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DentalMesenchymal StemCells (MSCs), includingDental Pulp StemCells (DPSCs), StemCells fromHumanExfoliatedDeciduous
teeth (SHED), and Stem Cells From Apical Papilla (SCAP), have been extensively studied using highly sophisticated in vitro
and in vivo systems, yielding substantially improved understanding of their intriguing biological properties. Their capacity to
reconstitute various dental and nondental tissues and the inherent angiogenic, neurogenic, and immunomodulatory properties
of their secretome have been a subject of meticulous and costly research by various groups over the past decade. Key milestone
achievements have exemplified their clinical utility in Regenerative Dentistry, as surrogate therapeutic modules for conventional
biomaterial-based approaches, offering regeneration of damaged oral tissues instead of simply “filling the gaps.”Thus, the essential
next step to validate these immense advances is the implementation of well-designed clinical trials paving the way for exploiting
these fascinating research achievements for patient well-being: the ultimate aim of this ground breaking technology. This review
paper presents a concise overview of themajor biological properties of the humandentalMSCs, critical for the translational pathway
“from bench to clinic.”

1. Introduction

A disparate variety of multipotent postnatal or Adult Stem
Cells (ASCs) has been identified over the last decade within
the oral cavity, raising the intriguing prospect of several
alternative therapies in the burgeoning field of Regenerative
Dentistry. Oral ASCs can be classified into dental stem cells,
encompassing Dental Pulp Stem Cells (DPSCs) [1], Stem
Cells from Human Exfoliated Deciduous teeth (SHED) [2],
and Stem Cells From Apical Papilla (SCAP) [3, 4], as well
as nondental oral SCs, including Dental Follicle Stem Cells
(DFSCs) [5], Periodontal Ligament Stem Cells (PDLSCs)
[6], Gingival Mesenchymal Stem Cells (GMSCs) [7], Oral
Mucosa Stem Cells (OMSCs) found in the lamina propria
of adult human gingiva [8], Bone Marrow Mesenchymal
Stem Cells (BMMSCs) from orofacial bones [9], Periosteum-
Derived Stem Cells (PSCs) [10], and Salivary Gland-Derived
Stem Cells (SGSCs) [11]. All these cells are considered as

resident in “stem cell niches” of the respective mesenchymal
oral tissues and are referred to as mesenchymal stem cells
or multipotent mesenchymal stromal cells (MSCs) [12]. In
addition to cells derived from healthy tissues, MSCs can also
be isolated from damaged oral tissues, such as inflamed pulp
[13, 14] or periapical cysts [15].

There is substantial evidence suggesting that dentalMSCs
reside in a quiescent, slow-cycling state in the perivascular
niches of humanpulp or apical papilla [16]. It has been further
shown by means of genetic lineage tracing in rodent incisors
that MSCs residing in the dental pulp may be of dual origin,
consisting of not only NG2+ pericyte cells, whose presence is
closely dependent on tissue vascularity, but alsoMSCs of non-
pericyte origin, contributing to tissue growth and repair [17].
Dental MSCs are thought to originate from the cranial neural
crest, expressing both MSC and neuroectodermal SC mark-
ers.These cells comply with theminimal criteria stipulated by
the International Society of Cellular Therapy (ISCT) in 2006
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[18], including (1) ability to adhere rapidly to plastic culture
surfaces, (2) potential for trilineage differentiation towards
osteogenic, adipogenic, and chondrogenic phenotypes under
the appropriate inductive conditions, and (3) expression of
commonMSC markers, such as CD105, CD73, and CD90, in
conjunction with lack of expression of CD45, CD34, CD14,
CD11b, CD79a, CD19, and HLA-DR. Additionally, dental
MSCs are characterized by significant population hetero-
geneity [19], most probably connected to different stages of
developmental commitment, reinforced by epigenetic mod-
ifications occurring during their ex vivo expansion [20, 21].
Importantly, recent studies have shown the pivotal role of not
only stem/progenitor cells but also nonprogenitor supportive
cells, such as injured fibroblasts occurring via secretion of
multiple growth factors and complement bioactive frag-
ments in dentin/pulp regeneration processes, revealing the
significance of all different cellular components of the hetero-
geneous population [22–25].

