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Abstract 

The equilibrium configuration of compound sessile drops has been calculated previously in the 

absence of gravity. Using the Laplace equations, we establish seven dimensionless parameters 

describing the axisymmetric configuration in the presence of gravity. The equilibrium 

axisymmetric configuration can be either stable or unstable depending on the fluid properties. A 

stability criterion is established by calculating forces on a perturbed Laplacian shape. In the zero 

Bond number limit, the stability criterion depends on the density ratio, two ratios of interfacial 

tensions, the volume ratio of the two drops, and the contact angle. We use Surface Evolver to 

examine the stability of compound sessile drops at small and large Bond numbers and compare 

with the zero Bond number approximation. Experimentally, we realize a stable axisymmetric 

compound sessile drop in air, where the buoyancy force exerted by the air is negligible. Finally, 
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using a pair of fluids in which the density ratio can be tuned nearly independently of the interfacial 

tensions, the stability transition is verified for the axisymmetric configuration. Even though the 

perturbations are different for the theory, simulations and experiments, both simulations and 

experiments agree closely with the zero Bond number approximation, exhibiting a small 

discrepancy at large Bond number.  
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Introduction 

Surface tension plays a key role in the flotation mechanism of very small objects at liquid 

interfaces1–3, especially for dense objects floating on a less dense fluid phase. The mechanical 

equilibrium of solid particles at a gas/liquid interface has been analyzed comprehensively using a 

variational approach4.While the configuration of solid particles at a gas/liquid interface is 

determined by Young’s contact angle, the configuration of a sessile drop at a liquid/liquid interface 

is determined by Neumann’s triangle5–7 which says that the net force per unit length between the 

three phases must be zero. While dense solid objects have been observed to float on liquids1–3, 

relatively few observations have been reported of dense drops floating on a lighter liquid. Phan et 

al8, 9 reported that dense drops can float on less dense fluids for two water-oil fluid pairs through 

the distortion of the fluid interface.  

Reducing the lower fluid phase from an infinite reservoir to a finite-sized drop breaks the 

translational symmetry, resulting in a different geometry of the compound sessile drop10–12. The 



configuration becomes that of two immiscible drops in contact with one another, on top of a solid 

substrate, and submerged in an ambient external fluid phase such as air or another fluid. The lower 

liquid phase contacts the solid substrate with a fixed static contact angle, while the shapes of the 

three fluid interfaces formed by contact between each fluid pair are determined by Neumann’s 

triangle and the Laplace equations balancing surface tension and gravity. Here we examine the 

stability of the equilibrium configuration in which the upper drop is centered at the apex of the 

lower drop and both drops achieve axisymmetric shapes. 

For the compound sessile drop geometry, a stable configuration has not been observed before 

if both drops are more dense than the ambient phase. Previous reports have established a stable 

configuration utilizing the buoyancy force induced by the ambient phase. Neeson et al12 

experimentally realized a compound sessile drop consisting of a tetradecane lens on a 

perfluorooctane drop in contact with a hydrophobic glass substrate under water. Tetradecane is less 

dense than the ambient water phase. More generally, it is not known whether fluids that are more 

dense than the ambient phase (e.g. air) can assume a stable axisymmetric configuration. In the 

present paper, we report an experimental realization of a stable axisymmetric compound sessile 

drop of two immiscible liquids in air. By systematically varying the fluid properties, we observe 

the transition from a stable configuration to an unstable configuration. 

Figure 1 shows two typical experimental configurations that result from manually depositing 

one smaller drop (2 µL) on the top of a large sessile drop (50µL). In the two cases shown, the 

surface and interfacial tensions are very similar but the density ratios are different. Figure 1a shows 

an axisymmetric configuration that is stable against small perturbations from the apex position. 



The ratio of the density of the upper drop to the density of the lower drop is 0.859. The 

fluid pair is obtained by mixing 22% CsCl in water with benzyl alcohol, and allowing the slightly 

immiscible system to phase separate into a water-rich phase and a benzyl alcohol rich phase. Video 

1 of the Supplementary Materials shows the restoration of the top drop to the axisymmetric 

position after the top drop is released from a perturbed position. Figure 1b shows the Janus-like 

configuration of the two drops side by side, where both are in contact with the solid substrate. In 

this case, the two liquid phases are obtained from the phase separated mixture of 10% CsCl in 

water which achieves a density ratio of 0.955. Video 2 of the Supplementary Materials shows that 

the axisymmetric configuration is not stable: once the top drop is deposited at the center, it 

immediately slides off to the side.  

The fundamentally different compound sessile drop configurations shown in Figure 1 inspire 

 
Figure 1. (a) Stable axisymmetric configuration using two liquid phases obtained from a phase 
separated mixure of aqueous 22% CsCl solution with benzyl alcohol, density ratio 0.859. The 
stability of the configuration subject to perturbations can be seen in Supplementary Information 
Video 1. (b) Janus shape of compound sessile drop using two liquid phases obtained from a 
phase separated mixture of aqueous 10% CsCl solution with benzyl alcohol, density ratio 0.955. 
More detail on the fluid properties can be found in the experimental section. The evolution from 
the unstable axisymmetric configuration to the Janus shape can be viewed in Supplementary 
Information Video 2.  



us to examine the stability criterion for the axisymmetric equilibrium shape, as a function of the 

interfacial tensions and other physical properties. In the following sections we identify the physical 

conditions needed to obtain an immiscible drop stably situated at the apex of a second sessile drop. 

Compound sessile drops can achieve more possible configurations than isolated compound 

drops found in multiple drop processes13, 14 as a result of the added solid surface. The axisymmetric 

configuration and the Janus configuration are two of the possibilities10–12, 15. The equilibrium shape 

of the Janus configuration has been found previously using phase field simulations that incorporate 

the wetting properties15. Equilibrium axisymmetric shapes have been examined in the absence of 

gravity11, 12. 

More generally, the shapes of the interfaces in compound sessile drops are determined by the 

balance of surface tension and gravity, which can be assessed by the magnitude of the Bond number, 

defined as 3/2/ ( / )gBd V g rD= , where rD is the density difference between the liquid in the drop 

of interest and the ambient fluid, V is the volume of the drop and γ is the interfacial tension between 

the drop and the ambient phase. Each component of the compound drop will have a different 

balance of these forces, assessed by the relevant Bond number for each component. In the limit of 

small Bond number, the shape deviation due to gravity is negligible, and the interface shape can 

be approximated as a spherical cap. This approximation permits analytical solutions to the 

compound drop configuration16, 17. 

In the present paper we consider the stability of the axisymmetric configuration consisting of 

a drop sitting at the apex of a second sessile drop in contact with a solid substrate (Figure 1a). 

Using the Laplace equations, we first determine the dimensionless parameters governing the 



equilibrium shape of the compound sessile drop. Incorporating the force due to gravity in the zero 

Bond number limit, corresponding to small size drops in which gravity is still present, the stability 

criterion distinguishing between an energy minimum or maximum is determined. We use Surface 

Evolver18–20 to simulate fluid systems at small and intermediate Bond numbers and compare the 

observed stability conditions with the zero Bond number stability criterion. In these cases stability 

is determined based on the minimization of Gibbs free energy. Finally, we select several 

experimental fluid systems with small and large interfacial tension to demonstrate both stable and 

unstable axisymmetric configurations.  

