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ABSTRACT

In this article we are interested in the coupling between the
translational and radial velocity of a bubble trapped in eous-
tic field. We write a simple model for the momentum equation
of the center of gravity of the bubble. An analytic solutien i
derived in the case of small radial and translational csdlhs.
This solution is compared to numerical solutions of the nhode
equation and to full axisymmetric Navier-Stokes numeréia-
ulations. Satisfying agreement is found and the non-limeadel
equations are applied to the case of sonoluminescing bsibble
this case, the amplitude of the bubble motion is found to loe ne
ligible. This suggests that the influence of the varying gues
gradient on the translational motion is not as significardrag-
nally anticipated in the case of sonoluminescence.

INTRODUCTION

The acoustic levitation of gas bubbles has been used widely
to study bubble dynamics. The acoustic pressure gradient av
eraged over one oscillation cycle, or Bjerknes force, aldw/
pin the bubble near an antinode of the acoustic field. This-tec
nique is used in sonoluminescence experiments (Barber@nd P
terman, 1991; Gaitaat al, 1992; Crum, 1994). While detailed
studies of the equilibrium position of the levitating bublare
available (Crum and Prosperetti, 1983; Matetal., 1997a), lit-
tle attention has been given to the amplitude of the vertioad
tion of the bubble. Indeed, while the Bjerknes force comptets
buoyancy on average over one cycle of oscillation, the imata
neous balance between buoyancy and acoustic pressuremgradi
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is not verified. As a result the bubble oscillates verticaliyhe
frequency of the acoustic forcing. This effect could be pete
tially significant for all matters regarding the shape digbof
the acoustically-levitated bubble. Building on this olvsion,
Prosperetti has proposed a very seducing explanation ebtie
luminescence phenomenon (Prosperetti, 1997). It is welhkn
that a moving and contracting bubble cannot remain spHerice
and that a jet forms in the direction of motion. Prosperetip
posed that in the case of sonoluminescence the verticabmoti
of the bubble coupled with the violent collapse could leath®
formation of a very high-speed jet. Its impact with the bbbl
surface would be responsible for the light emission.

The two most actively discussed theories of the light emis-
sion mechanism are the shock wave theory (Greenspan ar
Nadim, 1993; Wu and Roberts, 1993; Madsl,, 1997) and the
adiabatic heating theory (Hilgenfeldt al., 1999). The shock
wave theory relies on the bubble remaining spherical, winile
the adiabatic heating theory the bubble deformation seems 1
play no essential role. The only alternative in which theslos
of spherical symmetry plays a central role for the light esiais
mechanism is the jet formation theory.

Another motivation for the study of bubble shape instabili-
ties and thus of its possible forcing by vertical translagibmo-
tion arises when considering published data on the phygaal
rameters for sonoluminescence. Most reports locate soriolu
nescence at pressures and equilibrium radii for which the bu
ble is actuallyunstable(Prosperetti and Hao, 1999). Thus even
a small forcing by translational motion of bubble deforroati
modes could lead to large amplitude effects.



A final motivation for the detailed study of Bjerknes forces we neglect the mass of the gas contained in the bubble, (1) ar
in sonoluminescence conditions is the discrepancy obddyye (3) give the equation of motion in the case of high Re
Matula et al. (1997a) between their measurements of thelbubb

equilibrium position and predictions of an inviscid theory _ 18y R

In this paper we are interested in a prediction of the ampli- U+ <§ +3§> U —-20¢p—2g9=0. 4)
tude of the vertical motion of an acoustically-levitatedbble.
We will use both physical modelling and direct numericaligim
lations to assess the accuracy of the models. Implicatmrthé At this point we can write a system of two coupled ordi-
stability of sonoluminescing bubbles will be discussed. nary differential equations (4) plus the Rayleigh-Plessgiation

(Plesset and Prosperetti, 1977), which describes bothettiieal
and the radial oscillation of the levitating bubble. Thistgm

PHYSICAL MODEL can be solved numerically but it is interesting to try to find a

We want to derive the equation of motion of the center of analytical solution in a particular case.

gravity of the bubble. The forces acting on the bubble are es-

sentially viscous drag and buoyancy. Following Magnaudet a

Legendre (1998) we can express the viscous drag force on aSMALL AMPLITUDE OSCILLATIONS: THEORY

spherical bubble with a time-dependent radius as We will try to find an analytical solution in the case of small
vertical and radial oscillations. When the amplitude of thaial

2 ) .4 . oscillation is small, the Rayleigh-Plesset equation isnshto
F = 12mpvRU+ ZT(3RU +3RUR) + 2TpRNo, (1) yield a first order solution for the radius of the form

where the dot denotes the time derivatipés the liquid density, R= Ro[1+&cogwt +8)], (5)
v the kinematic viscosityR the radius of the bubble ard =