Among the important advantages of dental MSCs com-
pared to other SC sources, such as bone marrow and adi-
pose tissues, are their higher proliferative capacity, facilitat-
ing ex vivo expansion in sufficient cell numbers [26, 27];
easy isolation by noninvasive routine clinical procedures
(e.g., extraction of impacted third molars or premolars for
orthodontic reasons); and the absence, as reported so far, of
major adverse reactions, concerning, for example, teratoma
formation following in vivo application [28]. Previous studies
have shown that DPSCs have the ability to produce single-
cell derived Colony FormingUnits (CFUs), survive for longer
periods without undergoing senescence, and exhibit higher
(80–100 times) proliferation rates than BMMSCs [1].

The vast majority of published studies provides evidence
on the in vitro multilineage differentiation potential of den-
tal MSCs towards osteo/odontogenic, adipogenic, chondro-
genic, neurogenic, angiogenic, and myogenic lineages when
grown under defined culture conditions [19, 28]. In vivo
studies, mostly in ectopic but less often in orthotopic animal
models, have supported their potential to reconstitute func-
tional dentin/pulp complexes when mixed with ceramic sub-
strates (such as, Hydroxyapatite Or Tricalcium Phosphate)
[29, 30], as well as other tissues, such as bone [31], cementum
[32], blood vessels [33–35], and neural tissues [36, 37]. Most
recently, attention has been focused on the biological prop-
erties of the plethora of soluble trophic and immunomodula-
tory cytokines produced by dental MSCs (MSC secretome)
because of their angiogenic, neurogenic, and tissue repair
properties [38]. Additionally, a growing number of preclinical
and few clinical “proof-of-concept” studies that have been
initiated provide substantial evidence that dental MSCs
and/or their secretome can be successfully utilized for dental
[39, 40] and nondental biomedical applications [41].

Taking all the above into consideration, this review paper
aims to provide a concise overview of the major biological
properties of the adult dental MSCs (including DPSCs,
SHED, and SCAP) which are critical for Tissue Engineering
(TE) applications; among these properties being of major
interest to the dental community is their inherent potential to
regenerate highly vascularized (angiogenesis) and innervated
(neurogenesis) soft and hard dental tissues (dentin/pulp

complex, alveolar bone). Current research trends and key
milestone achievements that exemplify their clinical utility in
Regenerative Dentistry will be also highlighted.

2. Localization and Immunophenotypic
Characterization of Dental MSCs

Dental MSCs abundantly express (>95% of the cell popula-
tion) MSC markers, such as, CD90, CD73, and several Cell
Adhesion Molecules (CAMs), mainly integrins but also cad-
herins [42], with the former being responsible for mediating
SC adhesion to Extracellular Matrix (ECM) proteins and
the latter for cell-cell interactions [43]. Among these, CD29/
b1-integrin, CD49 (subunits b/a

2
-integrin, d/a

4
-integrin,

e/a
5
-integrin, and f/a

6
-integrin), CD51/av-integrin, CD61/b3-

integrin, and CD166/ALCAM have been found to be vari-
ably expressed in different types of dental MSCs, including
DPSCs, SHED, and SCAP, further indicating the heterogene-
ity of these cell populations [19, 28, 42]. Other MSCmarkers,
such as CD146, CD105, CD106, and STRO-1, may show
variable expression, dependent on the type and maturity of
the dental MSC population and on interindividual variations
among various cell donors [44]. In particular, STRO-1, a
marker that recognizes a trypsin insensitive epitope on
perivascular cells [45], has been used in isolating MSCs pop-
ulations from human dental pulp [46] and apical papilla [47]
with enhanced “stemness” properties and osteo/odontogenic
differentiation potential. Immunolocalization studies have, in
addition, demonstrated that a subpopulation of SCs coex-
pressing STRO-1, the perivascular marker CD146 [48] and
the pericyte antigen 3G5, reside in this niche within the adult
pulp [16]. Cells expressing another group of markers (STRO-
1, CD90, CD105, and CD146) were also identified together
with the vascular and nerve fibers of the pulp tissue [13].
Most recently, [49] it was shown that ALDH1-, CD90-, and
STRO-1-positive cells are located in both perivascular areas
and nerve fibers of dental pulps, indicating the possibility of
the existence of more than one SC niche. Finally, a recent
report [50] identified a rare (1.5% by flow cytometry) sub-
population of SCAP, coexpressing NOTCH-3, STRO-1, and
CD146, which, according to in situ immunostaining, were
associated with blood vessels.