Theoretical Considerations 

1. Governing parameters for axisymmetric configurations 

As illustrated by Berthier et al. using the Steiner symmetrization process21, rotationally 

symmetric configurations of drops or fluid surfaces tend to have lower energy than arbitrary 

shapes20. Even though Steiner symmetrization itself does not produce the minimum energy 

configuration, it shows that the minimum energy state must be rotationally symmetric20. However, 

Steiner symmetrization does not indicate whether the rotationally symmetric state is an energy 

minimum or energy maximum. This motivates us to ask whether the axisymmetric compound 

sessile drop configuration shown schematically in Figure 2 is an energy maximum or minimum. 

The lower drop, which is in direct contact with the solid substrate, is denoted as Drop 1 while the 

upper drop is denoted as Drop 2. The ambient phase can be either air or another fluid phase. The 

center of the basal plane of the drop is taken as the origin of the coordinate system and the 

downward vertical direction is defined to be positive. The densities of the three fluid 



phases are denoted as ρ1, ρ2 and ρA, respectively. The distance from the basal plane to the phase 

boundary between the ambient phase and Drop 1 is denoted as h1; of the distance to the boundary 

between Drop 2 and the ambient phase is denoted by h2; and h12 denotes the distance to the 

boundary between Drop 1 and Drop 2. 

Following the derivation of Pujado and Scriven5 outlined for an equilibrium sessile lens 

between two other infinite fluid phases, the three phase boundaries for the compound sessile drop 

each satisfy the Laplace equation: 
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Figure 2. Schematic diagram of axisymmetric compound sessile drop. The lower drop 
denoted Drop 1 is in direct contact with the solid substrate. The upper drop is denoted as Drop 
2. The ambient fluid can be either air or another fluid with density ρA.  
 



where 0
1k , 0

2k  and 0
12k  represent the curvature of the interfaces (or extended interfaces) on the 

symmetry axis at 0
1h , 0

2h  and 0
12h , the height of each interface along the symmetry axis; 1ArD , 

2ArD , and 12rD represent the density differences of the phases; and 1Ag , 2Ag , and 12g  are the 

three interfacial tensions between the three fluid phases. 

The three fluid phase contact line must satisfy the Neumann’s triangle condition at x = r*, 
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where the angle 12q  is the angle formed by the interfaces h1 and h2, and 112q  is the angle formed 

by the interfaces h1 and h12.  

Additionally, the three Laplace equations given in Eq. (1) are subject to the boundary 

conditions, 
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1 1 1 1 2 2 2 2 12 12 12 12A A A Agh gh ghr g k r g k r g k- = - -D+D D . (3b) 

Here, Eq. (3a) represents three geometric relationships: the symmetry condition about the central 

axis, contact of the interfaces at the three phase fluid contact line, and the contact angle condition 

at the solid substrate, respectively. Eq. (3b) constrains the sum of the pressure jumps across each 

interface to be zero around a closed path to maintain hydrostatic equilibrium5. Note that the 

Laplace equations (Eq.(1)) and boundary conditions (Eq.(3)) only depend on the density 

differences and the pressure jump due to curvature. This suggests that the ambient density Ar  and 



the ambient pressure P0, can be treated as reference quantities, and the system can be taken to have 

zero ambient pressure, zero ambient density, and the reduced densities 1 Ar r-  and 2 Ar r-  for 

Drop 1 and Drop 2 respectively. 

The three Laplace equations can be nondimensionalized using a single capillary length

1/2
1 1 1( / )A A Aa gg r= D corresponding to the lower drop. The shape of the compound sessile drop is 

governed by seven dimensionless parameters, following a similar derivation to that of Pujado and 

Scriven5 for the shape of a sessile lens resting on a bulk fluid phase. Scaled by the lower drop 

capillary length, the seven dimensionless parameters are: two ratios of interfacial tensions 12 1/ Ag g

and 2 1/A Ag g ; two ratios of capillary lengths 2 1/A Aa a and 12 1/ Aa a ; the contact angle on the solid 

substrate a ; the Bond number of Drop 1 1
3/2

1 1 1/ ( / )A AgBd V g rD= ; and the volume ratio of the 

two drops 12 /V V . Note that the definition of the Bond number provided above is in terms of 

volume while other definitions22, 23 are given in terms of a squared characteristic length scale. 

These definitions are equivalent to within a 3/2 power. 

The differential equations given in Eqs.(1) and (3) do not have a closed-form solution. 

Furthermore, since the shape of the compound sessile drop is governed by seven parameters, it is 

difficult for numerical solutions to provide systematic physical insight. Thus, we consider the zero 

Bond number limit to reduce the number of governing parameters and gain insight into the stability 

of the axisymmetric configuration. In the zero Bond number limit, the parameters governing the 

shape reduce to four dimensionless parameters: 12 1/ Ag g , 2 1/A Ag g , 12 /V V and a . We further 

consider cases with fixed contact angle a , further reducing the parameter space to three 

governing dimensionless parameters. 



2. Stability criterion in the zero Bond number limit 

For a single axisymmetric sessile drop at small Bond number, the asymptotic solution to the 

Laplace equation (Eq. (1)) can be approximated by a spherical cap with first order error in the 

Bond number24–26. The equilibrium profile of the compound sessile drop in the absence of gravity 

was solved by Mahadevan et al11 and by Neeson et al12 independently, with similar approximations 

applied in the earlier work of Torza and Mason16. As pointed out by Mahadevan et al, the stability 

of the axisymmetric configuration to finite perturbation (first order perturbation) is a more 

complicated question11. Even in the stability analysis of the simple cases of one sessile27, 28 or 

pendant drop29, 30 in contact with a solid surface, difficulty arises because the perturbed shape can 

be any generic function, not necessarily restricted to the family of Laplacian shapes; i.e., 

perturbation analysis for liquid drops lies in the mathematical formulation of functional analysis, 

beyond the traditionally better understood realm of energy minimization based on convex 

analysis31. Because of this difficulty, we limit the stability analysis presented here to the subset of 

Laplacian drop shapes. In contrast to the typical stability analysis for mechanical equilibrium based 

on the second derivative of the potential energy at the extremum (or the first derivative of a 

conservative force)32, 33, we directly calculate the force on the top drop when it is perturbed away 

from the axisymmetric position while the bottom drop is constrained to be of Laplacian shape.  

Consider the configuration of a compound sessile drop shown in Figure 3a where the top drop 

(Drop 2 of Laplacian shape) is perturbed from the axisymmetric position by an angle β, while the 

bottom drop (Drop 1) is of continuous Laplacian shape. The extension of the surface of 



Drop 1 shown by the dashed line and the interface between Drop 1 and Drop 2 (h12) encloses a 

shaded region denoted S, with volume denoted VS as shown in Figure 3a. The forces exerted on 

Drop 2 (enclosed by h12 and h2) include the gravitational force and the forces exerted by Drop 1 

through contact, i.e., the pressure force and the surface tension force. The total force exerted 

through contact will be calculated by constructing an identical Laplacian shape of a single sessile 

drop.  

