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Abstract 
 

Many two-phase flow situations, from engineering science to astrophysics, deal with transition from 
dense (high concentration of the condensed phase) to dilute concentration (low concentration of the 
same phase), covering the entire range of volume fractions. Some models are now well accepted at the 
two limits, but none is able to cover accurately the entire range, in particular regarding waves 
propagation. In the present work an alternative to the Baer and Nunziato (1986) (BN for short) model, 
initially designed for dense flows, is built. The corresponding model is hyperbolic and 
thermodynamically consistent. Contrarily to the BN model that involves 6 wave speeds, the new 
formulation involves 4 waves only, in agreement with the Marble (1963) model based on pressureless 
Euler equations for the dispersed phase, a well-accepted model for low particle volume concentrations. 
In the new model, the presence of pressure in the momentum equation of the particles and 
consideration of volume fractions in the two phases render the model valid for large particle 
concentrations. A symmetric version of the new model is derived as well for liquids containing gas 
bubbles. This model version involves 4 wave speeds as well, but with different wave’s speeds. Last, the 
two sub-models with 4 waves are combined in a unique formulation, valid for the full range of volume 
fractions. It involves the same 6 wave’s speeds as the BN model, but at a given point of space 4 waves 
only emerge, depending on the local volume fractions.  The non-linear pressure waves propagate only in 
the phase with dominant volume fraction. The new model is tested numerically on various test problems 
ranging from separated phases in a shock tube to shock – particle cloud interaction. Its predictions are 
compared to BN and Marble models as well as against experimental data.  
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I. Introduction 
It is well accepted that hyperbolic models are mandatory to deal with phenomena involving wave 
propagation. This is the case for multiphase flow mixtures in many situations such as in particular shocks 
and detonations propagation in granular explosives and in fuel suspensions, as well as liquid-gas mixtures 
with bubbles, cavitation and flashing, as soon as motion is intense and governed by pressure gradients. 
This is thus the case of most unsteady two-phase flows situations.  
Wave propagation is important as it carries pressure, density and velocity disturbances. Sound 
propagation is also very important as it determines critical (choked) flow conditions and associated mass 
flow rates. It has also fundamental importance on sonic conditions of detonation waves when the two-
phase mixture is exothermically reacting (Petitpas et al., 2009). 
Hyperbolicity is also related to the causality principle, meaning that initial and boundary conditions are 
responsible of time evolution of the solution. When dealing with first-order partial differential equations 
it means that the Riemann problem must have a solution, and the Riemann problem is correctly posed 
only if the equations are hyperbolic. 
However, only a few two-phase flow models are hyperbolic in the whole range of parameters. The Baer 
and Nunziato (1986) model seems to be the only formulation able to deal with such requirement. Its 
symmetric extension (Saurel et al., 2014) facilitates the Riemann problem resolution as the corresponding 
model involves 7 wave’s speeds (instead of 6 in the original version). See also Ambroso et al. (2012) for 
similar conclusions.  
However, in the dilute limit at least, the acoustic properties of this model seem inconsistent (Lhuillier et 
al., 2013). Indeed with this model, the dispersed phase sound speed corresponds to the one of the pure 
phase, while this phase is not continuous and unable to propagate sound in reality, at least at a scale 
larger than particle’s one. When the phase is not continuous (dispersed drops in a gas, dispersed bubbles 
in a liquid), the associated sound speed should vanish, such effect being absent in the formulation. 
In the low particles concentration limit, the Marble (1963) model is preferred. This model corresponds 
to the Euler equations with source terms for the gas phase and pressureless gas dynamic equations for 
the particle phase (see also Zeldovich, 1970). This model is thermodynamically consistent and hyperbolic 
as well, except that the particle phase equations are hyperbolic degenerate. In this model, contrarily to 
the BN model, sound doesn’t propagate in the particles phase, this behaviour being more physical in this 
limit. However, the Marble model has a limited range of validity as the volume of the dispersed phase is 
neglected, this assumption having sense only for low (less than per cent) condensed phase volume 
fraction. 
There are thus fundamental differences between these two models: 

- The volume occupied by the condensed phase is considered in BN while it is neglected in the 
dilute model, restricting its validity to low dispersed phase volume fractions. 

- Condensed phase compressibility is considered in BN while incompressible particles are assumed 
in the dilute formulation. 

- Acoustic properties of the BN model are well accepted in the dense domain but seem 
inappropriate in the dilute limit.  

Even if these two models can be used in the entire space of two-phase flow variables without yielding 
computational failure (this is characteristic of thermodynamically consistent hyperbolic models) validity 
of their results is questionable when they are used out of their range of physical validity. This issue has 
been clearly understood in Lhuillier et al. (2013), McGrath et al. (2016) and Houim and Oran (2016) 
where various attempts to build new formulations are reported. In Lhuillier et al. (2013) discussion on 
the volume fraction equation is done, but no explicit flow model is given. In McGrath et al. (2016) a 
model is given with conditional hyperbolicity. Same issue is present with different cause in Houim and 
Oran (2016).  
The aim of the present paper is to build an alternative to the BN model with improved acoustic 
properties, while remaining unconditionally hyperbolic and thermodynamically consistent.  
The new model is derived from number density and particle radius (or bubble radius) evolution 
equations resulting in a volume fraction evolution equation expressed in conservation form with 
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pressure relaxation. Replacing the transport equation in the conventional balance equations of mass, 
momentum and energy of the phases has dramatic influence on wave’s propagation and structure of the 
equations. 
The paper is organised as follows. The well-known BN and Marble models are recalled in Section II to 
present the main alternatives of existing two-phase hyperbolic models. Derivation of the volume fraction 
equation of the new model is addressed in Section III. The new model is then derived in Section IV and 
its hyperbolicity demonstrated. Its compatibility with the model of Kapila et al. (2001) is demonstrated 
as asymptotic limit of the new model, in the limit of stiff mechanical relaxation. Computed results are 
then examined in Section V, compared to exact and experimental solutions when available. A symmetric 
variant of the new flow model, aimed to model bubbly liquids, is derived in Section VI and typical 
solutions are examined. A general model, aimed to address the full spectrum of volume fractions is then 
derived in Section VII. Conclusions are given in Section VIII. 
 
II. Well-known limit models of two-phase flows 
Two hyperbolic models are widely used in the two-phase flow literature and their main characteristics are 
recalled hereafter.  
 

a) BN type model (1986) 
The Baer and Nunziato (1986) model is recalled hereafter, in the absence of granular effects 
(‘configuration’ pressure and energy) as well as heat and mass transfers. Mechanical relaxation effects 
only are considered in addition to waves’ dynamics. A variant of this model is available as well in 
Romenski and Toro (2004), where a conservative formulation is obtained.  
The symmetric variant of Saurel et al. (2003) is presented hereafter rather than the original BN. 
The evolution equations for phase 1 read,  

1 1
I 1 2u (p p )

t x

∂α ∂α+ = µ −
∂ ∂

 

1 1( ) ( u)
0

t x

∂ αρ ∂ αρ+ =
∂ ∂

 (II.1) 

2
1 1 1

I 2 1

( u) ( u p)
p (u u )

t x x

∂ αρ ∂ αρ + α ∂α+ = + λ −
∂ ∂ ∂

  

'1 1 1
I I I 2 1 I 1 2

( E) ( ( E p)u)
p u  u (u u ) p (p p )

t x x

∂ αρ ∂ α ρ + ∂α ′+ = + λ − − µ −
∂ ∂ ∂

  

The evolution equations of the second phase are,  

2 2( ) ( u)
0

t x

∂ αρ ∂ αρ+ =
∂ ∂

 (II.2) 

2
2 2 2

I 2 1

( u) ( u p)
p (u u )

t x x

∂ αρ ∂ αρ + α ∂α+ = − λ −
∂ ∂ ∂

  

'2 2 2
I I I 2 1 I 1 2

( E) ( ( E p)u)
p u  u (u u ) p (p p )

t x x

∂ αρ ∂ α ρ + ∂α ′+ = − λ − + µ −
∂ ∂ ∂

 

With the following definitions and notations: 

- kα , kρ , ku , kE , kp  denote respectively the volume fraction, material density, velocity, total energy 

and pressure of the phase k (k=1,2). 