All types of dental MSCs also abundantly express nestin
(neural stem cells), while the positive presence of other neural
crest SCmarkers (musashi-1, p75, snail-1, -2, slug, Sox-9, etc.)
has been also reported and linked to their embryonic origin
[51, 52]. Sakai et al. [53] have also shown that the major-
ity of DPSCs and SHED expressed several neural lineage
markers, including nestin, Doublecortin (DCX; neuronal
progenitor cells), 𝛽III-tubulin (early neuronal cells), NeuN
(mature neurons), GFAP (neural stem cells and astrocytes),
S-100 (Schwann cells), A2B5, and CNPase (oligodendrocyte
progenitor cells). Other, less commonly found markers, such
as CD44, CD9, CD10, CD13, CD59, and MSCA-1, have also
been reported as expressed in DPSCs [54], while CD44
and CD13 are also expressed in SHED [55]. Dental MSCs,
including DPSCs [56], SHED [57], and SCAP [58], also show
variable but increased expression of embryonic SC markers,
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such as Nanog, Oct3/4, SSEAs (-1, -3, -4, and -5), and to
a less extent TRA-1-60 and TRA-1-81 [56], as compared to
other MSC types [19], such as BMMSCs. Other pluripotency
markers, such as SOX-2 and MYC, not normally found in
other ASCs, have been reported in tooth germ-derivedMSCs
[59]. Finally, dental MSCs lack expression of CD45, CD31,
HLA-DR, and, in most studies, CD14, while most but not
all [60–62] studies have reported absence of expression of
CD117 (c-kit) and CD34. Although the ISCTminimal criteria
suggest that the absence of CD34 expression is a prerequisite
for defining MSCs, more recent studies indicate that CD34
may be expressed in primitive pluripotent stromal stem cells
but is progressively eliminated during cell culturing [63].
It has been previously shown that CD34/c-Kit and STRO-
1 coexpression confirm a neural crest-derived DPSC niche
[56], while, in more recent studies [61] two different (STRO-
1+/c-Kit+/CD34− and STRO-1+/c-Kit+/CD34+) DPSC sub-
populations with noticeable differences in their stem cell
characteristics have been characterized.

Finally, in a recent study [64], the importance of
CD271/NGFR in defining a subpopulation of DPSCs with
enhanced odontogenic differentiation potential, as compared
to other (CD51/CD140a and STRO-1/CD146) subpopulations
also showing odontogenic differentiation capacity, has been
emphasized. This is in accordance with studies on BMM-
SCs showing that CD271/NGFR defines an infrequent but
very primitive subset (<1%) of the cell population showing
enhanced stem cell characteristics [65].

The immunophenotypic characteristics of dental MSCs
are summarized in Table 1.

3. Differentiation Potential and
Paracrine Activity of Dental MSCs In Vitro
and In Vivo

3.1. Osteo/Odontogenic Differentiation Potential of Dental
MSCs and Regeneration of Dentin/Pulp- and Bone-Like Tis-
sues. One of the most salient characteristics of dental MSCs
concerning dental TE applications rests on their odontogenic
differentiation potential. Previous studies have shown that
dental MSCs, including DPSCs, SHED, and SCAP, have the
capacity to differentiate into odontoblastic lineages in vitro
and of regenerating dentin/pulp-like complexes or bone-like
tissues ectopically and around teeth and implants [29, 31, 66]
(the literature summarized in Table 2).

Specifically, DPSCs have demonstrated the capacity to
differentiate into odontoblastic-like cells with characteristic
cell polarity [67].When seeded onto dentin, DPSCsmay con-
vert into odontoblast-like cells with polarized cell bodies and
cellular processes extending into the dentinal tubules [68].
In addition, in recently published work using transcriptome
analysis of odontoblasts at different stages of maturity, the
p38/MAPK signaling has been identified as the crucial path-
way to controlling odontoblast secretory activity and there-
fore a key molecular target for the therapeutic application
of DPSCs [40].

Early reports showed that DPSCs mixed with Hydroxya-
patite/Tricalcium Phosphate (HA/TCP) led to the formation

of ectopic pulp-dentin-like tissue complexes in immunocom-
promised mice [1, 6, 69]. Iohara et al. [70] combined 3-
dimensional cell pellets and Bone Morphogenetic Protein
2 (BMP-2) to induce reparative dentin formation in a dog
amputated pulp model. The same group also detailed the
possibility of using a subfraction of CD31−/CD146− and
CD105+ cells for pulp regeneration [71, 72] and in later studies
described the effects of Granulocyte-Colony Stimulating
Factor (G-CSF) and host age on pulp regeneration [73, 74]. In
another study, DPSCs seeded onto collagen scaffolds in pres-
ence of Dentin Matrix Protein 1 (DMP-1) induced the forma-
tion of a pulpal-like tissue [75]. Similarly, when implanted in
enlarged root canals of immunocompromised mice, DPSCs
showed the ability to synthesize newly formeddentin and vas-
cularized pulp-like tissue [76], thus providing prospects for
utilization of DPSC transplantation for dentin-pulp regener-
ation.