Figure 3b shows a single sessile drop denoted Drop B, which has the identical shape to Drop 

1 including the continuation of the surface of Drop 1; thus, the volume of Drop B is equal to the 

sum of volumes of Drop 1 and the shaded volume, 1B SV V V= + . In Drop B, the dashed line h12B  

shown in Figure 3b is identical to the interface h12 (in Figure 3a) to create the identical shaded 

volume region S in this single sessile drop case. Since both Drop 1 and Drop B have the same 

Laplacian shape, pressure fields along the interfaces h12 and h12B are identical, and the surface 

 
Figure 3. (a) Top drop ( Drop 2) offset from the axisymmetric position. Bottom drop (Drop 1) 
shape is constrained to a Laplacian shape. The net force exerted on the top drop can be 
calculated to determine the stability of the axisymmetric equilibrium shape. Shaded region S 
has volume VS. (b) One sessile drop on top of a solid surface with the same shape as Drop 1 in 
(a). The dashed line h12B  is drawn to be identical to the interface h12, and the shaded region 
SB also has volume VS. 



tension forces along the three phase contact line (the intersection line of h1 and h12 and the 

intersection line of h1B and h12B) are also identical in the two different configurations. Therefore 

the force exerted on Drop 2 through contact in the compound drop case is identical to the force 

exerted on the shaded region SB (Figure 3b) through contact in the single drop case: 

2, ,Bcontact S contactF F= .  

The force exerted on the shaded region through contact in the single drop case can be derived 

based on the properties of Laplacian shapes. Within a drop of Laplacian shape, fluid is in 

hydrostatic equilibrium23, 34, i.e., any material body drawn experiences zero net force. The net force 

on the material body of the shaded region in Figure 3b is the sum of the gravitational force and the 

force through contact: , , 0
B B BSS net S contactG FF = + = . Thus, the force through contact is of the same 

magnitude as the weight of shaded region SB, but with opposite sign , 1 ˆ
B BS contact S SgG zF Vr= - = - . 

The net force exerted on Drop 2 can be obtained by 

 2, 2 2

2

, 2 ,

2 1 ˆ( )
Bnet con

S

tact S contactF G F G

g

F

V gV zr r

= + = +

= -
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where V2 is the volume of Drop 2. This equation shows that the net force exerted on Drop 2 

contains only a vertical component. There is no closed form expression for an arbitrary 

Laplacian shape enclosing the volumes of Drop 2 and the shaded region S (V2 and VS). To obtain 

an analytical expression, calculations are performed in the zero Bond number limit for both Drop 

1 and Drop 2. In the zero Bond number limit, where the drop is much smaller than the capillary 

length, but gravity is still present, the shape is well approximated by a spherical cap to first order 

accuracy in Bond number26. 



In the zero Bond limit the volume of Drop 2 is the sum of two spherical caps with basal angles 

d  and 112 122p q q d-- - as shown in Figure 3a,  

1
3

1 2
3

2 1 2( ) (2 )V q R q Rd p q q d+ -= - - , 

where 3 3( ) (2 3cos( ) co ))cscs (( ) / 3q q q q q p= - +  is a function representing the volume of a 

spherical cap with basal angle θ and unit basal radius; R is the basal radius of the spherical cap, 

and δ is the angle between the base of the spherical cap and the interface between Drop 1 and Drop 

2 as shown in Figure 3a. The angles 12q  and 112q  are the Neumann’s angles introduced in Figure 

2, also shown in Figure 3a. In the zero Bond number limit, the angle δ is determined based on 

geometric relationships to be a function of the volume ratio and the ratios of interfacial tensions16. 

The volume VS of the shaded region S is calculated similarly as the combination of two spherical 

caps with basal angles d and 12p q d- - : 

3 3
12( ) ( )sV q R q Rp q d d+-= - . 

Thus the net force exerted on the top drop (Eq.(4)) is given by: 

 3
2, 112 12 12 12[ ( ) (2 )] [ ( ) ( )] ˆ{ }net q q g q qF R g zr d p q q d r p q d d+ - -- += - - - , (5) 

Setting the net force equal to zero gives a critical condition for the density ratio: 
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Since angles 12q  and angle 112q  are the Neumann’s angles determined by ratios of interfacial 

tensions and angle d depends on the volume ratio and contact angle through geometric 

relationships16, the critical density ratio is then dependent on volume ratio, two interfacial tension 

ratios, and the contact angle at the solid surface. 



A net upward force on Drop 2 restores it to the axisymmetric position, producing an energy 

minimum or a stable axisymmetric equilibrium configuration. When the density ratio is less than 

the critical value given in Eq. (6), the axisymmetric configuration is stable. A net downward force 

on Drop 2 causes it to slide further away from the axisymmetric position, producing an energy 

maximum or an unstable axisymmetric equilibrium configuration. Thus when the density ratio is 

greater than the critical density ratio, the axisymmetric configuration is unstable. In the following 

sections, we will use simulations and experiments to verify the stability conditions.  

The derivation of the net force on Drop 2 does not depend on the value of β, the angle by 

which Drop 2 is perturbed from the axisymmetric position. Therefore for compound sessile drops 

of Laplacian shapes in the zero Bond number limit, if the density ratio is not equal to the critical 

value, then there will be no equilibrium configuration other than the axisymmetric configuration. 

In this case the axisymmetric configuration is a unique extremum which is either a global minimum 

or a global maximum. At the energy maximum, any finite perturbations will cause Drop 2 to fall 

away from the apex. At the energy minimum, any finite perturbations that do not cause Drop 2 to 

touch the solid surface will restore it to the axisymmetric configuration. 

The stability criterion (Eq. (6)) in the zero Bond number limit depends on the volume ratio of 

the two drops 12 /V V , two interfacial tension ratios 2 1/A Ag g  and 12 1/ Ag g , and the contact angle 

α implicitly as described earlier. Figure 4 shows the dependence of the critical density ratio on the 

interfacial tension ratios with fixed volume ratio 12 / 0.2V V = , and fixed contact angle 90a = °  

as an example. Each curve represents the critical density ratio as a function of the ratio 



12 1 2) /( A Ag g g-  for fixed ratio 2 1/A Ag g . Since the three phase contact line between Drop 1, Drop 

2 and the ambient phase must obey the Neumann condition, the allowed range of 12 1/ Ag g  values 

is different for each 2 1/A Ag g  value, but the allowed values of 12 1 2) /( A Ag g g-  lie between (-1, 1) 

for any given surface tension ratio 2 1/A Ag g . For a fixed surface tension ratio 2 1/A Ag g , the critical 

 
Figure 4. Critical density ratio as a function of surface and interfacial tensions. Legend 
denotes the ratio of the top surface tension divided by the bottom surface tension. (a),(b), and 
(c) indicate the configurations of spherical cap shapes with Neumann’s angles calculated for 
the corresponding interfacial tensions. ( (a) , (b) , (c) . 
For (a), (b) and (c), the value  is kept constant. The configuration for 
(d) is obtained for dewetting drops with  and . 



density ratio is a monotonically decreasing function of the ratio of interfacial tensions

12 1 2) /( A Ag g g- . For fixed surface tensions, this parameter effectively represents the interfacial 

tension between Drop 1 and Drop 2. The critical density ratio is close to unity for a surface tension 

ratio of unity and the interfacial tension ratio near 12 1 2) / 1( A Ag g g » -- . For a fixed value of 

12 1 2) /( A Ag g g- , the critical density ratio decreases with increasing surface tension ratio 2 1/A Ag g . 