- The total energy of the phases reads,
2

k k k

1
E e u

2
= + . 

- The pressures are given by convex equations of state of the form k k k kp p ( ,e )= ρ .  

- The velocities relax each other to a common equilibrium one at a rate controlled by λ, modelled by 
conventional drag force correlations and specific interfacial area. 
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- The pressure relax each other to a common equilibrium one at a rate controlled by µ. Estimates for 

this relaxation parameter are given in the references above: I

1 2

A

Z Z
µ =

+
, where IA represents the 

interfacial exchange area. The specific interfacial area is given by 1
I

1

3
A

R

α= if phase 1 represents the 

dispersed phase made of particles or bubbles of constant radius 1R . Obviously, more sophisticated 

models of interfacial area are possible. 
- The interfacial variables are estimated by, 

 ' 1 2 1
I I

1 2

p p
u u sgn

x Z Z

∂α − = +  ∂ + 
  with 

21

2211'

I
ZZ

uZuZ
u

+
+= ,                                      

 2 1 1 2 1 1 2
I 2 1

1 2 1 2

Z p Z p Z Z
p sgn (u u )

Z Z x Z Z

+ ∂α = + − + ∂ + 
 with ' 2 1 1 2

I
1 2

Z p Z p
p

Z Z

+=
+

, 

where k k kZ c= ρ  represents the acoustic impedance of phase k. 

This symmetric formulation of the BN model has some advantages: 
-Its extension to more than two phases is quite easy. 
-It is able to deal with contact and permeable interfaces (Saurel et al., 2003, Saurel et al., 2014). 
-It involves an extra wave, not aligned with the condensed phase velocity, this property having 
benefits at least for numerical resolution (Ambroso et al., 2012, Furfaro and Saurel, 2015). 

This system admits the following mixture entropy equation: 

( )

( )

1 1 2 2 1 1 1 2 2 2

2

2 21 1 1 2 1
2 1 2 2 1 2 1 2 12

1 1 2 1 21 2

2

2 1 2 1
2 1 2 2 12

2 1 2

( ) s ( ) s ( ) u s ( ) u s

t x

Z Z Z1
(p p ) sgn Z (u u )  (u u ) (p p )

T x x Z Z Z ZZ Z

Z Z1
(p p ) sgn Z (u u )

T x xZ Z

∂ αρ + αρ ∂ αρ + αρ+ =
∂ ∂

  ∂α  ∂α  − + − + λ − + µ −   ∂ ∂ + + +    

 ∂α  ∂α + − + − + λ  ∂ ∂ +  

2 22
2 1 2 1

1 2 1 2

Z
(u u ) (p p )

Z Z Z Z

  − + µ − + +  

 

Its 7 associated wave speeds are: 

I Iuλ = , 1 1uλ = , 2 1 1u cλ = + ,  3 1 1u cλ = − , 4 2uλ = , 5 2 2u cλ = + ,  6 2 2u cλ = −  . 

This model is consequently hyperbolic, thermodynamically consistent and symmetric. However, the 
wave speeds are independent of the volume fraction, meaning that in the dilute limit, the sound speed in 
the condensed phase is unchanged, this behaviour being questionable as this phase is no longer 
continuous.  
 

b) Dilute two-phase flow model (Marble, 1963) 
As the model that follows is no longer symmetric it is necessary to precise the phases. Phase 1 is 
considered to be the condensed one and the gas phase is denoted by the subscript 2. The ‘apparent 
density’ of the dispersed phase is introduced as, 1 1( )ρ = αρ . 

In this approach, 1 0.01α < and volume fraction effects are neglected in the gas phase equations. 

Phase 1 (dispersed) 

1 1 1u
0

t x

∂ρ ∂ρ+ =
∂ ∂

 

2
1 1 1 1

2 1

u u
(u u )

t x

∂ρ ∂ρ+ = λ −
∂ ∂

 (II.3) 

1 1 1 1 1e e u
 0

t x

∂ρ ∂ρ+ =
∂ ∂

 or alternatively 1 1 1 1 1
1 2 1

E E u
 u (u u )

t x

∂ρ ∂ρ+ = λ −
∂ ∂

. 
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Phase 2 (gas) 

2 2 2u
0

t x

∂ρ ∂ρ+ =
∂ ∂

 (II.4) 

2
2 2 2 2 2

2 1

u u p
(u u )

t x

∂ρ ∂ρ ++ = −λ −
∂ ∂

  

2 2 2 2 2 2
1 2 1

E ( E p )u
u (u u )

t x

∂ρ ∂ ρ ++ = −λ −
∂ ∂

 

This system admits the following mixture entropy equation: 

1 1 2 2 1 1 1 2 2 2 1 2

2

s s s u s u (u u )²

t x T

∂ρ + ρ ∂ρ + ρ λ −+ =
∂ ∂

 

Its associated wave speeds are: 

1 1uλ =  , 2 2uλ = , 3 2 2u cλ = + ,  4 2 2u cλ = −  . 

As 1 1uλ =  is fold three times, the equations of phase 1 are hyperbolic and linearly degenerate, while the 

ones of the gas phase are strictly hyperbolic. 
These two models are thus well posed in the sense that they are thermodynamically consistent, frame 
invariant and hyperbolic. Both models can be solved by Godunov type methods as the Riemann 
problem has been addressed for both (Saurel et al., 1994, Saurel and Abgrall, 1999, Schwendeman et al., 
2006, Deledicque and Papalexandris, 2010, Furfaro and Saurel, 2015). However, well posedness is a 
necessary condition but not a sufficient one for physical validity. In particular, considering again the BN 

model, the condensed phase sound speed 1c is well defined as a thermodynamic variable and sound 

disturbances propagate at the particle or grain level. But sound cannot propagate in the mixture at speed 

1c  as the continuum approximation is no longer valid for the condensed phase as soon as the mixture 

becomes dilute enough. See also Lhuillier et al. (2013) and McGrath et al. (2016) for further arguments. 
 
III. Alternative volume fraction equations 
The volume fraction equation of the BN model is the first equation of System (II.1) and can be derived 
from averaging method considering the transport of a characteristic function, equal to 1 in a given phase 
and 0 in the other phase. See for example Abgrall and Saurel (2003), Drew and Passman (2006).   
Let us now consider another point of view as done by Lhuillier et al. (2013) and consider liquid drops (or 
condensed phase particles) suspended in a gas. The radius R1 of a single spherical compressible liquid 

drop surrounded by a gas evolves, under acoustic approximation ( u p / c∆ ≈ ∆ ρ ) with the following 

transport equation (Chinnayya et al., 2004), 

1 1 1 2

1 1

d R p p

dt c

−≈
ρ

,  (III.1) 

where 1
1

d
u

dt t x

∂ ∂= +
∂ ∂

 denotes the Lagrangian derivative of phase 1.  

Estimate of the pressure relaxation time 1τ is given by the time needed for an acoustic wave to travel the 

particle radius, 

1
1

1

R

c
τ ≈ . 

For a liquid drop of 1 mm radius suspended in air the pressure relaxation time is therefore of the order 
of 1 microsecond.  This is very small in most practical situations compared to the other characteristic 
times related to drag, heat exchange, most situations of wave propagation and fluid motion. 
With this definition (III.1) becomes, 
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1 1 1 1 2
2

1 1

d R R p p

dt c

−≈
τ ρ

 

Trivial transformation of the former equation implies, 

21 1 1 1 2
1 2

1 1 1

d V R p p
4 R

dt c

−≈ π
τ ρ

  (III.2) 

where 
3

1 1

4
V R

3
= π denotes the volume of the drop. 

In absence of fragmentation and coalescence, the specific number of drops per unit volume obeys the 
following balance equation: 

1 1 1N N u
0

t x

∂ ∂+ =
∂ ∂

,  (III.3) 

where 1N represents the specific number of drops. 

Multiplying (III.2) by 1N  yields, 

1 1 1 1 1 2
2

1 1 1

u 3 p p

t x c

∂α ∂α α −+ =
∂ ∂ τ ρ

  (III.4) 

as 1 1 1N Vα = . 

