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ABSTRACT
In this article we are interested in the coupling between the

translational and radial velocity of a bubble trapped in an acous-
tic field. We write a simple model for the momentum equation
of the center of gravity of the bubble. An analytic solution is
derived in the case of small radial and translational oscillations.
This solution is compared to numerical solutions of the model
equation and to full axisymmetric Navier-Stokes numericalsim-
ulations. Satisfying agreement is found and the non-linearmodel
equations are applied to the case of sonoluminescing bubbles. In
this case, the amplitude of the bubble motion is found to be neg-
ligible. This suggests that the influence of the varying pressure
gradient on the translational motion is not as significant asorigi-
nally anticipated in the case of sonoluminescence.

INTRODUCTION
The acoustic levitation of gas bubbles has been used widely

to study bubble dynamics. The acoustic pressure gradient av-
eraged over one oscillation cycle, or Bjerknes force, allows to
pin the bubble near an antinode of the acoustic field. This tech-
nique is used in sonoluminescence experiments (Barber and Put-
terman, 1991; Gaitanet al., 1992; Crum, 1994). While detailed
studies of the equilibrium position of the levitating bubble are
available (Crum and Prosperetti, 1983; Matulaet al., 1997a), lit-
tle attention has been given to the amplitude of the verticalmo-
tion of the bubble. Indeed, while the Bjerknes force compensates
buoyancy on average over one cycle of oscillation, the instanta-
neous balance between buoyancy and acoustic pressure gradient

is not verified. As a result the bubble oscillates verticallyat the
frequency of the acoustic forcing. This effect could be poten-
tially significant for all matters regarding the shape stability of
the acoustically-levitated bubble. Building on this observation,
Prosperetti has proposed a very seducing explanation of thesono-
luminescence phenomenon (Prosperetti, 1997). It is well known
that a moving and contracting bubble cannot remain spherical
and that a jet forms in the direction of motion. Prosperetti pro-
posed that in the case of sonoluminescence the vertical motion
of the bubble coupled with the violent collapse could lead tothe
formation of a very high-speed jet. Its impact with the bubble
surface would be responsible for the light emission.

The two most actively discussed theories of the light emis-
sion mechanism are the shock wave theory (Greenspan and
Nadim, 1993; Wu and Roberts, 1993; Mosset al., 1997) and the
adiabatic heating theory (Hilgenfeldtet al., 1999). The shock
wave theory relies on the bubble remaining spherical, whilein
the adiabatic heating theory the bubble deformation seems to
play no essential role. The only alternative in which the loss
of spherical symmetry plays a central role for the light emission
mechanism is the jet formation theory.

Another motivation for the study of bubble shape instabili-
ties and thus of its possible forcing by vertical translational mo-
tion arises when considering published data on the physicalpa-
rameters for sonoluminescence. Most reports locate sonolumi-
nescence at pressures and equilibrium radii for which the bub-
ble is actuallyunstable(Prosperetti and Hao, 1999). Thus even
a small forcing by translational motion of bubble deformation
modes could lead to large amplitude effects.
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A final motivation for the detailed study of Bjerknes forces
in sonoluminescence conditions is the discrepancy observed by
Matula et al. (1997a) between their measurements of the bubble
equilibrium position and predictions of an inviscid theory.

In this paper we are interested in a prediction of the ampli-
tude of the vertical motion of an acoustically-levitated bubble.
We will use both physical modelling and direct numerical simu-
lations to assess the accuracy of the models. Implications for the
stability of sonoluminescing bubbles will be discussed.