The inset of Figure 4 shows the rescaled critical density ratio based on the linear function,

min max minrescaled ratio (ratio ratio ratio rati/ ( )o) -= - , where minratio  and maxratio represent the 

minimum and maximum critical density ratios within the allowed range of 12 1 2) /( A Ag g g-  values. 

The rescaled critical density ratio lies between 0 and 1. The systematic deviation of the rescaled 

ratio suggests that the critical density ratio is not a simple function of the two ratios, 

12 1 2) /( A Ag g g-  and 2 1/A Ag g , but rather that both are important in determining the critical 

conditions for compound drop stability. 

In Figure 4, (a), (b), (c) and (d) denote the configurations of compound sessile drops with 

spherical cap shapes and Neumann’s angle conditions resulting from the specified interfacial 

tension ratios. The surface tension ratios for configurations (a), (b) and (c) are 2 1/A Ag g =1, 0.6, 

and 0.2 respectively while the interfacial tension ratio is fixed at 12 1 2) / 0. 8( 9A Ag g g = -- , 

indicating nearly the smallest interfacial tension achievable while still obeying the Neumann’s 

triangle condition. Configuration (d) represents dewetting drops with very large interfacial tension 

12 1 2) / 0. 8( 9A Ag g g =- , and surface tension ratio 2 1 1/A Ag g = . However even for other values of 

2 1/A Ag g , the shapes obtained remain quite similar to that shown in (d) because the angle between 

the two surfaces is close to zero, while the angles between the surfaces and the interface are both 



close to 180º. These configurations agree with the physical intuition that dewetting drops are 

nominally less stable. This intuition is supported by the calculation that the critical density ratio is 

close to zero in this limit. For drops with small interfacial tensions, near 12 1 2) / . 8( 0 9g g g = -- , 

the drop shapes favor more contact of the two phases, therefore promoting greater stability. 

Figure 4 suggests that the critical density ratio is larger for low interfacial tension systems and 

smaller for high interfacial tension systems. From the point of view of real systems, combinations 

of organic liquids (oil) and inorganic liquids (water) typically exhibit large interfacial tensions, 

while separated phases obtained by mixing partially miscible fluids exhibit relatively small 

interfacial tension values35. In the following sections we will consider both small and large 

interfacial tension systems separately in both simulation and experiments. While the derivation of 

the stability criterion is based on drops of Laplacian shape in the zero Bond number limit, we will 

see in the simulation and experimental results that the stability criterion for the limiting case 

provides a reasonable estimate even when the drop shapes are not constrained to Laplacian shapes, 

and even when the Bond number increases. 

Simulation Results Using Surface Evolver 

The zero Bond number analysis shows that the critical density ratio separating the energy 

maxima from the energy minima depends on the interfacial tension: larger interfacial tension yields 

a smaller critical density ratio. To verify the stability criterion, we conduct numerical simulations 

for both high and low interfacial tension systems. Because real experimental systems typically 

have fluid and interfacial properties that cannot be varied independently, simulations allow the 

independent roles of these properties to be isolated. Further, simulations can be used to examine 



finite Bond number situations. 

The Laplace equation can be derived using a variational method based on the minimization of 

Gibbs free energy4, 34, 36. Thus the configuration of a compound sessile drop satisfying the three 

Laplace differential equations can be solved numerically in this framework by minimizing the free 

energy. We utilize the open access software package Surface Evolver developed by Brakke18, 19, 

which models the liquid surface shapes subject to various forces or constraints. We developed code 

within the software adapted to the compound sessile drop geometry. Unlike the zero Bond number 

stability analysis in which we assumed the drops have Laplacian shape, in Surface Evolver we 

examine drop shapes that are perturbed with spherical cap shapes. This slightly different type of 

perturbation can provide a complementary perspective as to the influence of different perturbations 

on the stability.  

The procedure for examining the stability of the axisymmetric configuration of the compound 

sessile drop is outlined in Figure 5. The equilibrium axisymmetric configuration is first obtained 

in a zero gravity environment, and then the top drop is displaced away from the axisymmetric 

position. Lastly, gravity is applied, and the evolution of the top drop is monitored. If the top drop 

slides off it is recorded as an unstable configuration, and if it restores to the apex it is considered 

stable. This perturbation bears some similarity to experiments in which the top drop is perturbed 

using a pipette tip, where gravity is always present. However, in simulation, the perturbed drop 

shapes are constrained to spherical caps, while in experiments the perturbed drop shape is affected 

by the wetting properties of the pipette. 



 

 In Figure 5, the surface tension of the smaller drop is 2 25Ag = mN/m, the surface tension of 

the larger drop is 1 72Ag = mN/m, and the interfacial tension is 12 52g = mN/m. These surface and 

interfacial tension values correspond to a dodecane drop resting on a water drop in air; however, 

in simulations the fluid densities are varied. The dimensionless surface tension ratios for this case 

are 2 1 0./ 35A Ag g =  and 12 1 2) / 0.8( A Ag g g = -- .  The contact angle for the larger drop against 

the solid substrate is fixed at 90a = ° . The volumes of the two drops are 1 µL and 5 µL, 

respectively. Figure 5a shows the equilibrium shape of the compound sessile drop obtained in zero 

gravity. In the absence of gravity, the shapes obtained from Surface Evolver are similar to the 

compound drop cases with no solid substrate examined by Guzowski et al37, which are found to 

be independent of the fluid densities. To examine the stability of the equilibrium axisymmetric 

position, the top drop is displaced about 3º from the vertical axis and allowed to equilibrate without 

 
Figure 5. Protocol for determining whether the axisymmetric state is an energy maximum or 
minimum using Surface Evolver. (a) Initial axisymmetric equilibrium shape without gravity. 
(b) Top drop displaced from the vertical axis by about 3 degrees without gravity. (c) Upon 
application of gravity at small density ratios, the top drop returns to the apex position, indicating 
a minimum energy system. (d) Upon application of gravity at large density ratios, the top drop 
slides off, indicating a maximum energy state. 



gravity as shown in Figure 5b. Gravity is then applied to this perturbed state to examine the stability. 

By varying the densities of the two drops, we expect that the application of gravity will cause the 

interface to evolve in one of two ways: either it will restore to the axisymmetric configuration 

(Figure 5c), or it will slide off to the side, away from the apex (Figure 5d). Note that the 

configuration shown in Figure 5d does not represent the equilibrium state. In the current setup, 

Surface Evolver does not allow for a change of topology to accommodate the contact of the smaller 

drop with the solid surface. In real systems, when the deposited top drop contacts the solid surface, 

a “Janus” configuration is formed, e.g., for the combination of perfluooctane and mercury12. More 

detailed analysis of the Janus shape equilibrium state as a function of wetting conditions has been 

performed using phase field modeling15. As we are presently interested in the stability of the 

axisymmetric configuration, the movement of the second drop away from the axisymmetric 

position is sufficient to demonstrate the lack of stability of the configuration.  