The volume fraction equation is now in conservative form with a pressure relaxation term. 
It is interesting to consider the symmetric situation of liquid containing spherical bubbles. 
In this situation the bubble radius evolves according to,  

2 2 2 1

1 1

d R p p

dt c

−≈
ρ

,  

as the acoustic impedance of the less compressible phase ( 1 1cρ ) controls the interface velocity. 

The specific number of bubbles per unit volume obeys the balance law, 

2 2 2N N u
0

t x

∂ ∂+ =
∂ ∂

,  

and the corresponding volume fraction equation now reads, 

2 2 2 2 2 1

2 1 1 2

u 3 p p

t x c c

∂α ∂α α −+ =
∂ ∂ τ ρ

  (III.5) 

with 2
2

2

R

c
τ ≈ . 

We now examine the implications of such volume fraction equations (III.4 and III.5) on the flow model. 
The analysis begins with a model based on (III.4) to start with a concrete example. 
 
IV. The new model 

For the sake of simplicity in the notations and compatibility with (II.1), Equation (III.4) is expressed as 

1 1 1
1 2

u
μ(p p )

t x

∂α ∂α+ = −
∂ ∂

,  (IV.1) 

with 1
2

1 1 1

3
μ

c

α=
τ ρ

, where the estimate for the pressure relaxation time 1τ  has been inserted. 

The same mass, momentum and energy equations of Systems (II.1)-(II.2) are reconsidered as, 

1 1( ) ( u)
0

t x

∂ αρ ∂ αρ+ =
∂ ∂

  

2
1 1 1

I 2 1

( u) ( u p)
p (u u )

t x x

∂ αρ ∂ αρ + α ∂α+ = + λ −
∂ ∂ ∂
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1 1 1
I I 2 1 2 1

( E) ( ( E p)u)
p  u (u u ) H(T T )

t x t

∂ αρ ∂ α ρ + ∂α+ = − + λ − + −
∂ ∂ ∂

  

2 2( ) ( u)
0

t x

∂ αρ ∂ αρ+ =
∂ ∂

 (IV.2) 

2
2 2 2

I 2 1

( u) ( u p)
p (u u )

t x x

∂ αρ ∂ αρ + α ∂α+ = − λ −
∂ ∂ ∂

  

2 2 1
I I 2 1 2 1

( E) ( ( E p)u)
p  u (u u ) H(T T )

t x t

∂ αρ ∂ α ρ + ∂α+ = − λ − − −
∂ ∂ ∂

 

The right hand side of the phase energy equations has been modified with the presence of 1
Ip

t

∂α
∂

, the 

interstitial pressure work, present in (II.1-2) differently. 
System (IV.2) obviously satisfies mixture mass, mixture momentum and mixture energy conservation, 
for any model of interfacial pressure Ip  and interfacial velocity Iu . Possible estimates are for example 

(Saurel et al., 2003):  

2 1 1 2
I

1 2

Z p Z p
p

Z Z

+=
+

, 

1 1 2 2
I

1 2

Z u Z u
u

Z Z

+=
+

,  (IV.3) 

Convective heat exchange ( 2 1H(T T )− ) has been inserted for the sake of generality where H denotes the 

product of the specific interfacial area and heat exchange coefficient, related to the Nusselt number. 
Balance equations (IV.2) are considered not only in the BN formulation, but in any two-phase Eulerian 
model when the effects of volume fraction are considered. The only point to underline is that the 
various pressures are distinct at this level. 
Two questions arise immediately, regarding the fulfilment of the second law of thermodynamics and the 
hyperbolicity of (IV.1-2). In this aim, the equations are expressed in a set of appropriate variables. 
 

a) Physical variables formulation 
System (IV.1-2) is expressed with ‘physical variables’: volume fraction, density, velocity, internal energy 
and entropy for each phase: 

1 1 1
1 1 2

d u
μ(p p )

dt x

α ∂+ α = −
∂

  (IV.4) 

1 1 1
1 2

1

d μ
(p p )

dt

ρ ρ= − −
α

 

1 1 1 I 1 1 2 1

1 1 1

d u p (p p ) (u u )1

dt x ( ) x ( )

∂ − ∂α λ −+ = +
ρ ∂ αρ ∂ αρ

 

1 1 1 I 1 I 1 2 1 2 1
I 1 2

1 1 1 1 1

d e p p u (u u )(u u ) H(T T )μ
p (p p )

dt x ( ) ( )

− ∂ λ − − −+ = − − + +
ρ ∂ α ρ αρ αρ

 

1 1 1 I 1 I 1 2 1 2 1
I 1 1 2

1 1 1 1 1 1 1 1 1

d s p p u (u u )(u u ) H(T T )μ
(p p )(p p )

dt T x T ( ) T ( ) T

− ∂ λ − − −+ = − − − + +
ρ ∂ α ρ αρ αρ

 

( )2 2 2 1 1 1 2 2
1 2 2 2 1 2

2 2 2

d u u
u u μ(p p )

dt x x x

ρ ρ ∂α α ∂ ∂ ρ+ − + ρ + ρ = −
α ∂ α ∂ ∂ α

 

2 2 2 I 2 2 2 1

2 2 2

d u p p p (u u )1

dt x ( ) x ( )

∂ − ∂α λ −+ = −
ρ ∂ αρ ∂ αρ
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( )I 1 22 2 2 2 1 I 1 1 I 1 2 I 2 2 1 2 1

2 2 2 2 2 2 2 2 2

p u ud e p u p u μp (p p ) (u u )(u u ) H(T T )

dt x x x ( ) ( )

−∂ α ∂ ∂α − λ − − −+ + + = − −
ρ ∂ α ρ ∂ α ρ ∂ α ρ αρ αρ

 

( )I 2 1 22 2 1 I 2 1 1 1 2 I 2 I 2 2 1 2 1

2 2 2 2 2 2 2 2 2 2 2 2 2

(p p ) u ud s (p p ) u μ(p p )(p p ) (u u )(u u ) H(T T )

dt T x T x T ( ) T ( ) T

− −α − ∂ ∂α − − λ − − −+ + = − −
α ρ ∂ α ρ ∂ α ρ αρ αρ

The second equation of this system is particularly interesting. It means that phase 1 density is 
independent of velocity divergence. As phase 1 is dispersed, there is no reason that droplet cloud 
contraction or expansion make the density of that phase vary. In the present formulation, it varies only 
as a consequence of drop contraction or expansion, due to pressure differential.  
 

b) Stiff pressure relaxation limit 
Former system dramatically simplifies in the stiff pressure relaxation limit, as shown hereafter. Let us 
consider first-order expansions for the pressures, 

( )2 0 1
k 1 1 k kp c p p ...= ρ +ε +  (IV.5) 

Where, 

-ε  is of the order of the pressure relaxation time ( 1ε ≈ τ ), tending to zero in most situations ( 0+ε → ), 

-
0
kp and 

1
kp are respectively the dimensionless pressures at leading and first order of the Taylor 

expansion.  
Inserting these definitions in (III.4) it becomes,  

0 1 0 11 1 1 1
1 1 2 2

u 3
(p p p p )

t x

∂α ∂α α+ = + ε − − ε
∂ ∂ ε

 

This equation implies two relations, as ε  is arbitrarily small: 
0 0
1 2p p=  (IV.6) 

and, 

1 11 1 1
1 2

u
p p

t x

∂α ∂α+ = −
∂ ∂

 (IV.7) 

The equilibrium condition (IV.6) is valid at leading order only and is different of the strict pressure 

equilibrium condition,  

1 2p p= , (IV.8) 

widely used in two phase flow literature. Such strict equality results in non-hyperbolic models (see for 
example Guidaglia et al., 2001).  
Equation (IV.7) means that pressure fluctuations are still present in the flow model, each time the 

relaxation coefficient μ appears in factor of the pressure differential 1 2(p p )− .  