PHYSICAL MODEL
We want to derive the equation of motion of the center of

gravity of the bubble. The forces acting on the bubble are es-
sentially viscous drag and buoyancy. Following Magnaudet and
Legendre (1998) we can express the viscous drag force on a
spherical bubble with a time-dependent radius as

F = 12πρνRU+

2
3

πρ(3R3U̇ +3R2UṘ)+
4
3

πρR3V̇0; (1)

where the dot denotes the time derivative,ρ is the liquid density,
ν the kinematic viscosity,R the radius of the bubble andU =

U∞�V0. V0 is the velocity of the center of gravity of the bubble
andU∞ is the velocity of the fluid far from the bubble. This
expression is valid only in the case of Reynolds numbers much
larger than unity. The Reynolds number is based either on the
translational relative velocityU or on the radial velocitẏR. When
these two Reynolds numbers are both much smaller than unity,
the history force due to the diffusion of vorticity is no longer
negligible and the expression of the force becomes
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In the case of acoustic bubble levitation, we consider an inter-
mediate scale much larger than the bubble size but much smaller
than the acoustic wavelength. At this scale the acoustic pressure
gradient∇p can be considered spatially constant and the velocity
of the fluid is then given by

U̇∞ =

�∇p
ρ

=�∇φ: (3)

The buoyancy force acting on the bubble is given by
�4=3πR3

(ρ� ρgas)g whereg is the acceleration of gravity. If

we neglect the mass of the gas contained in the bubble, (1) and
(3) give the equation of motion in the case of high Re

U̇ +

�

18ν
R2 +3

Ṙ
R

�

U �2∇φ�2g= 0: (4)

At this point we can write a system of two coupled ordi-
nary differential equations (4) plus the Rayleigh-Plessetequation
(Plesset and Prosperetti, 1977), which describes both the vertical
and the radial oscillation of the levitating bubble. This system
can be solved numerically but it is interesting to try to find an
analytical solution in a particular case.

SMALL AMPLITUDE OSCILLATIONS: THEORY
We will try to find an analytical solution in the case of small

vertical and radial oscillations. When the amplitude of theradial
oscillation is small, the Rayleigh-Plesset equation is shown to
yield a first order solution for the radius of the form

R= R0[1+ εcos(ωt +θ)℄; (5)

whereR0 is the equilibrium radius,ε the relative amplitude of
the radial oscillation,ω the frequency of the acoustic forcing and
θ the phase-shift between the radial oscillation and the acoustic
forcing. Using (5) in (4) and retaining the first order terms in ε
yields

U̇ +

�

18
ν
R2

0

�36
ν
R2

0

εcos(ωt +θ)�3εωsin(ωt +θ)
�

U (6)

�2j∇φjcos(ωt)�2g= 0:

We look for a solution of the formU = acos(ωt) + bsin(ωt)
which yields the system of equations

ωa+18ων?b�2j∇φj= 0; (7)

18ν?a�b= 0; (8)

18ν? sinθa� 3
2 cosθa�18ν?cosθb� 3

2 sinθb� 2g
ωε = 0; (9)

ε(12ν?a+b) = 0; (10)

ε(a�12ν?b) = 0; (11)

where we have introduced the non-dimensional viscosityν? =

ν=ωR2
0. Equations (7) and (8) correspond to terms of frequency

ω and give the leading-order solution for the bubble motion

U = 2
j∇φj

ω
cos(ψ)sin(ωt +ψ) with tanψ = 18ν?: (12)
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Equation (9) corresponds to the condition when the secular term
in (6) vanishes, which gives the equilibrium position defined by

g
j∇φj

=�

ε
1+(18ν?)2

�

3
2

cosθ+9ν?sinθ+(18ν?)2cosθ
�

:

(13)
In the case of a vanishing viscosity, equation (13) yields the re-
sult of Crum and Prosperettig=j∇φj = �3=2εcosθ (Crum and
Prosperetti, 1983). Equations (10) and (11) correspond to terms
of frequency 2ω which vanish with the amplitude of the radial
oscillation.

Equation (12) gives a maximum relative velocityU of twice
the velocity of the fluid far from the bubbleU∞ = j∇φj=ω, ob-
tained when viscosityν? vanishes. As the viscosity increases the
relative velocity decreases and ultimately vanishes.