As shown in Figures 5c and 5d, depending on the densities at fixed surface tensions, interfacial 

tension, contact angle and volumes, the axisymmetric equilibrium can be categorized as either an 

energy minimum or an energy maximum. Note that the drop shapes shown in Figure 5c are 

flattened compared with those of Figure 5a owing to the presence of gravity. Using several 

examples, we confirmed that the shape of the axisymmetric configuration at equilibrium is the 

same if the seven governing dimensionless parameters are kept fixed while varying the 

dimensional values of the physical properties. Note that when the density ratio used in simulation 

is close to the critical density ratio, the convergence rate for evolution of the interface is very 



slow. Thus to further narrow in on the dividing line, for density ratios close to the critical value, 

unstable cases have been repeated with a smaller perturbation of 1º from the apex. Only those 

configurations that remain unstable at a 1º displacement are marked as energy maxima. 

 Figure 6a summarizes the simulation results for the high interfacial tension system 

considered in Figure 5. The densities of the two drops are varied to achieve different ratios as well 

as different Bond numbers. In Figure 6a, the stability of each configuration is noted as a function 

of the density ratio and the Bond number of Drop 1, for a fixed volume ratio of 0.2. Stable 

configurations are marked by open symbols, while unstable configurations are marked by filled 

symbols. The simulations result in stable configurations at lower density ratios and unstable 

 
Figure 6. The energy maximum and minimum states obtained from Surface Evolver for a high 
interfacial tension system ( mN/m, mN/m, mN/m). (a) The volume 
of the top drop is 1 µL and the bottom drop is 5 µL. The densities of the two drops are varied to 
achieve different density ratios and Bond numbers. The critical density ratio deviates from the 
zero Bond number asymptotic prediction as the Bond number increases. (b) The Bond number 
of the bottom drop is fixed at an intermediate value of 5.8 and the transition from an energy 
minimum to an energy maximum deviates slightly from the zero-Bond number model at various 
volume ratios. 
 



configurations at higher density ratios, with a clear transition between the two regions. The vertical 

line indicates the predicted critical density ratio for this system at fixed volume ratio of 0.2 using 

the zero Bond number calculation. The figure shows that the zero Bond number approximation 

predicts the transition from an energy minimum to an energy maximum reasonably well at small 

Bond number, while a small deviation is observed at increasing Bond number. At a Bond number 

of 1 10Bd »  for Drop 1, the deviation from the zero Bond number predictions is about 4%. This 

small deviation results from the gravity-driven flattening of the bottom drop, which tends to 

stabilize the axisymmetric configuration up to a slightly larger critical density ratio.  

Based on the earlier dimensional analysis, the critical density ratio also depends on the volume 

ratio. Figure 6b examines the stability of the axisymmetric configuration for a fixed Bond number 

of Drop 1 of Bd1 = 5.8, plotting the stability of individual configurations on a plot of volume ratio 

versus density ratio. As in Figure 6a, the stable configurations are found at lower density ratios, 

while unstable configurations are found at higher density ratios, with a clear transition between 

the two regions. In this case, the stability transition depends on volume ratio, shifting to lower 

critical density ratio values for larger volume ratios. The solid line represents the critical density 

ratio predicted in the zero Bond number limit. While the same trend is observed, the simulations 

exhibit a small deviation from this limit. The deviation arises from the slight gravity-induced 

flattening of both the top and bottom drops at non-zero Bond numbers. The deviation observed in 

Figure 6b at zero Bond number is about 2% of the critical density ratio. 



 

Figure 7 summarizes the simulation results for a low interfacial tension system. In this case, 

the surface tension is 2 40Ag = mN/m for the smaller drop and 1 41Ag = mN/m for the larger drop. 

The interfacial tension is 12 3g = mN/m. The dimensionless surface tension ratios for this case are 

2 1 0./ 98A Ag g =  and 12 1 2) / 0. 5( 9A Ag g g = -- . The contact angle for the larger drop against the 

solid substrate is fixed at 90a = ° . In Figure 7a, the volume ratio is held fixed at a value of 0.2, 

and the stable and unstable configurations are marked with open and filled symbols, respectively, 

as a function of the Bond number of Drop 1 and the density ratio. The simulation results 

demonstrate the same features as for the high interfacial tension case: i.e., the stable configurations 

are organized at lower density ratios, while the unstable configurations are organized at higher 

 
Figure 7. The energy maximum and minimum states obtained from Surface Evolver for a low 
interfacial tension system ( mN/m, mN/m, mN/m). (a) The volume 
ratio of the top drop to the bottom drop is fixed at 0.2, and the densities of the two drops are 
varied to achieve different Bond numbers, yielding different maximum and minimum energy 
states. The critical density ratio deviates from the zero Bond number asymptotic prediction as 
the Bond number increases. (b) The Bond number of the bottom drop is fixed at an intermediate 
value of 5.8 and the transition from an energy minimum to an energy maximum deviates from 
the zero-Bond number limit at all volume ratios. 



density ratios, with a clear transition between the two regions. The zero Bond number 

approximation, denoted by the vertical line, agrees well with the critical density ratio observed in 

simulations. The critical value found in simulations deviates about 2% from the zero Bond number 

value at 1 10Bd »  for Drop 1. In Figure 7b, the Bond number of Drop 1 is held fixed at Bd1 =5.8, 

while the volume ratio varies. In this case, the critical density ratio resulting from the simulations 

is always larger than the critical density ratio predicted at zero Bond number. This is in contrast to 

the results shown in Figure 6b, where the critical density ratio from simulation is larger than the 

zero Bond number value at smaller volume ratios, and smaller than the zero Bond number value 

at large volume ratios.  

The deviation of the critical density ratio in simulations compared with the zero Bond number 

limit can be attributed to the finite Bond number of Drop 2, 3/2
2 2 2 2/ ( )/Bd V gg r= D . In Figure 

6b, the ratio of the Bond numbers near the transition line is 2 1 2 10.61 //Bd VBd V= , while the ratio 

of Bond numbers in Figure 7b is 2 1 2 10.93 //Bd VBd V= . Thus, even though the volume ratios for 

the high and low interfacial tension cases are set to the same value, the Bond number ratios are 

different as a result of the surface and interfacial tension differences. Nevertheless, the predicted 

critical density ratio at zero Bond number and the critical density ratio resulting from simulation 

are only 2 – 4% different, suggesting that the zero Bond number approximation captures the major 

factors controlling the transition from an energy maximum to an energy minimum. 

The simulations show that the critical density ratio is close to the zero Bond number limit for 

both high and low interfacial tension systems, with merely 2 – 4% deviation for Bond number 



1 10Bd » . For the high interfacial tension system to reach a stable axisymmetric configuration, the 

density ratio of the two drops must be smaller than 0.25. For the low interfacial tension system to 

reach a stable axisymmetric configuration, the density ratio must be smaller than 0.93. In the 

following section we conduct experiments for real systems in which we tune the density ratios and 

realize both stable and unstable axisymmetric configurations. 