Let us for example examine the entropy equation of the first phase that becomes, after inserting (IV.5): 

( ) ( )

( ) ( )

2 0 0 2 1 1
1 1 I 1 1 I1 1 1 1

1 1

2
0 0 1 1 0 0 1 11 I 1 2 1 2 1
1 I 1 I 1 2 1 2

1 1 1 1 1

c p p c p pd s u u

dt T x T x

3c (u u )(u u ) H(T T )
p p (p p ) p p (p p )

T ( ) T ( ) T

− −∂ ∂+ + ε =
∂ ∂

λ − − −− − + ε − − + ε − + +
ε αρ αρ

 

With the help of (IV.6) simplifications appear, 

( )2 1 1 2
1 1 I 1 11 1 1 1 I 1 2 1 2 1

1 I
1 1 1 1 1 1

c p pd s u 3c (u u )(u u ) H(T T )
(p p )²

dt T x T ( ) T ( ) T

− ∂ λ − − −+ ε = − ε − + +
∂ αρ αρ

. 

Under the assumption of smooth solutions and as 0+ε → , it reduces to: 



9 
 

1 1 I 1 2 1 2 1

1 1 1 1

d s (u u )(u u ) H(T T )

dt ( ) T ( ) T

λ − − −= +
αρ αρ

 

Therefore all terms involving pressure differential vanish, except those related to first-order pressure 
relaxation effects (quadratic pressure differential terms vanish). The resulting limit system reads, 

1 1 1
1 1 2

d u
μ(p p )

dt x

α ∂+ α = −
∂

  (IV.9) 

1 1 1
1 2

1

d μ
(p p )

dt

ρ ρ= − −
α

 

1 1 1 2 1

1 1

d u p (u u )1

dt x ( )

∂ λ −+ =
ρ ∂ αρ

 

1 1 I 1 2 1 2 1
I 1 2

1 1 1 1

d e (u u )(u u ) H(T T )μ
p (p p )

dt ( ) ( )

λ − − −= − − + +
α ρ αρ αρ

 

1 1 I 1 2 1 2 1

1 1 1 1

d s (u u )(u u ) H(T T )

dt ( ) T ( ) T

λ − − −= +
αρ αρ

 

( )2 2 2 1 1 1 2 2
1 2 2 2 1 2

2 2 2

d u u
u u μ(p p )

dt x x x

ρ ρ ∂α α ∂ ∂ ρ+ − + ρ + ρ = −
α ∂ α ∂ ∂ α

 

2 2 2 2 1

2 2

d u p (u u )1

dt x ( )

∂ λ −+ = −
ρ ∂ αρ

 

( )I 1 22 2 2 2 1 I 1 1 I 1 2 I 2 2 1 2 1

2 2 2 2 2 2 2 2 2

p u ud e p u p u μp (p p ) (u u )(u u ) H(T T )

dt x x x ( ) ( )

−∂ α ∂ ∂α − λ − − −+ + + = − −
ρ ∂ α ρ ∂ α ρ ∂ α ρ αρ αρ

 

2 2 I 2 2 1 2 1

2 2 2 2

d s (u u )(u u ) H(T T )

dt ( ) T ( ) T

λ − − −= − −
αρ αρ

 

With the help of interfacial variables estimates (IV.3) the entropy equations become, 

1 1 2 2 1
2 1

1 1 1 2 1 1

d s Z H(T T )
(u u )²

dt ( ) T Z Z ( ) T

−λ= − +
αρ + αρ

 

2 2 1 2 1
2 1

2 2 1 2 2 2

d s Z H(T T )
(u u )²

dt ( ) T Z Z ( ) T

−λ= − −
αρ + αρ

 

Combination of these equations with the mass equations results in the following mixture entropy 
equation, that guarantees non-negative evolutions, 

1 1 1 2 2 2 1 1 1 1 2 2 2 2 2 1 2 1
2 1

1 2 1 2 1 2

s s s u s u Z Z H(T T )²
(u u )²

t x T T Z Z T T

 ∂α ρ + α ρ ∂α ρ + α ρ −λ+ = + − + ∂ ∂ +   
(IV.10)

 

System (IV.9) is consequently entropy preserving.  

It is interesting to note that, in the present limit, the internal energy equation of the first phase expresses 

in conservation form:   

1 1 1 1 1 1 1
I 1 2 I 1 2 1 2 1

e e u
μp (p p ) (u u )(u u ) H(T T )

t x

∂α ρ ∂α ρ+ = − − + λ − − + −
∂ ∂

 (IV.11)
 

We now check hyperbolicity of the same equations. 

c) Hyperbolicity 
System (IV.9) in absence of relaxation effects, is expressed as, 

W W
A(W) 0

t x

∂ ∂+ =
∂ ∂

, 

with, 
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( )T

1 1 2 1 1 2 2W , s , s , , u , , u= ρ α ρ . 

The Jacobian matrix reads, 

1

2

1

1

2

1 1

2
1 1

1
1 1 1

2 1
1 2 2 2 2

2 2

2
2 2

2
2 2 2

u 0 0 0 0 0 0

0 u 0 0 0 0 0

0 0 u 0 0 0 0

0 0 0 u 0 0

c p1
0 0 u 0 0A(W) s

0 0 0 (u u ) u

p c1
0 0 0 0 u

s

ρ

ρ

 
 
 
 
 α 
 ∂ = ρ ρ ∂ 
 

ρ α − ρ ρ α α
 
 ∂
  ρ ∂ ρ 

. 

The wave speeds, solution of  A I 0−λ =  are, 

1 4 1u−λ = , 5 2uλ = , 6 2 2u cλ = −  and 7 2 2u cλ = +  .  (IV.12) 
All roots being real the system is unconditionally hyperbolic. The wave speeds correspond to the one of 
the dilute model of Marble (1963) (Systems II.2 – II.3) and not those of Baer and Nunziato (1986), as 
expected.  
 

d) Model summary 
The flow model thus consists in System (IV.1-2) with the condition: 

1 0+τ →  (IV.13) 

Alternatively it can be expressed as, 

1 1 1
1 2

u
(p p )

t x

∂α ∂α+ = µ −
∂ ∂

,           with  µ → +∞  

1 1( ) ( u)
0

t x

∂ αρ ∂ αρ+ =
∂ ∂

, 

2
1 1 1 1 1 1 1 1 1

I 2 1

u u p
p (u u )

t x x

∂α ρ ∂α ρ + α ∂α+ = + λ −
∂ ∂ ∂

, 

1 1 1 1 1 1 1 2
I 1 2 2 1 2 1

1 2

e u e Z
p (p p ) (u u )² H(T T )

t x Z Z

∂α ρ ∂α ρ+ = −µ − + λ − + −
∂ ∂ +

, 

2 2( ) ( u)
0

t x

∂ αρ ∂ αρ+ =
∂ ∂

,                          (IV.14) 

1 1 1 2 2 2 1 1 1 1 1 2 2 2 2 2( u u ) ( u ² p ) ( u ² p )
0

t x

∂ α ρ + α ρ ∂ α ρ + α + α ρ + α+ =
∂ ∂

, 

1 1 1 2 2 2 1 1 1 1 1 2 2 2 2 2( E E ) u ( E p ) u ( E p )
0

t x

∂ α ρ + α ρ ∂α ρ + + α ρ ++ =
∂ ∂

. 

In this formulation there is a single non-conservative equation (the momentum one of the liquid phase) 
as the momentum of the second phase is deduced from the mixture momentum equation. The 
conservative internal energy equation for the liquid phase is a consequence of the second equation of 
(IV.4) and stiff pressure relaxation limit. This is a nice property that may simplify shock conditions 
determination. Obviously, System (IV.14) can be complemented by mass transfer.  
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e) Stiff mechanical relaxation limit 

We now address both stiff pressure and velocity relaxation limit to check compatibility of the model 

with the Kapila et al. (2001) one. This is important for the computation of material interfaces with 

capturing methods. Here, only pressure and velocity relaxation processes are considered. They are 

considered to relax at infinite rate.   

The pressure evolution equations read, 
2

1 1 1 1
1 1 2

1

p p c
u (p p )

t x

∂ ∂ ρ+ = − µ −
∂ ∂ α  

2 2
2 2 2 2 1 1 2 2 2 2

2 1 2
2 2

p p c u u c
u (p p )

t x x

∂ ∂ ρ ∂α + α ρ+ + = µ −
∂ ∂ α ∂ α  

Taking the difference,  
2 2 2

1 2 2 2 1 1 2 2 1 1 2 2
1 2 1 2

2 1 2

p p c u u c c
u u (p p )

x x x

 ∂ ∂ ρ ∂α + α ρ ρ− − = − + µ − ∂ ∂ α ∂ α α 
.