SMALL AMPLITUDE OSCILLATIONS: NUMERICS
It is important to note that equations (12) and (13) are

valid only for small amplitudes of the radial and vertical oscil-
lations. Moreover, in the case of an oscillating bubble, thetrans-
lational velocity changes sign and consequently the translational
Reynolds number can be arbitrarily small. In these conditions
neither expression (1) nor expression (3) is valid throughout the
oscillation cycle. As it is difficult to derive an analyticalsolution
taking into account the history force we have used a numerical
technique to solve the system of equations (1) or (3) coupled
with the Rayleigh-Plesset equation. Figure 1 and 2 illustrate the
results. An excellent agreement is found between the numerical
solution of (1) (white squares) and the linear theory; the rela-
tive amplitude of the radial oscillation in the numerical solution
is ε = 0:01. The agreement remains very satisfactory for values
of ε up to 0.1. The numerical solution of equation (3) is shown
using black disks. As expected the three solutions ((1), (3)and
linear theory) are close whenν? is small. The limits are also the
same whenν? becomes large. The history force is seen to act
as an anti-dissipative term, which is obviously not the casewhen
the radius of the bubble is constant in time.

As noted above neither of the two model equations (with or
without history force) is valid throughout the oscillationcycle.
We have used our 2D axisymmetric free-surface code (Popinet
and Zaleski, 1998a; Popinet and Zaleski, 1998b) to solve the
Navier-Stokes equations for a bubble in an acoustic field in order
to verify the relevance of equations (1) and (3) for the descrip-
tion of the bubble motion. The simulations were done for dif-
ferent values ofν? and the results are summarized by the white
triangles in figure 1 and 2. The error bars represent the standard
deviation for a series of several periods of oscillation. The liq-
uid density wasρ = 1000 kg/m3, the surface tension coefficient
σ = 0, the speed of sound in the liquidCl = 1481 m/s, acceler-
ation of gravityg = 0:01 m/s2, equilibrium radiusR0 = 1 mm,
equilibrium pressurep0 = 105 Pascals, amplitude of the pressure
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Figure 1. RATIO OF THE AMPLITUDE OF THE RELATIVE BUBBLE

VELOCITY U TO THE FLUID VELOCITY U∞.

fluctuationpa = 104 Pascals, frequency of the acoustic forcing
f = 500 Hz. For small values ofν? the agreement with the linear
theory is very satisfactory. For larger values of the viscosity, the
numerical resolution becomes difficult, our code being mainly
designed to solve high-Reynolds number flows.

LARGE AMPLITUDE OSCILLATIONS AND APPLICA-
TION TO SONOLUMINESCENCE

We can now be confident that our model gives a consistent
prediction for the amplitude of bubble motion. The essential re-
sult of this analysis is that the translational velocity of the bubble
(relative to the fluid) can never be larger than 2j∇φj=ω in the lin-
ear regime. In the case of sonoluminescenceν? is approximately
0.1 (R0 = 10 µm, ν = 10�6 m2/s, f = 25 kHz) which gives a
smaller amplitude ofj∇φj=ω.

The value ofj∇φj is defined through the equilibrium posi-
tion of the bubble. Matulaet al. (1997a) measured the equilib-
rium position of a bubble in sonoluminescence conditions. They
report a characteristic distance from the antinode smallerthan
1 mm which gives for the parameters used in their experiment
(R0 = 3 µm, f = 19:5 kHz, pa = 1:4 bar) a value ofj∇φj of ap-
proximately 10 m/s2 (consistently of the order of the acceleration
of gravity). In the linear approximation this gives a maximum
translational relative velocity of 2j∇φj=ω = 0:16 mm/s, the as-
sociated vertical displacement being 2j∇φj=ω2

= 1:3 nm. One
might argue however that we have used a linear theory well be-
yond its domain of validity (the radial oscillations of the sonolu-
minescing bubble being strongly non-linear).
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Figure 2. PHASE SHIFT BETWEEN THE RELATIVE BUBBLE VELOC-

ITY AND THE FLUID VELOCITY AS A FUNCTION OF THE NON-

DIMENSIONAL VISCOSITY ν?.