U. —Vo. W is the velocity of the center of gravity of the bubble
and U, is the velocity of the fluid far from the bubble. This
expression is valid only in the case of Reynolds numbers muc
larger than unity. The Reynolds number is based either on the
translational relative velocity or on the radial velocitiR. When
these two Reynolds numbers are both much smaller than unit
the history force due to the diffusion of vorticity is no larg

whereRy is the equilibrium radiusg the relative amplitude of
h the radial oscillatione the frequency of the acoustic forcing and
0 the phase-shift between the radial oscillation and the staou
forcing. Using (5) in (4) and retaining the first order termgi
v, yields

negligible and the expression of the force becomes .
g1 P U+ |18 — 36-£coswt + 6) — 3ewsin(wt +6) | U (6)
R R
F = 4mpvRU + %Ttp(SRgU +3R2UR) + gnpR% + @ —2|0¢|cogwt) —2g=0.
t t
8TrpV/O exp {9V/ R(t’)zdt’} X We look for a solution of the forn = acogwt) + bsin(t)
T

which yields the system of equations
t
erfc [, Jov / R(t’)zdt’] dRTU (1)].
t wa+ 18wv*b—2|0g = 0, @)

18*a—b=0, (8)
In the case of acoustic bubble levitation, we consider agrint . 3 N 3 2
mediate scale much larger than the bubble size but muchemall 18" sin6a — 3 cosba — 18v* cosBb — 3 sinBb — 32 =0, (9)
than the acoustic wavelength. At this scale the acousti&spre e(1v*a+hb) =0, (10)
gradientp can be considered spatially constant and the velocity g(a—12v*b) =0, (12)
of the fluid is then given by

where we have introduced the non-dimensional viscosity-
U = —tp = —O¢. 3) v/ooR%. Equations (_7) and (8) corr_espond to terms of frgquency
P wand give the leading-order solution for the bubble motion

The buoyancy force acting on the bubble is given by

a . .
—4/31R3(p — pgagg Whereg is the acceleration of gravity. If U= Z% coqy)sin(wt + Y) with tanp =18v*.  (12)
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Equation (9) corresponds to the condition when the secaitar t
in (6) vanishes, which gives the equilibrium position dedirog

ﬁ = —m (g cosB + 9v*sind + (18\)*)2005(9) .
(13)

In the case of a vanishing viscosity, equation (13) yieldsrtt
sult of Crum and Prosperetti/ |Og| = —3/2ecos9 (Crum and
Prosperetti, 1983). Equations (10) and (11) corresponertog
of frequency 2 which vanish with the amplitude of the radial
oscillation.

Equation (12) gives a maximum relative velodityof twice
the velocity of the fluid far from the bubbld, = |Cq|/w, ob-
tained when viscosity* vanishes. As the viscosity increases the

relative velocity decreases and ultimately vanishes.

SMALL AMPLITUDE OSCILLATIONS: NUMERICS
It is important to note that equations (12) and (13) are

valid only for small amplitudes of the radial and verticatibs
lations. Moreover, in the case of an oscillating bubble tthas-
lational velocity changes sign and consequently the taiosial
Reynolds number can be arbitrarily small. In these conattio
neither expression (1) nor expression (3) is valid throwgtioe
oscillation cycle. As it is difficult to derive an analyticsblution
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Figure 1. RATIO OF THE AMPLITUDE OF THE RELATIVE BUBBLE

VELOCITY U TO THE FLUID VELOCITY Ue.

fluctuationp, = 10* Pascals, frequency of the acoustic forcing
f =500 Hz. For small values of the agreement with the linear

taking into account the history force we have used a numlerica theory is very satisfactory. For larger values of the viggothe
technique to solve the system of equations (1) or (3) coupled numerical resolution becomes difficult, our code being fyain

with the Rayleigh-Plesset equation. Figure 1 and 2 illusttiae
results. An excellent agreement is found between the ngaleri
solution of (1) (white squares) and the linear theory; tha-re
tive amplitude of the radial oscillation in the numericallgmn

designed to solve high-Reynolds number flows.

LARGE AMPLITUDE OSCILLATIONS AND APPLICA-

is € = 0.01. The agreement remains very satisfactory for values TION TO SONOLUMINESCENCE

of € up to 0.1. The numerical solution of equation (3) is shown
using black disks. As expected the three solutions ((1)a(®)
linear theory) are close wheri is small. The limits are also the

We can now be confident that our model gives a consister
prediction for the amplitude of bubble motion. The essénéa
sult of this analysis is that the translational velocityto bubble

same wherv* becomes large. The history force is seen to act (relative to the fluid) can never be larger thgal@ /win the lin-

as an anti-dissipative term, which is obviously not the aalsen
the radius of the bubble is constant in time.

ear regime. In the case of sonoluminescertcs approximately
0.1 Ro = 10 pm, v = 10°8 m?/s, f = 25 kHz) which gives a

As noted above neither of the two model equations (with or smaller amplitude of¢q| /.

without history force) is valid throughout the oscillatiagicle.