 

In the stiff pressure ( 0 0 0
1 2p p p= = ) and velocity relaxation limits ( 0 0 0

1 2u u u= = ), 
2

2 2

2
1 2 2 2

1 1 2 2

1 2

c
u

(p p )
c c x

ρ
α ∂µ − →

ρ ρ ∂+
α α

 

Inserting this result in the volume fraction equation, 
2 2

1 1 1 1 2 2
2 2

1 1 2 2

1 2

c c u
u

c ct x x

∂α ∂α ρ − ρ ∂+ =
ρ ρ∂ ∂ ∂+
α α

 ,
 

the volume fraction equation of the Kapila et al. (2001) model is recovered.  

The mixture sound speed at mechanical equilibrium is thus that of Wood (1930), 1 2
2 2 2

1 1 2 2

1

c c c

α α= +
ρ ρ ρ

 

while for the Marble model with stiff velocity relaxation, the mechanical equilibrium sound speed is 

2 22
2c c

 ρ=  ρ 
, which is very different.  

As the Kapila model is recovered in the stiff mechanical relaxation limit, it means that the present flow 

model is able to compute interfacial flows with the help of stiff velocity and pressure relaxation solvers. 

This feature is particularly important for the sake of generality of the formulation. 

The present model is hyperbolic but not symmetric, as sound propagates only with the second phase. It 

is therefore interesting to compute relevant test problems to examine typical solutions. To do this, an 

appropriate flow solver is derived in Appendix A. 
 
V. Computed results 
Several test problems are addressed, some giving relevant illustrations of model’s capabilities, other 
serving for validation as compared to exact solutions as well as experimental data. 
 
Shock tube tests 
The first test corresponds to the simple transport of a volume fraction discontinuity in a flow field in 
uniform pressure and velocity equilibrium.  The method of Appendix A is extended to higher order 
thanks to the MUSCL algorithm (see for example Toro, 1997). Present computations use the Minmod 
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limiter. The ideal gas equation of state is used to model thermodynamics of the gas phase, while the 
liquid is modeled by the stiffened gas EOS. These two EOS can be summarized as follows, 

( )k k k k k k k kp ( ,e ) 1 e p∞ρ = γ − ρ − γ , (V.1) 

with following sets or parameters, 

air 1.4γ = ,    ,airp 0∞ = ,                  k=air,                 

water 4.4γ = , 8
,waterp 610 Pa∞ = ,      k=liquid water.  

These equations of state and associated parameters are used in all test problems of the present section. 
A volume fraction discontinuity separating two mixtures is transported at 100 m/s in a uniform pressure 
flow field of 0.1 MPa. The initial discontinuity is located at 0.5 m initially and computed results are 
compared to the exact solution at time 1 ms in the Figure 1. 

 

 

 
Figure 1. Volume fraction transport in uniform pressure and velocity fields. The mesh involves 500 cells 

and the time step is computed with CFL=0.5. Initial velocities are set to 100m/s and pressures are 
constant and equal to 105 Pa. The volume fraction discontinuity is initially set at 0.5 m. The numerical 

solution is plotted at 1ms. The exact solution for the volume fraction is presented in dot symbols 
showing perfect agreement. The numerical solutions are oscillations free.  

Another test is now addressed and corresponds to a two phase shock tube, as shown in Figure 2. In this 
test, stiff pressure relaxation is not used, while the flow model is hyperbolic and entropy preserving only 
when stiff pressure relaxation is done. Consequently, the present computations should fail. They 
however produce results with quite significant pressure disequilibrium, showing robustness of the 
formulation. 
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Figure 2. “Smooth shock tube test case”. Computations are made in the absence of relaxation terms, 
with 500 cells and CFL=0.5. Results are shown at time 350µs. Four waves are visible, in spite of the 

simplified Riemann solver that considers two only. It is interesting to note the discontinuous profile of 
pressure in the phase 1: no pressure wave is present in this phase. Phase 1 shows slight velocity creation 

p=1 bar 
u=0 m/s 
ρ1=1050 kg/m3  
ρ2=1.2 kg/m3 

α1=0.7 

p=10 bar 
u=0 m/s 
ρ1=1050 kg/m3  
ρ2=1.2 kg/m3 

α1=0.3 

0         0.5       1 
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(compared to the velocity of the gas phase) even in absence of drag, the pressure term in the momentum 
equation being responsible for that. 

These typical profiles are very different to those expected with BN and Marble models (without 
relaxation terms). For example, the pressure profiles of the phases are very different and even 
unphysical, but the model and algorithm do not fail.  
To recover acceptable pressure evolutions in the condensed phase, stiff pressure relaxation is used. 
Pressure and velocity relaxation solvers are recalled in Appendix B. 
The same run as the one defined in Figure 2 is reconsidered hereafter with pressure relaxation and the  
results are shown in Figure 3.  
 

 

 

 
Figure 3. Smooth shock tube computations in the absence of velocity relaxation but with stiff pressure 
relaxation. Computations made with 500 cells and CFL=0.5. Computed results are shown at time 350µs. 

All pressures are now equal, modifying significantly the phase 1 velocity profile. 
 
With the help of both velocity and pressure relaxation solvers it is possible to address interfaces 
separating (nearly) pure liquid and (nearly) pure gas. The aim is to analyze the behavior of the flow 
model in another limit case, having in mind it has been derived for clouds of droplets, not interfaces. 
The initial conditions are given in Figure 4 and correspond to a liquid at right set to motion by a 
pressurized gas at left. The exact solution is available for this test case and used to check accuracy of 
computations.  
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Figure 4. Shock tube with gas-liquid interface: High pressure gas at left and low pressure liquid at right. 
Computations done with 500 cells and CFL=0.5. Computed results shown at time 150µs. Both velocities 

and pressure are relaxed, making the interface condition of equal pressures and velocities fulfilled. 

The same test is considered but with fluids in reverse order: High pressure liquid at left and low pressure 
gas at right. This test is more severe as maintaining pressure positivity during liquid expansion is hard to 
manage. Corresponding results are shown in Figure 5 and compared to the exact solution.  
 
 
 
 
 
 
 
 
 

  

p=10 000 bar 
u=0 m/s 
ρ1=1050 kg/m3  
ρ2=100 kg/m3 

α1=0.9999 

p=1 bar 
u=0 m/s 
ρ1=1050 kg/m3  
ρ2=100 kg/m3 

α1=0.0001 

0         0.7       1 

p=10 000 bar 
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ρ1=1050 kg/m3  
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α1=0.0001 
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ρ1=1050 kg/m3  
ρ2=100 kg/m3 

α1=0.9999 

0         0.6       1 
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Figure 5. Shock tube with liquid-gas interface: high pressure liquid at left and low pressure gas at right. 

Computations done with 500 cells and CFL=0.5. Computed results shown at time 250µs. Both velocities 
and pressure are relaxed, making the interface condition of equal pressures and velocities fulfilled.  

These various results illustrate method’s capabilities in several configurations far from the original design 
of the model, based on clouds of droplets suspended in air. It is also interesting to note that even if the 
liquid acoustic wave is absent of the formulation, its dynamics is correctly computed thanks to relaxation 
effects. 
 
Shock interaction with a fluidized bed – Rogue test 
We now consider a test more appropriate to the model. It consists in the fluidization of a particle cloud 
under shock wave interaction. Such a configuration has been studied experimentally by Rogue et al. 
(1998) and is summarized in Figure 6.  

 
Figure 6. Rogue et al. (1998) fluidization shock tube test. A shock tube is filled with gas at density 1.2 

kg/m3. A dense cloud of nylon particles (
3

0 1050kg / mρ = ) is set in a cross section of the tube, with 2 

cm width. The initial solid volume fraction in the particle bed is 0.65.  The initial pressure is uniform 
initially and set at 105 Pa. A shock at Mach number 1.3 is created by the expansion of the high pressure 
gas, equivalent to a shock created by a piston moving at 151 m/s.  