To answer this concern, we used a numerical solution of
equation (4) coupled with a modified Rayleigh-Plesset equation
in which liquid compressibility effects are included. The param-
eters used are those of Matulaet al: R0 = 3 µm, f = 19:5 kHz,
σ = 0:072 kg/s2, Cl = 1490 m/s,g = �9:81 m/s2, µ = 0:001
kg/m.s2, ρ = 1000 kg/m3 and different values of the amplitude
of the acoustic forcingpa. The results are illustrated on figures
3 and 4. The equilibrium positions relative to the antinode of
the bubble are then obtained from our model. We find 79µm,
59 µm, 49 µm for pressure amplitudes of 1.4 bar, 1.3 bar and
1.2 bar respectively, comparable to the positions found by the in-
viscid theory but still far from the experimental measurements
(Matulaet al., 1997a). Notice that the amplitude of the relative
vertical displacement of the bubble is very small (of the order of
1 nanometer) as predicted by the linear theory (figure 4). Ve-
locities however may be large for a short time (up to 1 m/s).
Full Navier-Stokes simulations (which however include no liq-
uid compressibility effects) confirm this result, showing no sign
of any significant translational motion.

This suggests that the Bjerknes force and its effect on the
bubble translational motion is not as significant as originally an-
ticipated. The exact effect of this translational motion onbubble
shape depends on the coupling with shape modes of the bubble.
While this is currently under investigation, one has to consider
the possibility that this translational motion, which leads to dis-
placements a thousand times smaller than the bubble radius,has
no significant effect on the bubble shape.

In particular, in view of this hypothesis it would be unlikely
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Figure 3. NUMERICAL SOLUTION OF THE RAYLEIGH-PLESSET

EQUATION FOR PARAMETERS USED IN (Matula et al., 1997a).

that the Bjerknes force could explain the variation of the inten-
sity of the emitted light found when doing sonoluminescenceex-
periments in microgravity (Matulaet al., 1996; Matulaet al.,
1997b). As far as the spherical stability of the bubble is con-
cerned (including the eventual jet formation), other effects such
as inhomogeneities of the sound field, deviation from spherical
geometry in the experiments etc. . . would be more significant.

CONCLUSION
We have developed a simple model for the translational mo-

mentum of a bubble in an acoustic field. An analytical solution
both for the amplitude of the bubble translational oscillation and
for the equilibrium position has been found in the case of small
radial and translational motion. The result regarding the ampli-
tude of the bubble motion has been validated using both numer-
ical solutions of the model equations and axisymmetric Navier-
Stokes simulations. The model equation result for the equilib-
rium position of the bubble gives viscous corrections to thepre-
vious inviscid models (Crum and Prosperetti, 1983). However
these corrections are too small to account for the discrepancy
found for the bubble equilibrium position between theory and
measurement (Matulaet al., 1997a). This discrepancy remains a
mystery that could be investigated by further full Navier-Stokes
simulations.

It has been shown that in the parameter range where sono-
luminescence has been observed, the translational motion of the
bubble due to the pressure gradient is small and may have only
a minor role (if any) to play as far as spherical stability is con-
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Figure 4. NUMERICAL SOLUTION OF THE COUPLED SYSTEM OF

EQUATIONS (4) PLUS THE RAYLEIGH-PLESSET EQUATION FOR PA-

RAMETERS USED IN (Matula et al., 1997a). RELATIVE POSITION OF

THE CENTER OF GRAVITY OF THE BUBBLE VERSUS TIME.

cerned. However, when considering larger bubbles (and conse-
quently lower driving frequencies) this motion will becomesig-
nificant and should be taken into account if considering sonolu-
minescence upscaling (Hilgenfeldt and Lohse, 1999).
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