The value of|0q| is defined through the equilibrium posi-

We have used our 2D axisymmetric free-surface code (Popinet tion of the bubble. Matulat al. (1997a) measured the equilib-
and Zaleski, 1998a; Popinet and Zaleski, 1998b) to solve the rium position of a bubble in sonoluminescence conditiorieeyl

Navier-Stokes equations for a bubble in an acoustic fielddeio

to verify the relevance of equations (1) and (3) for the dpscr
tion of the bubble motion. The simulations were done for dif-
ferent values of* and the results are summarized by the white
triangles in figure 1 and 2. The error bars represent the atdnd
deviation for a series of several periods of oscillation.eTil-

uid density wagp = 1000 kg/n¥, the surface tension coefficient
o0 =0, the speed of sound in the liquiél = 1481 m/s, acceler-
ation of gravityg = 0.01 m/&, equilibrium radiusRy = 1 mm,
equilibrium pressur@g = 10° Pascals, amplitude of the pressure
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report a characteristic distance from the antinode sm#ilen

1 mm which gives for the parameters used in their experimen
(Ro=3pm, f =195 kHz, p; = 1.4 bar) a value ofUq| of ap-
proximately 10 m/4(consistently of the order of the acceleration
of gravity). In the linear approximation this gives a maximu
translational relative velocity of|2g|/w = 0.16 mm/s, the as-
sociated vertical displacement beini1@|/w? = 1.3 nm. One
might argue however that we have used a linear theory well be
yond its domain of validity (the radial oscillations of then®lu-
minescing bubble being strongly non-linear).
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Figure 2. PHASE SHIFT BETWEEN THE RELATIVE BUBBLE VELOC-
ITY AND THE FLUID VELOCITY AS A FUNCTION OF THE NON-
DIMENSIONAL VISCOSITY V*.

To answer this concern, we used a numerical solution of
equation (4) coupled with a modified Rayleigh-Plesset éqnat
in which liquid compressibility effects are included. Thargm-
eters used are those of Matw@aal: Ry = 3 um, f = 19.5 kHz,
0 = 0.072 kg/g, C, = 1490 m/s,g = —9.81 m/¢, pu = 0.001
kg/m.g, p = 1000 kg/n? and different values of the amplitude
of the acoustic forcingp,. The results are illustrated on figures
3 and 4. The equilibrium positions relative to the antinofle o
the bubble are then obtained from our model. We findui#@
59 um, 49 um for pressure amplitudes of 1.4 bar, 1.3 bar and
1.2 bar respectively, comparable to the positions foundhbyri-
viscid theory but still far from the experimental measuraise
(Matulaet al, 1997a). Notice that the amplitude of the relative
vertical displacement of the bubble is very small (of thesorof
1 nanometer) as predicted by the linear theory (figure 4). Ve-
locities however may be large for a short time (up to 1 m/s).
Full Navier-Stokes simulations (which however include ip |
uid compressibility effects) confirm this result, showirgsign
of any significant translational motion.

This suggests that the Bjerknes force and its effect on the
bubble translational motion is not as significant as orityren-
ticipated. The exact effect of this translational motiorboitbble
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Figure 3. NUMERICAL SOLUTION OF THE RAYLEIGH-PLESSET
EQUATION FOR PARAMETERS USED IN (Matula et al,, 1997a).

that the Bjerknes force could explain the variation of thiern
sity of the emitted light found when doing sonoluminescesce
periments in microgravity (Matulat al, 1996; Matulaet al,
1997b). As far as the spherical stability of the bubble is-con
cerned (including the eventual jet formation), other efextich
as inhomogeneities of the sound field, deviation from sgheéri
geometry in the experiments etc. .. would be more significant

CONCLUSION

We have developed a simple model for the translational mo
mentum of a bubble in an acoustic field. An analytical sohutio
both for the amplitude of the bubble translational osdilatand
for the equilibrium position has been found in the case oflsma
radial and translational motion. The result regarding tmglé&
tude of the bubble motion has been validated using both nume
ical solutions of the model equations and axisymmetric Biavi
Stokes simulations. The model equation result for the éguil
rium position of the bubble gives viscous corrections topghe
vious inviscid models (Crum and Prosperetti, 1983). Howeve
these corrections are too small to account for the discigpan
found for the bubble equilibrium position between theorg an
measurement (Matulet al., 1997a). This discrepancy remains a

shape depends on the coupling with shape modes of the bubblemystery that could be investigated by further full Navi¢ol&s

While this is currently under investigation, one has to adeis
the possibility that this translational motion, which le&d dis-
placements a thousand times smaller than the bubble ramiss,
no significant effect on the bubble shape.

In particular, in view of this hypothesis it would be unlilel

4

simulations.

It has been shown that in the parameter range where son
luminescence has been observed, the translational mdtibe o
bubble due to the pressure gradient is small and may have on
a minor role (if any) to play as far as spherical stability is¢
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Figure 4. NUMERICAL SOLUTION OF THE COUPLED SYSTEM OF
EQUATIONS (4) PLUS THE RAYLEIGH-PLESSET EQUATION FOR PA-
RAMETERS USED IN (Matula et al, 1997a). RELATIVE POSITION OF
THE CENTER OF GRAVITY OF THE BUBBLE VERSUS TIME.

cerned. However, when considering larger bubbles (andecons
guently lower driving frequencies) this motion will becosig-
nificant and should be taken into account if considering keno
minescence upscaling (Hilgenfeldt and Lohse, 1999).
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