In this experiment pressure signals are recorded before and after the particles cloud, to examine reflected 
and transmitted waves through the granular media as well as its dilution and dispersion.  
To account for drag effects the following correlation is used, combination of Ergun (1952) and 
Bernecker and Price (1974), 

 
F =

ρ2

d
1

Cd u2 − u1 u2 − u1( )   

with,  
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Cd =

150α
1

Re
+1.75                              if    α

1
≥ α

cr

150α1

Re
+1.75

(1− α
cr

)α
1

α
1
α

2











0.45

    if    (1-αs) ≤ α1 ≤ αcr

150α1

Re
+ 0.3                              if    α1 ≤ (1-αs)
















,  

2 2 2 1 1
e

2

u u d
R

α ρ −
=

µ
 the particulate Reynolds number, cr 0.63α =  and 

1

cr
s

cr

1
1 0.02

−
 − αα = + α 

. 

The particle diameter appearing in these relations is constant ( 1d 1.5mm= ) and the gas viscosity is 
6

2 1810 Pa.s−µ = . 

The granular bed is made of nylon particles, treated as compressible material, governed by the SG EOS 
(V.1) with the same EOS parameters as liquid water. 
Predictions of the BN, Marble and new model are compared with the same modeling of drag effects 
given above. The BN model, or more precisely its symmetric version with 7 waves is solved with the 
Furfaro and Saurel (2015) method. The Marble model is solved with the Saurel et al. (1994) method and 
the new model is solved with the method presented above.  
Let us first comment Rogue et al. (1998) experimental data, typical pressure signals being shown in 
Figure 7. 

 
Figure 7. Experimental pressures signals of Rogue (1998): 1 denotes the incident shock wave, 2 denotes 

the transmitted shock wave/fan of compression waves, 3 denotes the reflected shock wave on the 
particles cloud, 4 corresponds to the arrival of the cloud upper front at the pressure gauge location.  

Computed results with the various flow models are shown in Figure 8.  
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Figure 8. Comparison of computed results with the various models (lines) versus experimental data 
(symbols) for the Rogue test problem. Computations are done with 1000 cells and CFL=0.5. The 

Minmod flux limiter is used in the MUSCL method. Reflected and transmitted waves are badly predicted 
with the Marble model. Wave transmission and reflection are better with BN. Wave’s dynamics is 

considerably improved with the with the new model, but cloud’s dynamics is still perfectible. 

At this stage, more potential than expected appeared with the various shock tube tests in limit 
configurations, but weakness appeared for particle cloud dynamics in the Rogue test.  
A symmetric variant of the new model, with Equation (III.5) instead of (III.4) is thus considered and 
examined. 
 
 VI. Symmetric variant 
In the model examined and tested formerly pressure waves propagate with the gas sound speed. This 
behavior seems incorrect if the flow is mainly liquid, which is the continuous phase with bubbly flows. 
We thus address the symmetric variant of the previous model on the basis of the volume fraction 
equation (III.5).  
Equation (III.5) is thus plugged to the system of balance equations (IV.2). Analysis of the resulting 
system yields the following wave’s speeds: 

1 4 2u−λ = , 5 1uλ = , 6 1 1u cλ = −  and 7 1 1u cλ = +  .  

We examine typical solutions on some test problems, as done previously. 
The same shock tube test case as the one of Figure 5 is considered with liquid at left and gas at right. 
Computed results are compared against the exact solution in Figure 9 at the same time 250µs.  
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Figure 9. Liquid – gas shock tube test problem solved with the symmetric variant model with stiff 
pressure and velocity relaxation. Computations are done with 500 cells and CFL=0.5. Results are shown 
at time 250µs. The numerical solution tends to the exact one but converges more difficultly, as visible on 

the density graph.  

This test is however interesting as the wave dynamics in the gas phase is correctly computed, while it is 
absent of the non-equilibrium flow model. 
It is also interesting to address the Rogue test problem with the symmetric variant model. 
Corresponding results are shown in Figure 10, showing improvement of the pressure evolution in the 
cloud dynamics, but poor wave propagation in the gas phase. This test shows the limits of the pressure 
relaxation method, to rebuilt an acoustic wave absent of the original hyperbolic system.  
 

 
Figure 10. Computed pressure profiles of the Rogue test with the symmetric variant model (lines) are 
compared against pressure records (symbols). Computations are done with 1000 cells and CFL=0.5. 
Accuracy has been lost in the incident and reflected waves compared to the former model while an 

interesting feature appears regarding the beginning of the pressure rise during particle cloud motion that 
seems more accurate.   

The lack of accuracy in the incident shock that propagates in a single phase gas media is due to the 
absence of gas sound speed in the eigenvalues. Also, the present formulation is derived for bubbly flows 
while it is used for a nearly pure gas in the first part of the shock tube. Therefore an attempt for a 
general formulation is done in the section that follows.  
 
VII. Towards a general formulation 
The new model and its symmetric variant are embedded in a general formulation. Parameters ‘a’ and ‘b’ 
are defined as, 

fluidization
11 if

a
0 otherwize

 α < α
= 
  (VII.1) 

b a 1= −
 Parameter fluidizationα corresponds to some fluidization limit, for example fluidization 0.5α ≈ . This parameter 

has been used in the various computations that will be examined later. The various tests done haven’t 
shown clear dependence to this parameter.  
Therefore, in this formulation ‘a’ and ‘b’ are local constants, but as they vary in space as 1a a( )= α

 
and 

1b b( )= α . 

The general flow model reads, 

1 1 1 2 2
1 2

u u
a b (p p )

t x x

∂α ∂α ∂α+ + = µ −
∂ ∂ ∂

,  (VII.2) 
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1 1( ) ( u)
0

t x

∂ αρ ∂ αρ+ =
∂ ∂

 

2
1 1 1 1 1 1 1 1 1

I 2 1

u u p
p (u u )

t x x

∂α ρ ∂α ρ + α ∂α+ = + λ −
∂ ∂ ∂

 

1 1 1 1 1 1 1 1 1 1 1 1 2 2
I I 1 2 I 2 1 2 1

E u E u p u u
p a b p (p p ) u (u u ) H(T T )

t x x x x

∂α ρ ∂α ρ ∂α ∂α ∂α + + = + − µ − + λ − + − ∂ ∂ ∂ ∂ ∂ 
 

2 2( ) ( u)
0

t x

∂ αρ ∂ αρ+ =
∂ ∂  

2
2 2 2 2 2 2 2 2 2

I 2 1

u u p
p (u u )

t x x

∂α ρ ∂α ρ + α ∂α+ = − λ −
∂ ∂ ∂  

2 2 2 2 2 2 2 2 2 2 1 1 2 2
I I 1 2 I 2 1 2 1

E u E u p u u
p a b p (p p ) u (u u ) H(T T )

t x x x x

∂α ρ ∂α ρ ∂α ∂α ∂α + + = − + + µ − − λ − − − ∂ ∂ ∂ ∂ ∂ 
It admits the following additional mixture entropy equation,  

2 2
21 1 1 2 2 2 1 1 1 1 2 2 2 2 2 1 2 1 2 1

1 2
1 2 1 2 1 2 1 2

s s s u s u (u u ) Z Z H(T T )1 1
(p p )

t x T T Z Z T T T T

   ∂α ρ + α ρ ∂α ρ + α ρ − −+ = µ − + + λ + +   ∂ ∂ +   
guaranteeing its thermodynamic consistency. 
System (VIII.2) can also be written as, 

W W
A(W) 0

t x

∂ ∂+ =
∂ ∂

, 

with, 

( )T

1 2 1 1 1 2 2W s , s , , , u , , u= α ρ ρ , 

and, 

( )
1

2

1

2

2
1

1
1 1 1

1 2
1 1 2 1 1

1 1

1 1 2 2

1 2
2 1 2 2 2

2 2

2
2

2
2 2 2

u 0 0 0 0 0 0

0 u 0 0 0 0 0

c1 p
0 u 0 0 0

s

0 0 b u b u u 0 b
A(W)

0 0 a 0 (au b u ) 0 b

0 0 a 0 a (u u ) u a

c1 p
0 0 0 0 u

s

ρ

ρ

 
 
 
 ∂
 ρ ∂ ρ 
 

ρ α − ρ − − ρ
 α α=
 

α − α 
 α ρρ − ρ 

α α 
 

∂  ρ ∂ ρ   
This matrix has a nice structure. Eigenvalues are given bydet(A I) 0− λ = , which results in the following 

polynomial, 

( ) ( ) ( )2 2
2 1 1 2 2 1 2 1 2 1(u )²(u )² (au bu ) (u )²bc (a b)u (u )²ac (b a)u 0 − λ − λ − − λ + − λ − − λ + − λ λ + − = 

When  a=1, b=0 it reduces to, 
3 2

1 2 2(u ) (u )² c 0 − λ − λ − =   
with the wave speeds of the first model. 
When a=0, b=-1 it reduces to, 
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( )3 2
2 1 1u (u )² c 0 −λ −λ − =   

with the wave speeds of the symmetric model. 
Therefore the flow model (VII.2) has the following wave speeds: 

1 1uλ = , 2 1 1u cλ = + , 3 1 1u cλ = − , 4 2uλ = , 5 2 2u cλ = +  and 6 2 2u cλ = −  .  (VII.3) 

However, these wave speeds are not present at any point of space. They change when the volume 

fraction crosses the fluidization limit ( fluidizationα ) somewhere in the domain. In nearly all computational 
examples considered previously, such instance happens. 