Experimental Methods and Materials 

The previous analysis and simulations demonstrate that the stability of a compound sessile 

drop depends strongly on the magnitudes of the surface and interfacial tensions. Validating the 

predicted critical density ratio in real systems is challenging since fluid and interfacial properties 

typically cannot be varied independently. In the case of compound metal drops, the density ratio 

has been adjusted by varying temperature10. In aqueous systems, cesium chloride salt can be added 

to vary the density with minimal viscosity and surface tension changes38, 39. In this paper, we 

examine two liquid pairs containing at least one aqueous component, one with high interfacial 

tension and one with low interfacial tension. In each case the density is varied using different 

concentrations of cesium chloride salt added to the aqueous phase, allowing the critical density 

ratio to be determined for a fixed set of surface and interfacial tension values. 

The high interfacial tension system consists of dodecane paired with aqueous cesium chloride 

(CsCl, purchased from Sigma-Aldrich with purity ≥ 99%, used as received) solutions. Dodecane 

and water systems have previously been used to verify the Neumann’s angle calculation40, and 

exhibit relatively large interfacial tension values of about 52 mN/m. The fluid 



and interfacial properties of each liquid considered are listed in Table I. Dodecane (Sigma-Aldrich, 

purity ≥ 99%) is further purified using column chromatography over aluminum oxide and silica. 

The chromatography materials are obtained from Sigma-Aldrich and used as received. The CsCl 

solutions are prepared by mixing deionized water (Milli-Q, 18MΩ-cm, organic content < 10 ppb) 

with an appropriate mass of CsCl. Densities are determined by measuring the mass (Denver 

Instrumental Company Balance, Model XE-100A, accuracy 10-4 g) of a known volume contained 

in a volumetric flask (Pyrex No. 5640, 25 ± 0.03 ml). Surface and interfacial tension values are 

measured using a Du Noüy ring tensiometer41. The measured values for dodecane and water agree 

well with reported literature values40. 

The low interfacial tension system is obtained by inducing phase separation of partially 

miscible fluids35, 42. Low interfacial tension values are common in colloid-polymer43, 44 and 

Table I. Densities, surface tensions and interfacial tensions of dodecane and aqueous CsCl 

solutions. 

Fluid Density (g/ml) Surface tension 
(mN/m) 

Interfacial tension 
with dodecane 

(mN/m) 

Water 0.9946 ± 0.0032 72.4 ± 0.5 52.2 ± 0.3 

20%w/w CsCl 1.1677 ± 0.0035 73.5 ± 0.4 50.1 ± 0.5 

40%w/w CsCl 1.4136 ± 0.0027 74.1 ± 0.5 53.9 ± 0.3 

60%w/w CsCl 1.7780 ± 0.0023 75.1 ± 0.6 58.3 ± 0.4 

Dodecane 0.7431 ± 0.0035 25.3 ± 0.4 – 

 



polymer-polymer45, 46 mixtures that undergo phase separation, leading to two immiscible liquid 

components with interfacial tension values as low as 1 µN/m. Mixing water with alcohols such as 

benzyl alcohol or 1-butanol leads to phase separation into water-rich and alcohol-rich liquid phases 

with interfacial tension values of 1 – 4 mN/m.35, 42, 47 Although the phase diagram of the 1-butanol–

water mixture is well characterized47 and the interfacial tension value is only 1.8 mN/m35, 1-

butanol has a relative high vapor pressure of 665 Pa at 20 ºC 48. To avoid evaporation in the 

compound sessile drops, we select benzyl alcohol, which exhibits a low vapor pressure of 12 Pa at 

25 ºC49. The benzyl alcohol is obtained from Sigma-Aldrich (purity ≥ 99%) and used as received. 

To form the immiscible liquid pairs, aqueous CsCl solutions are mixed with benzyl alcohol at 

similar volumes. Upon equilibration, the mixture separates into two phases, one that is water and 

salt rich, and one that is water and salt rare. The two phases are collected using a separation funnel. 

The water rich and water rare phases are identified by miscibility: the water rich phase is miscible 

with addition of water, but separates into two phases if extra benzyl alcohol is added. 

Table II lists the densities measured for each of the two liquid phases obtained by mixing 

different concentrations of CsCl solution with benzyl alcohol. The density is measured using the 

method described earlier. Note that the water rich phase obtained from the benzyl alcohol-water 

mixture is of lower density than the water rare phase, because benzyl alcohol is denser than water. 

However, since CsCl salt is more soluble in the water rich phase, the water rich phase obtained 

from the benzyl alcohol-CsCl solution is denser than the water rare phase without CsCl, as seen in 

the second and third row of Table II. The density ratio of the less dense fluid to that of the 



more dense fluid first increases from 0.964 to approximately 1, and then decreases to about 0.826 

as the concentration of CsCl increases. The highest concentration of CsCl obtained in solution is 

26%. For concentrations greater than 30%, we observe crystallization of CsCl upon mixing with 

benzyl alcohol, even though in principle saturation is not achieved until 60% CsCl in the two-

element CsCl-water system38. The measurements of surface and interfacial tensions are listed in 

Table III, where the water rich phase always exhibits a higher surface tension than the water rare 

phase. 

Compound sessile drops are examined for the fluid pairs discussed, and are placed on solid 

hydrophobic surfaces exhibiting a contact angle of 102 ± 5 º with deionized water. The surfaces 

are prepared by applying AquapelTM (PPG Industries) to microscope glass slides (Fisherbrand 

Table II. Density of each liquid component collected from the phase-separated mixture of 

benzyl alcohol and aqueous CsCl solution with similar volumes. 

Liquid pair  Water rare phase (g/ml) Water rich phase (g/ml) 

Benzyl-OH & water 1.0344 ± 0.0025 0.9968 ± 0.0034 

Benzyl-OH & 6%w/w CsCl 1.0386 ± 0.0021 1.0470 ± 0.0022 

Benzyl-OH & 10%w/w CsCl 1.0389 ± 0.0021 1.0869 ± 0.0023 

Benzyl-OH & 14%w/w CsCl 1.0402 ± 0.0020 1.1253 ± 0.0023 

Benzyl-OH & 18%w/w CsCl 1.0404 ± 0.0021 1.1658 ± 0.0027 

Benzyl-OH & 22%w/w CsCl 1.0402 ± 0.0021 1.2102 ± 0.0036 

Benzyl-OH & 26%w/w CsCl 1.0422 ± 0.0020 1.2613 ± 0.0067 

 



12-567) following the manufacturer instructions. The surface is robust against rinsing with ethanol 

or acetone.  

