 6. For all ε > 0, given (G,C) a graph with conflicts, deciding whether there exists a CVCwnC is
NP-complete even if G is of minimum degree (1/2− ε)n.
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Figure 7: Construction of the dense graph. Dotted lines represent complete bipartites between subsets of
vertices.

Proof. Let (X,Cl) be a 3-SAT instance of m clauses over n variables. Construct (G,C) an instance of
CVCwnC as follows. Let d be the least integer greater than (m + 2n)/2ε. For each variable x ∈ X create
the vertices x, x̄. For each clause ci create vertex ci. Let GX be the set of vertices representing literals. The
graph GX has 2n vertices. Let GCl be the set of m vertices representing clauses. Construct GK a clique of
size d and GI an independent set of size d. Add edges such that each vertex of GK is connected to each
vetex of GX , each vertex of GCl is connected to each vertex of GI and each vertex of GK is connected to
each vertex of GI . For each clause ci = (a ∨ b ∨ d) edges cia, cib, cid are created. Construct C as follow.
Each pair {x, x̄} is in conflict. Each vertex of GI is in conflict with all the other vertices of G. We present
a scheme of the support graph used in the reduction in Figure 7. To ensure readability, conflicts are not
represented.

The graph G has m+ 2n+ 2d vertices and d ≥ (m+ 2n)/2ε. Because of the complete bipartite graphs,
vertices of GX , GCl, GI and GK have degree at least d. It can be derived by basic arithmetic on inequalities
that d > (1/2− ε)(m+ 2n+ 2d), hence the graph satisfies the assumption of the theorem.

Let A be an assignment on X satisfying Cl, and let A1 be the set of positive literals of A. Set VC =
A1 ∪GK ∪GCl. The set VC does not contain simultaneously vertices representing a literal and its negation,
neither vertices of GI , thus it is a set without conflicts in C. Edges between GK and GX , GCl and GI , GK
and GI , GX and GCl are covered. Thus VC is a vertex cover of G. Vertices of GK and GX are connected.
Moreover, for each vertex ci ∈ Cl there exists a vertex x of A1 corresponding to a positive literal of ci. Thus
VC is connected.

Let VC be a CVCwnC of (G,C). Let A be the following assignment: for each literal x, if x is represented
by a vertex of VC, then x = 1, otherwise, x = 0. The set VC is not reduced to a single vertex, hence VC
cannot contain vertices of GI because of conflicts between GI and all the vertices. The set VC must contain
the neighborhood of GI : GCl ∪GK . Moreover, each vertex of GCl must be connected to GK . It can only be
done via vertices of GX . For each vertex representing a clause (a ∨ b ∨ c) there exists a vertex representing
one of its literals in VC. Hence, A satisfies Cl. Moreover, a vertex representing a variable and a vertex
representing its negation cannot be set to 1 simultaneously, thus the assignment is consistent.

4 Steiner tree

A Steiner tree of (G = (V,E),M) where M ⊆ V is a subtree of G that includes all the vertices of M .

8



Figure 8: Graph equivalent to the 3-SAT formula (a ∨ b̄ ∨ c) ∧ (a ∨ b ∨ d̄). Vertices of M are squares. The
dashed edges denote conflicts.

Given (G,M,C) where G = (V,E) and M ⊆ V , a Steiner Tree without conflicts (STwnC) is a subset of
vertices S ⊆ V such that :

- for each xy ∈ C, x /∈ S or y /∈ S
- M ⊆ S
- G[S] is connected.
If G[S] is connected and without conflicts, it is easy to extract a covering tree of S, hence we are interested

only in the set of vertices of the tree.
First, we prove NP-completeness when the conflicts are local.

Theorem 7. Given (G,M,C) a graph with conflicts and a subset of vertices, deciding whether there exists
a STwnC is NP-complete even if G is a bipartite graph of maximum degree 4 and C a graph of maximum
degree 1 and of stretch exactly 2.

Proof. Let (X,Cl) be a 3-SAT instance where each variable is in at most 4 clauses. Suppose without loss of
generality that each literal is in at most 3 clauses. Construct (G,M,C) an instance of STwnC as follows:
for each variable α vertices α, ᾱ and rα are created, along with the edges αrα and rαᾱ and the conflict
αᾱ. Vertices rα are connected by intermediate vertices mi. For each clause ci = (a ∨ b ∨ c), a vertex ci is
created along with the edges cia, cib, cic. The graph is of maximum degree 4, and the conflict graph is a
graph of maximum degree 1 and of stretch exactly 2. The set M is composed of all the vertices mi and ci.
An example is shown in Figure 8.

Let A be an assignment on X satisfying Cl. Set S = M
⋃
α{rα} ∪ P where P is the set of vertices

representing positive literals of A. Since a variable cannot be set to one simultaneously with its negation, S
is without conflicts. Vertices mi and rα are connected. Moreover, for each vertex ci, there exists a clause
ci in which one of the literals is set to 1 in A, thus ci is connected to the other vertices of S. Thus, S is
connected in G.