Let us mention that other guesses have been considered for parameters ‘a’ and ‘b’. For example 
1

a
2

=  , 

1
b

2
= − yields imaginary wave speeds. Same observation appeared with 2a = α , 1b = −α .  

For numerical computations, the first equation of System (VII.2) is expressed as, 

( ) ( )1 1 2 21
1 1 2 2

a u b u a
u u 0

t x x

∂ α + α∂α ∂+ − α + α =
∂ ∂ ∂

, 

It is solved with the hyperbolic solver of Appendix A based on the Rusanov flux. However, the wave 

speed estimate, 

( )k k ki 1 i
S Max ,

+
= λ λ , 

now involves the six eigenvalues (VII.3).  
The volume fraction equation in (VII.2) being non-conservative, appropriate scheme is needed. Similar 
analysis as the one described in Section V is reused. Details are given in Appendix C. 
Let us examine typical solutions of the general model on some test problems, as those considered 
previously. A shock tube test case with liquid at left and gas at right is considered, in the same conditions 
as the tests in Figures 5 and 9. Computed results are compared against exact solution in Figure 11.  

 

 

Figure 11. Liquid – gas shock tube test solved with the general model with stiff pressure and velocity 
relaxation. Computations are done with 500 cells, CFL=0.5 and van Leer limiter in the MUSCL method. 

Results are shown at time 250µs. The numerical solution tends to the exact one and converges quite 
well. Compared to the original model (Figure 5) and its symmetric variant (Figure 9) improvements are 

visible on both velocity and density profiles. 
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It is also interesting to address the Rogue test problem with the general model. Corresponding results 
are shown in Figure 12. 

 

Figure 12. Computed pressure signal of the Rogue test with the general model are compared with 
experimental pressure records. Computations are done with 2000 cells and CFL=0.5. The various 
transmitted and reflected waves are correctly computed. The pressure evolution in the particle cloud has 
been improved but is still perfectible.  
 
This last test shows improvements compared to Marble and BN models results: 

- reflected and transmitted waves have better accuracy, 
- pressure rise in the particle cloud shows better accuracy than existing models. 

Possibly better agreement with experimental data could be obtained by using sophisticated drag force 
correlation, but this is not the scope of the present work.  
Even if the BN model and the new one have the same limit model (Kapila’s model) in the case of 
infinite pressure and velocity relaxation, the transient wave dynamics between the pure gaseous shock 
towards a fan of compression waves has to be well captured and seems to depend on the topology of the 
two-phase flow. Moreover, it can be expected that the dispersive nature of a compression wave from the 
BN and the new models is different.  
Intergranular stress (Bdzil et al., 1999, Saurel et al., 2010) has been considered as a possible effect to 
improve the computations of Figure 12. These effects have been added to the present formulation and 
coded, but no noticeable improvement appeared.  

We have also investigated the effects of the fluidization limit switch fluidizationα , taken previously to 0.5. 
Various estimates have been tested, from 0.1 to 0.9 without noticeable changes to the results. 
 

VIII. Conclusion 
A new two-phase hyperbolic and thermodynamically consistent model has been built and typical 
solutions have been computed. 
It is able to compute the same flow configurations as the BN model, i.e. interfaces separating pure fluids 
and non-equilibrium multiphase mixtures. Its acoustic properties sound physical. Moreover, the 
evolution of the two-phase topology directly influences both number and speed of waves present at a 
given point of space. The flow dynamics expressed by the model is not only reflected through the 
change of drag coefficient between phases, through interfacial area evolution.  
It is expected that two-phase shock waves structure be easier to analyze in the present frame. It is also 
expected that multidimensional solutions exhibit more differences than present one-dimensional 
computations, in particular regarding interface instabilities.  
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Appendix A. Hyperbolic solver 
We address derivation of a Godunov type method for System (IV.1-2). In the absence of source terms, it 
expresses in compact form as, 

U F(U) U
H U, 0

t x x

∂ ∂ ∂ + + = ∂ ∂ ∂ 
 (A.1) 

where, 

( )T

1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2U , , u , E , , u , E= α α ρ α ρ α ρ α ρ α ρ α ρ , 

( )
( )

( )
( )

1 1

1 1 1

2
1 1 1 1

1 1 1 1 1

2 2 2

2
2 2 2 2

2 2 2 2 2

u

u

u p

F(U) u E p

u

u p

u E p

 α
 
 α ρ
 
α ρ + 
 

= α ρ + 
 
α ρ 
 α ρ + 
  α ρ + 

 and 

T

1 1 1 1 1 1
I I I I

u uU
H U, 0,0, p ,p ,0,p , p

x x x x x

∂α ∂α ∂α ∂α∂    = − −   ∂ ∂ ∂ ∂ ∂   
. 

The difficulty with this hyperbolic system relies in the non-conservative term
U

H U,
x

∂ 
 ∂ 

. 

For the sake of simplicity the Rusanov (1962) approximate Riemann solver is considered. It uses the 
following estimate for the right facing wave, at a given cell boundary separating cells i and i+1:   

( )k k ki 1 i
S Max ,

+
= λ λ . 

At a given cell boundary separating left (L) and right (R) states, the approximate flux reads,  

( )*
R L R L

1
F F F S U U

2
= + − −  

 (A.2) 
The Godunov scheme for System (A.1) necessarily reads, 

( )n 1 n * *
i i i 1/2 i 1/2 i

t
U U F F tH

x
+

+ −
∆= − − + ∆
∆

 (A.3)  

where iH is the numerical approximation of 
U

H U,
x

∂ 
 ∂ 

, to be determined. 

To determine iH , we follow Saurel and Abgrall (1999) where a flow in uniform mechanical equilibrium 

is considered: 

1,i 1 1,i 1,i 1 2,i 1 2,i 2,i 1u u u u u u u 0− + − += = = = = = >

 
1,i 1 1,i 1,i 1 2,i 1 2,i 2,i 1p p p p p p p− + − += = = = = =  

Inserting the Rusanov flux (A.2) in the Godunov method (A.3) for the mass equation of the first phase, 
the following result is obtained: 

[ ] [ ]n 1 n
1 1 i 1 1 i 1 1 i 1 1 1 i 1 1 1 i 1 1 1 i 1 1 i

u t S t
( ) ( ) ( ) ( ) ( ) 2( ) ( )

2 x 2 x
+

+ − +
∆ ∆α ρ = α ρ − α ρ − α ρ + α ρ − α ρ + α ρ
∆ ∆  (A.4) 

The same procedure is done for the momentum equation of the same phase: 
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[ ] [ ]

n 1
1 1 i( )

n 1 n
1 1 1 i 1 1 i 1 1 i 1 1 1 i 1 1 1 i 1 1 1 i 1 1 i

1,i 1 1,i 1 i,u

u t S t
( u ) u ( ) ( ) ( ) ( ) 2( ) ( )

2 x 2 x

t
p H

2 x

+α ρ

+
+ − +

+ −

∆ ∆ α ρ = α ρ − α ρ − α ρ + α ρ − α ρ + α ρ ∆ ∆ 

∆
 − α − α + ∆

�������������������������������

 
In order that 

n 1
1,iu u+ = , the non-conservative term i,uH  must be approximated as, 

* *
1,i 1/2 1,i 1/2n

i,u iH p
x

+ −α − α
=

∆
 with 

1,i 1 1,i*
1

1,i
2 2

+

+

α + α
α = .      (A.5) 