The formation and stability of compound sessile drops are recorded using a CCD camera (Q-

See, Anaheim CA, model no. QPSCDNV, 30 fps mounted with a 55mm telecentric lens from 

Edmund Optics) oriented at a 45º angle to the horizontal surface. A first drop of specified volume 

(10 – 100 µL) is deposited on the hydrophobic surface using a pipette (Eppendorf 100 µL pipette 

with maximum systematic and random error of 0.8 ± 0.3 µL) and allowed to reach its equilibrium 

configuration. A second drop of smaller volume (2 – 80 µL) is deposited using two different 

Table III. Surface and interfacial tension measurements for the two liquid phases obtained 

from phase separated mixtures of benzyl alcohol and aqueous CsCl solutions with similar 

volumes. 

Liquid pair Surface tension 
of water rare 

phase (mN/m) 

Surface tension of 
water rich phase 

(mN/m) 

Interfacial 
tension of two 
phases (mN/m) 

Benzyl-OH & water 39.5 ± 0.5 41.5 ± 0.6 3.0 ± 0.3 

Benzyl-OH & 6%w/w CsCl 38.6 ± 0.4 40.2 ± 0.5 5.0 ± 0.3 

Benzyl-OH & 10%w/w CsCl 38.9 ± 0.5 40.5 ± 0.5 5.1 ± 0.2 

Benzyl-OH & 14%w/w CsCl 38.6 ± 0.5 41.0 ± 0.3 5.3 ± 0.3 

Benzyl-OH & 18%w/w CsCl 39.0 ± 0.4 41.6 ± 0.4 5.8 ± 0.3 

Benzyl-OH & 22%w/w CsCl 39.5 ± 0.3 41.9 ± 0.3 6.2 ± 0.2 

Benzyl-OH & 26%w/w CsCl 39.3 ± 0.3 42.3 ± 0.5 6.6 ± 0.4 

 



pipettes depending on the desired volume (Eppendorf 20 µL pipette with error 0.2 ± 0.1 µL, or 

Eppendorf 100 µL pipette with error 0.8 ± 0.3 µL). Upon deposition, if the second drop slides off 

the apex of the lower drop, then this combination is documented as an unstable configuration. If 

the second drop remains at the axisymmetric configuration, then the pipette tip is used to further 

perturb the top drop from the apex without permitting it to touch the solid substrate. If the second 

drop restores to the apex at least three times, then this combination is documented as a stable 

axisymmetric configuration. If the restoration cannot be repeated, the combination is documented 

as an uncertain condition. The Bond number of the bottom drop is in the range of 1 < Bd1 < 15.  

Experimental Results and Discussion 

 Both the zero Bond number analysis and Surface Evolver simulations demonstrate that the 

stability of an equilibrium axisymmetric configuration can be predicted by comparing the density 

ratio of two drops with the critical density ratio calculated for the specified fluid system. The 

critical density ratio of a high interfacial tension system is significantly different from that of a low 

interfacial tension system. In this section, we first describe the experimental realization of stable 

and unstable compound sessile drops for both the low and high interfacial tension systems 

described in the previous section. The transition from stable to unstable configurations is then 

compared quantitatively with the asymptotic approximation and the simulations.  

For the high interfacial tension system consisting of dodecane and aqueous CsCl solutions, all 

the experiments exhibit unstable axisymmetric configurations: once the smaller drop is deposited 

on top of the larger drop, it slides off to the side and forms a Janus configuration. A typical 

experiment is shown in Video 3 of the Supplementary Materials. From the zero Bond number 



analysis, the critical density ratio is approximately 0.24 – 0.30 for all of the volume ratios 

considered. However, experimentally, the accessible density ratio range is 0.41 – 0.75, well above 

the theoretical transition value. Thus, the observation that no stable axisymmetric configurations 

are experimentally realized for the high interfacial tension system is in agreement with both 

analysis and simulations. 

 For the low interfacial tension system of the phase separated mixtures of benzyl alcohol and 

aqueous CsCl solutions, both unstable and stable axisymmetric configurations are observed. As 

shown in Figure 1a, for the liquid pairs obtained by mixing benzyl alcohol and 22% aqueous CsCl 

solution, the experimental density ratio is 0.859, less than the predicted critical density ratio of 

2 1crit(ana)/ 0.878r r = . Deposition of a drop of the water rare phase onto a drop of the water rich 

phase results in an axisymmetric configuration that is stable against perturbations from the apex. 

Video 1 of the Supplementary Materials shows a typical example of a stable configuration. In 

contrast, as shown in Figure 1b, for the liquid pairs obtained by mixing benzyl alcohol and 10% 

aqueous CsCl solution, the experimental density ratio is 0.955, greater than the predicted critical 

density ratio of 2 1crit(ana)/ 0.896r r = . Deposition of a drop of the water rare phase onto a drop of 

the water rich phase yields an unstable axisymmetric configuration as shown in Video 2 of the 

Supplementary Materials). The observed transition from an energy minimum to an energy 

maximum allows for quantitative experimental comparisons with both the analysis and the 

simulations. 



 

Figure 8 summarizes the experiments including both stable and unstable axisymmetric 

configurations for the phase separated mixture of benzyl alcohol and varying concentrations of 

aqueous CsCl solution. Each symbol denotes a liquid pair obtained from the phase separated 

mixture with the specified concentration of CsCl. The open symbols represent stable axisymmetric 

configurations (energy minimum) and the filled symbols represent unstable axisymmetric 

configurations (energy maximum). The volumes of both drops are varied to achieve different Bond 

numbers of the bottom drop 1Bd  and different volume ratios. The Bond number of Drop 1 has a 

practical lower limit 1 1Bd » , because smaller drops are difficult to deposit using the pipettes 

described earlier. All of the experiments consider the deposition of a less dense fluid drop onto a 

 
Figure 8. a) Summary plot of benzyl alcohol experiments compared with the zero Bond number 
analytical model. The vertical axis is the Bond number of Drop 1 and the horizontal axis 
represents the difference between the experimental density ratio and the critical density ratio 
predicted in the zero Bond number limit. The open symbols denote energy minima while the 
filled symbols denote energy maxima. b) Comparison of experimental results with Surface 
Evolver simulations for the systems using 18% and 22% CsCl solutions. The horizontal axis 
indicates the difference between the experimental density ratio and the critical density ratio 
obtained in simulations. 



more dense fluid drop because the opposite case, deposition of a more dense drop onto a less dense 

drop, is always unstable as predicted by Eq. (6). 

Figure 8a compares the experimental results with the zero Bond number analysis. The critical 

density ratios in the zero Bond number limit ((Eq. (6)) are calculated using the relevant 

experimental values of surface and interfacial tensions, volume ratios and contact angle for each 

fluid pair. In the experiments, the experimental density ratio is determined once the fluid pair is 

selected; in contrast, the analysis formulates the critical density ratio as a function of the volume 

ratio. The horizontal axis of Figure 8a represents the density ratio difference 

2 1exp 2 1crit(ana)/ /r r r r-  subtracting the predicted critical density ratio from the experimental 

density ratio. The vertical axis represents the Bond number of Drop 1 1
3/2

1 1 1/ ( / )A AgBd V g rD= . 