Let S be a STwnC of (G,M,C). The value of literals of X which vertices are in S is set to 1. Since
conflicts exist between variables and their negation, we obtain an assignment. Moreover, for each vertex ci
representing a clause a ∨ b ∨ c, one of the vertices a, b, c must belong to S to ensure connectivity with mj

vertices of M , hence the clause is satisfied.

The next theorems are NP-completeness results for more restricted class of support graph, but the
conflicts are no longer local (i.e. stretch is not bounded).

Theorem 8. Given (G,M,C) a graph with conflicts and a subset of vertices, deciding whether there exists
a STwnC is NP-complete even if G is a planar bipartite graph of maximum degree 3 and C a graph of
maximum degree 1.

Proof. Let (X,Cl) be a 3-SAT instance where each variable is in at most 4 clauses. Construct (G,M,C) an
instance of STwnC where G is a planar bipartite graph of maximum degree 3 and C a graph of maximum
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Figure 9: Graph equivalent to the 3-SAT formula (a ∨ b ∨ c) ∧ (ā ∨ b ∨ c̄) ∧ (ā ∨ b ∨ c̄) ∧ (ā ∨ b ∨ c). Vertices
of M are squares. In the black rectangle, gadget corresponding to the clause (ā ∨ b ∨ c̄). The dashed edges
denote conflicts.

degree 1 such that there exists an assignment on X satisfying Cl if and only if there exists a STwnC of
(G,M,C).

For each clause, create a gadget of 15 vertices composed of 3 non-disjoint paths having the same extrem-
ities, each corresponding to a literal. One can see this gadget in Figure 9. These gadgets are connected
linearly, and the set M , composed of only two vertices, is the first vertex of the first gadget and the last
vertex of the last gadget. For each pair of literals {x, x̄}, add a conflict between a vertex with no conflicts
of the path representing x and a vertex with no conflicts of the path representing x̄. The graph is planar
bipartite of maximum degree 3 and the conflict graph is of maximum degree 1.

Let A be an assignment on X satisfying Cl. Construct S a subset of G as follows. For each gadget
representing a clause (a ∨ b ∨ c), choose in S a path representing a positive literal. Each gadget is passed
through, hence vertices of M are connected. The set S is the path of vertices connecting the two vertices
of M . Moreover, this path does not pass through path representing variable and their negation, hence it is
without conflicts.

Let S be a STwnC of (G,M,C). Suppose without loss of generality that S is minimal for inclusion
(otherwise, it can be minimalized). Construct A an assignment on X satisfying Cl as follows: for each
gadget representing a clause (a ∨ b ∨ c), S contains a path representing one of its literals. This one is set to
1 in A. Since there exist conflicts between paths representing variable and their negation, the assignment A
is consistent. Moreover, for each clause, a literal is set to 1 hence A satisfies Cl.

Theorem 9. Given (G,M,C) a graph with conflicts and a subset of vertices, deciding whether there exists
a STwnC is NP-complete even if G is a planar chordal graph of maximum degree 4 and C a disjoint union
of complete bipartite graphs of at most 4 vertices.

Proof. Let (X,Cl) be a 3-SAT instance where each variable is in at most 4 clauses. Construct (G,M,C) the
following instance of STwnC. For each clause ci = (a ∨ b ∨ c), vertices ci, c

′
i, a, b, c,mi and edges c′ici,cia,cib,

cic, ab, ac, ami, bmi, bc, cmi are created. The set M is the set of all vertices mi and c′i. Vertices c′i are
connected to form a path. For each pair of vertices {α, ᾱ} representing a literal and its negation, the conflict
αᾱ is created. The graph is chordal planar of maximum degree 4, and the conflict graph is an union of
complete bipartite graphs of at most 4 vertices. An example is shown in Figure 10.

Let A be an assignment on X satisfying Cl. Construct S = M
⋃
i{ci} ∪ P where P is the set of vertices

representing positive literals of A. Then
⋃
i{ci}

⋃
i{c′i} is connected. Moreover, for each clause ci, a vertex

x corresponding to a positive literal belongs to S. Hence, the vertex mi is connected and S is connected in
G. Moreover, conflicts are only between variables and their negation, which can not be simultaneously set
to 1 in A. Thus, S is without conflicts.

Let S be a STwnC of (G,M,C). Literals corresponding to vertices of S are set to 1, the other variables are
set to 0. Since there exist conflicts between vertices representing variables and their negation, we obtain an
assignment. Moreover, each vertex mi must be connected to the other vertices of S by a vertex representing
a literal of the associated clause, which is satisfied.

Remark 2. Deciding the existence of a STwnC is polynomial in trees. There exists an unique Steiner tree
minimal for inclusion, hence it is sufficient to test if it is without conflicts.
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Figure 10: Graph equivalent to the 3-SAT formula (a ∨ b ∨ c) ∧ (a ∨ b̄ ∨ c̄) ∧ (ā ∨ b ∨ c). Vertices of M are
squares. The dashed edges denote conflicts.

Figure 11: Graph equivalent to the 3-SAT formula (a ∨ c̄ ∨ b) ∧ (ā ∨ b ∨ c̄). Vertices of M are squares. The
dashed edges denote conflicts.