Considering the balance energy equation of the same phase the following discrete approximation is 
obtained: 

( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( ) ( )

n 1 n

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1i i i 1 i 1

* *n
1 1 1 1 1 1 1 1 1 i 1 1 1 1i 1/2 i 1/2i 1 i i 1

t
E E u E p u E p

2 x
tS t

E 2 E E p u u
2 x x

+

+ −

+ −+ −

∆  α ρ = α ρ − α ρ + − α ρ +
 ∆

∆ ∆  + α ρ − α ρ + α ρ + α − α
 ∆ ∆

 

The same analysis as before to maintain mechanical equilibrium provides the following guess: 

( ) ( )* *

1 1 1 1n i 1/2 i 1/2
i,u i

u u
H p

x
+ −

α − α
=

∆
 with * 1 1 i 1 1 1 i

1 1 i 1/2

( u ) ( u )
( u )

2
+

+
α + αα =  (A.6) 

The flow solver thus consists in (A.3) with (A.2), (A.5) and (A.6). 
 

Appendix B. Stiff pressure and velocity relaxation solvers 
a) Stiff pressure relaxation  

The system to consider for phase 1 during pressure relaxation is the following:  

( )

( )

1
1 2

1 1

1 1 1

1 1 1
I 1 2

p p
t

0
t

u
0

t
e

p p p
t

∂α = µ − ∂


∂α ρ =
 ∂
∂α ρ =
 ∂
∂α ρ
 = −µ −

∂

 

Combining the internal energy equation of phase 1 with the corresponding volume fraction equation 
results in, 

1 1
I

e v
p

t t

∂ ∂= −
∂ ∂

  

where v is the specific volume of the considered phase. 
Considering the relaxed pressure as a constant during time integration, it becomes (this assumption has 
been analyzed in Saurel et al., 2007),  

( )* 0 * * 0
1 1 1 1e e p v v− = − −

   (B.1) 
The stiffened gas equation of state (alternatively given by Equation V.1) is inserted (any other convex 
EOS can be considered as well), 

 ( ) k k k
k k k k

k

p p
e p ,v v

1
∞+ γ=

γ −
. 

Consequently (B.1) becomes, 
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( )
* 0

* 0 * * 01 1 1 1 1
1 1 1 1

1 1

p p p p
v v p v v

1 1
∞ ∞+ γ + γ− = − −

γ − γ −
 

I.e., 
0 0

* 0 1 1 1
1 1 *

1 1

p p
1

p p
∞

∞

 α +α = α + − γ +     (B.2) 
Same result is obtained for the second phase, 

0 0
* 0 2 2 2
2 2 *

2 2

p p
1

p p
∞

∞

 α +α = α + − γ +   

The saturation constraint 
N

*
1

k 1

1
=

α =∑  is then considered resulting in the following root for the equilibrium 

pressure: 

( ) ( ) 2*
1 2 1 2 2 1 1 2 1 2

1 1
p A A p p A A p p A A

2 4∞ ∞ ∞ ∞= + − − + − + − +
   (B.3) 

where, 

( )
0

01
1 1

1
1 0 0

1 2

1 2

p p

A
∞

α +
γ=

α α+
γ γ

and 

( )
0

02
2 2

2
2 0 0

1 2

1 2

p p

A
∞

α +
γ=

α α+
γ γ

. 

Once the relaxed pressure is determined with (B.3) the volume fractions at equilibrium are determined 
with (B.2).  

b) Stiff velocities relaxation 
During stiff velocity relaxation, the subsystem to consider reads, 

1 1 0
t

∂α ρ =
∂

 

1 1 1
2 1

u
(u u )

t

∂α ρ = λ −
∂

 

1 1 1
2 1 I 1

e
(u u )(u u )

t

∂α ρ = λ − −
∂

 

2 2 0
t

∂α ρ =
∂

 

1 1 1 2 2 2u u
0

t

∂α ρ + α ρ =
∂

 

1 1 1 2 2 2E E
0

t

∂α ρ + α ρ =
∂

 

where Iu is defined by (IV.3). 

As λ → +∞  both velocities relax to the equilibrium one given by the mixture momentum equation, 

* 1 1 1 2 2 2

1 1 2 2

u u
u

α ρ + α ρ=
α ρ + α ρ

 

The velocities of the phases are then reset to this value.  
The internal energy of the phases are corrected as, 

( )00 * 0
k k I k ke e u u (u u )= + − − with 1 1 2 2

I
1 2

Z u Z u
u

Z Z

+=
+

.  

Such velocity relaxation modifies both kinetic and internal energies. Pressure relaxation is thus needed 
after velocity relaxation. 
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Appendix C. Derivation of the volume fraction numerical scheme for System (VII.2) 
The volume fraction equation,  

( ) ( )1 1 2 21
1 1 2 2

a u b u a
u u 0

t x x

∂ α + α∂α ∂+ − α + α =
∂ ∂ ∂

, 

must have a discretization compatible with the mass equation of the same system, 

1 1( ) ( u)
0

t x

∂ αρ ∂ αρ+ =
∂ ∂

.  

In uniform velocity flows conditions, using the Rusanov flux (A.2) in the Godunov method (A.3), the 
discrete mass equation results in (A.4).  
The same is done for the volume fraction equation, 

[ ] [ ]n 1 n
1 i 1 i 1 2 i 1 1 2 i 1 1 i 1 1 i 1 i 1

u t S t a
( ) ( ) (a b ) (a b ) ( ) 2( ) ( ) u t

2 x 2 x x
+

+ − + −
∆ ∆ ∆α = α − α + α − α + α + α − α + α + ∆
∆ ∆ ∆

  (C.1) 

where 
a

x

∆
∆

is the numerical approximation of 
a

0
x

∂ =
∂

, to be determined. 

Rearranging (C.1) with b a 1= − and 2 11α = − α  the discrete volume fraction equation becomes, 

[ ] [ ] [ ]n 1 n
1 i 1 i 1i 1 1i 1 i 1 i 1 1 i 1 1 i 1 i 1

u t u t S t a
( ) ( ) a a ( ) 2( ) ( ) u t

2 x 2 x 2 x x
+

+ − + − + −
∆ ∆ ∆ ∆α = α − α − α − − + α − α + α + ∆
∆ ∆ ∆ ∆

  (C.2) 

Let us now consider the particular case of uniform density field: 
n n n

1,i 1,i 1 1,i 1+ −ρ = ρ = ρ . 

Both velocity and density being uniform, the density at the next time step must be invariant:
n 1 n

1,i 1,i
+ρ = ρ . 

In this context, the mass equation becomes, 

[ ] [ ]n 1 n
1 1 i 1 1 i 1 i 1 1 i 1 1 i 1 1 i 1 i 1

u t S t
( ) ( ) ( ) ( ) ( ) 2( ) ( )

2 x 2 x
+

+ − + −
∆ ∆ α ρ = ρ α − α − α + α − α + α ∆ ∆ 

   (C.3) 

In order that (C.2) and (C.3) be compatible it is necessary that, 

[ ]i 1 i 1

u t a
a a u t 0

2 x x+ −
∆ ∆− − + ∆ =
∆ ∆

 

Therefore,  

i 1 i 1a aa

x 2 x
+ −−∆ =

∆ ∆
   (C.4) 

or, 
* *
i 1/2 i 1/2a aa

x x
+ −−∆ =

∆ ∆
, 

with 
n n

* i 1 i
i 1/2

a a
a

2
+

+
+= . 

Consequently the volume fraction scheme reads, 

( ) ( )nn 1 n * *
1,i 1,i i 1/2 i 1/2 1 1 2 2 i

t a
F F u u t

x x
+

α + α −
∆ ∆α = α − − + α + α ∆
∆ ∆    (C.5) 

with , 

( ) ( ) ( )n n* n n
i 1/2 1 1 2 2 1 1 2 2 1,i 1 1,ii 1 i

1
F a u b u a u b u S

2α + ++
 = α + α + α + α − α − α
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. 