For all of the drop volumes tested, the axisymmetric configurations for the liquid pairs obtained 

by mixing benzyl alcohol with 0% and 26% aqueous CsCl solutions are always stable. The 

axisymmetric configurations for the liquid pairs obtained by mixing benzyl alcohol with 6%, 10% 

and 14% aqueous CsCl solutions are always unstable. Transitions from an energy minimum to an 

energy maximum are observed for the liquid pairs obtained using 18% and 22% aqueous CsCl 

solutions. From the zero Bond number analysis, a positive value of the density ratio difference 

2 1exp 2 1crit(ana)/ /r r r r-  is expected to result in an energy maximum, while a negative value is 

expected to result in an energy minimum. The uncertainty in the experimental density ratio is about 

± 0.003 due to the uncertainty in the density measurements. The vertical shaded area shown in 

Figure 8a near zero on the horizontal axis indicates the expected stable-to-unstable transition, 



reflecting the estimated uncertainty (≈ ±  0.012) in calculating 2 1crit(ana)/r r  based on the 

uncertainty in the surface and interfacial tensions and in the volume ratios used in Eq. (6). For the 

cases in which the Bond number is near unity, 1 1Bd » , the transition from an energy minimum 

to an energy maximum occurs at 2 1exp 2 1crit(ana)/ / 0r r r r- » , suggesting that the experimental 

results agree well with the zero Bond number analysis. For the larger Bond number cases, 

1 15Bd » , the experimental transition occurs at 2 1exp 2 1crit(ana) .03/ 0/r r r r- »  , so the 

experiments deviate slightly from the zero Bond number prediction.  

The experimental results are also compared with finite Bond number Surface Evolver 

simulations in Figure 8b for the fluid systems obtained by mixing 18% and 22% aqueous CsCl 

solutions with benzyl alcohol. In this case, the horizontal axis represents the difference between 

the experimental density ratio and the critical density ratio obtained from simulations 

2 1exp 2 1crit(sim)/ /r r r r- . As before, the uncertainty in the experimental density ratio is ± 0.003. 

The uncertainty in the predicted critical density ratio from simulations, shown as the shaded region 

in Figure 8b, is ± 0.015. The uncertainty for the simulations is slightly larger than that of the zero 

Bond number prediction owing to the limited ability of Surface Evolver to resolve the critical value. 

The numerical gap in the density ratios of the nearest observed energy maximum and minimum 

configurations is approximately 0.003 – 0.004 in our Surface Evolver simulations. In Figure 8b, 

the experimentally realized transition from an energy maximum to an energy minimum overlaps 

well with the shaded region, demonstrating that the experimental results agree well with the 

simulations independent of the Bond number of the bottom drop. Although within uncertainty, it 

is noted that the critical density ratio difference tends to cluster at the positive edge of the shaded 



region, hinting that the spherical cap shape perturbations used in the simulations may yield a small 

systematic offset as compared with the experiments using pipettes to realize the perturbations. 

Further investigation of this possible systematic offset is beyond the scope of this paper and would 

require a more general stability analysis. 

Similar experiments to examine the transition from energy minimum to energy maximum 

could also be performed using the phase-separated mixture of butanol and aqueous CsCl solutions. 

Besides the advantage of the low vapor pressure of benzyl alcohol, which minimizes evaporation, 

benzyl alcohol also has a density greater than water. For mixtures of butanol and aqueous CsCl 

solutions, increasing the concentration of CsCl causes the experimental density ratio to 

monotonically decrease; therefore the axisymmetric configuration will be more stable as the CsCl 

concentration increases. In contrast, the density ratio obtained from the mixtures of benzyl alcohol 

and aqueous CsCl solutions first increases to approximately 1 and then decreases to about 0.826, 

indicating that the axisymmetric configuration first becomes less stable and then more stable as 

the concentration of CsCl increases.  Thus the benzyl alcohol mixtures permit the stable-to-

unstable transition to be realized more easily. 

Figure 8 shows that the zero Bond number analysis, the Surface Evolver simulations, and the 

experiments all agree well in the observed and predicted transition from energy minimum to 

energy maximum compound drop configurations. At high Bond numbers, both the experiments 

and the Surface Evolver simulations indicate that the critical density ratio deviates from that 

obtained in the zero Bond number limit by approximately 3 – 4%. Perturbing the compound sessile 

drop using a pipette tip is more likely to represent a generic perturbation in which axisymmetry is 



broken, and interface shapes are not restricted to either spherical caps or Laplacian shapes. 

Nevertheless, good agreement is found when comparing the stability criterion obtained for each of 

the three types of perturbations. 

Conclusions 

In this paper, we have determined seven dimensionless parameters that govern the shape of an 

axisymmetric compound sessile drop using the Laplace equations. Following a Laplacian shape 

perturbation, a stability criterion for the axisymmetric configuration is determined in the zero Bond 

number limit. This stability criterion is verified using both Surface Evolver simulations and 

experiments performed with both high and low interfacial tension systems.  

For an axisymmetric compound drop11, 12 to be stable, the density ratio must be smaller than a 

critical density ratio that depends on the surface and interfacial tensions, and the drop volumes. 

The critical density ratio is small for a high interfacial tension system, therefore stable 

axisymmetric configurations are rarely observed for organic/inorganic compound sessile drops in 

air. The critical density ratio is much larger for low interfacial tension systems43–46, allowing the 

possibility for experimental realization of stable configurations. We successfully observed stable 

axisymmetric compound sessile drops using a low interfacial tension system obtained from phase-

separated mixtures of benzyl alcohol and aqueous CsCl solutions35, 39. The low interfacial tension 

systems show a transition from energy minimum to energy maximum by varying the CsCl 

concentration, which varies the density ratio without significantly changing the surface and 

interfacial tensions. The critical condition for transition between the stable and unstable 

axisymmetric configurations agrees closely in the small Bond number cases for all three 



approaches: the zero Bond number analysis, the Surface Evolver simulations, and the experiments. 

The simulations and experiments exhibit a small deviation from the zero Bond number predictions 

at larger Bond numbers. 

 The ability to form a stable axisymmetric compound sessile drop may be useful in designing 

liquid lens systems for soft lithography. Interestingly, the stability analysis predicts that a more 

dense drop resting on top of a less dense drop is never stable, even though a more dense drop is 

observed to float on top of a less dense bulk fluid using the low interfacial tension system obtained 

from phase separated mixtures of benzyl alcohol and aqueous CsCl solutions. Further investigation 

of this low interfacial tension system may provide a better understanding of the flotation 

mechanism of dense objects through the distortion of surfaces. 

 

Supplementary Materials 

Video 1: A stable axisymmetric compound drop configuration. With perturbations induced by 

pipette, the top drop still restores to the apex position. The fluids are two immiscible phases 

resulting from a mixure of 22% CsCl solution with benzyl alcohol, with density ratio of 0.859.  

Video 2: Janus shape of a compound sessile drop obtained using two immiscible phases obtained 

from a mixture of 10% CsCl in water with benzyl alcohol, with density ratio of 0.955. Upon 

deposition using a pipette, the smaller drop immediately slides off to the side. 

Video 3: Janus shape of a compound sessile drop formed using dodecane and a 60% CsCl solution 

in water, with density ratio 0.42. Upon deposition using a pipette, the smaller drop slides off to the 

side. This video is eight times slower than real time. 
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