Theorem 10. Given (G,M,C) a graph with conflicts and a subset of vertices, deciding whether there exists
a STwnC is NP-complete even if G is a split graph and C a graph of maximum degree 1 and of stretch 1.

Proof. Let (X,Cl) be a 3-SAT instance. Suppose without loss of generality that Cl contain several clauses.
Create (G = (K, I,E),M,C) an instance of STwnC as follows. Each literal becomes a vertex of K and each
clause a vertex of I. Conflicts are added between variable and their negations, and edges between clauses
and their literals. The graph is a split graph, and the conflict graph is a graph of maximum degree 1 and of
stretch 1. Set M = I. An example is shown in Figure 11.

Let A be an assignment on X satisfying Cl. Construct S = I ∪ P where P is the set of vertices
corresponding to positive literals of A. Since a literal and its negation cannot both be set to 1, S is without
conflicts. Moreover, for each ci ∈ I, the associated clause is satisfied, thus there exists a neighbor in K ∩ S.
Hence, each vertex of I is connected to K ∩ S and since K is a clique, S is connected.

Let S be a STwnC of (G = (K, I,E),M,C). The value of literals corresponding to vertices of S is set to
1, and the value 0 is set to other variables. Since there exist conflicts between vertices representing literals
and vertices representing their negation, we have an assignment. Moreover, each vertex ci must be connected
to K by a vertex representing a literal of the associated clause, thus the clause is satisfied.

Previous theorems proved NP-completeness for sparse (or split) support and conflict graphs. We now
prove that the problem remains NP-complete in a class of dense graphs: Dirac graphs (which are graphs of
minimum degree n/2).
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Theorem 11. Given (G,M,C) a graph with conflicts and a subset of vertices, deciding whether there exists
a STwnC is NP-complete even if G is a Dirac graph and C a disjoint union of P1, P2 and P3.

Proof. Let (G1 = (V1, E1),M1, C1) be an instance of STwnC where C1 is a graph of maximum degree 1. This
problem is NP-complete from Theorem 7. Construct (G2 = (V2, E2),M2, C2) a graph with conflicts such
that there exists a STwnC of (G2,M2, C2) if and only if there exists a STwnC of (G1,M1, C1). Let n = |V1|.
Set V2 = V1 ∪ A ∪ B where A is a path of length n and B an independent set of size 2n. M2 = M1 ∪ A.
A is connected to an arbitrary vertex of M1. A complete bipartite graph is added between B and V2 − B.
Conflicts of C1 are added to C2. Moreover, each vertex of A is in conflict with 2 distinct vertices of B. By
construction, G2 is a Dirac graph and C2 a disjoint union of P1, P2 and P3.

Let T1 be a STwnC of G1. Then T2 = T1 ∪A is a STwnC of G2.
Suppose there exists T2 a STwnC of (G2,M2, C2). Then T2 ∩ B = ∅. Moreover, vertices of A do not

connect vertices of V1. Hence, T1 = T2 −A is a STwnC of (G1,M1, C1).

Theorem 12. Given (G,M,C) a graph with conflicts and a subset of vertices, deciding whether there exists
a STwnC is NP-complete even if G is a Dirac and C a Dirac graph.

Proof. Let (G1 = (V1, E1),M1, C1) be an instance of STwnC. Construct (G2 = (V2, E2),M2, C2) a Dirac
graph with conflicts such that there exists a STwnC of (G2,M2, C2) if and only if there exists a STwnC of
(G1,M1, C1). Let n = |V1|. Set V2 = V1 ∪A where A is an independent set of size n. M2 = M1. A complete
bipartite graph is created between V1 and A. Conflicts of C1 exist in C2. Moreover, each vertex of A is in
conflict with all vertices of V1. By construction, G2 and C2 are Dirac graphs.

Let T be a STwnC of (G1,M1, C1). Thus it is a STwnC of G2.
Suppose that there exists T a STwnC of (G2,M2, C2). Then T ∩ A = ∅. Hence, T is a STwnC of

(G1,M1, C1).

5 Conclusion

Our paper strengthens the results of [4] for CVCwnC and STwnC, by proving NP-completeness of deciding
their existence in smaller graph classes. More exactly, we proved that these problems remain NP-complete
for some classes of sparse graphs. For STwnC, we proved that the problem is also NP-complete in dense
graphs. We also extended the notion of conflicts to a new problem. We proved NP-completeness of deciding
the existence of a TDSwnC in a very sparse graph class: caterpillars of maximum degree 3. Moreover, we
proved that this result is in some way the strongest possible since the problem becomes polynomial in graph
of maximum degree 2. Furthermore, we proved that all these problems are NP-complete even when the
stretch of the conflicts is two at most, i.e. when the conflicts are local.

A natural extension of this work would be to work on the complexity of CVCwnC and TDSwnC in dense
graphs, and the complexity of CVCwnC in other classes of sparse graphs, for example planar graphs. It
would also be interesting to study other graphs problems with conflicts.
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