Other in vivo studies have shown the capacity of DPSCs
in bone regeneration in a variety of animal models, including
repair of critical-size calvarial defects [77–79] and segmental
alveolar defects in a New Zealand rabbit model [80], as well
as the capacity for enhancement of implant osteointegration
in sites of experimental canine mandibular bone defects
[81]. Swine Dental Pulp Stem Cells seeded on TCP scaffolds
were also able to regenerate mandibular bone defects in the
symphyseal regions of a minipig model [82].

Notably, various scaffolding materials with differing
chemical, physical, and mechanical characteristics have been
selected for use in pulp/dentin and bone regeneration pro-
tocols using dental MSCs, including long-lasting porous
bioceramics (e.g., HA, 𝛽-TCP, or bioactive glasses), natural
molecules of medium duration (e.g., collagen, chitosan,
hyaluronic acid-based hydrogels, and silk fibroin), and short-
life polymers, such as Polyglycolic Acid (PGA), Polylactic
Acid (PLA), or their combinations [39, 83]. In addition,
injectable hydrogels (including self-assembling multidomain
peptides [84] and a commercial blend Puramatrix�) [85]
have been suggested for pulp regeneration in the light of
their ability to formnanofibrousmatrices under physiological
conditions. Recent studies have also proposed demineral-
ized/chemically Treated Dentin Matrices (TDMs) [86] or
Cryopreserved Treated Dentine Matrices (CTDM) [87], as
ideal biologic scaffolds, because of their combination of favor-
able mechanical properties and ability to act as a reservoir of
dentinogenesis-related growth/morphogenetic factors [88];
this is also validated by in vivo studies [89, 90]. Finally,
strategies to improve stem cell/scaffold interfaces also include
incorporation of various bioactivemolecules [29], as the third
component of the TE triad (cells/scaffolds/growth factors).
The application of such growth factors without stem cells,
in a cell homing versus cell transplantation strategy, has also
been suggested as a more clinically translational approach
for dentin-pulp regeneration. Based on this concept, ectopic
regeneration of dental pulp-like tissues using basic Fibrob-
last Growth Factor (b-FGF), Vascular Endothelial Growth
Factor (VEGF), or Platelet-Derived Growth Factor (PDGF)
with a basal set of Nerve Growth Factor (NGF) and Bone
Morphogenetic Protein 7 (BMP-7) has been reported [91],
while other researches achieved complete pulp regeneration
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Table 1: Marker expression in dental MSCs (SHED, DPSCs, and SCAP) and factors identified in their secretomes.

Dental MSCs Positive markers Negative
markers

Factors in secretome
involved in angiogenesis

Factors in secretome involved in
neurogenesis

Stem cells from
Human Exfoliatd
Deciduous teeth
(SHED)

CD90, CD73, CD105, CD146,
STRO-1, CD44, CD13
Nestin, DCX, 𝛽ΙΙΙ-tubulin, NeuN,
GFAP, S-100, A2B5, CNPase
Nanog, Oct3/4, SSEAs (-3, -4)

CD11b
CD45
CD34
CD14
CD19
CD43

VEGF-A, VEGF-C,
EG-VEGF (PK-1), HGF,
IGF-1, FGF-2, SDF-1,
SCF, EGF, TIMP-1, -2,
MMP-2, -3, -9, MCP-1,
ANG, TGF-b

BDNF, GDNF, MCP-1,
ED-Siglec-9, IL-6, NRCAM,
GDF-15, NCAM-1, TACE,
Nidogen-1 NRG-1, TIMP-1, -2,
HGF, SCF, MMP-2, -3, -9,
decorin, IL-22, IL28A, IL-29,
osteopontin, SCF, ANG,
VEGF-A, EG-VEGF, VEGF-C,
growth hormone, insulin, PIGF,
TGF-b

Dental Pulp Stem
Cells (DPSCs)

CD90, CD73, CD105, CD146,
STRO-1, CD106, CD29, CD49,
CD51, CD61, CD166, ALDH1, 3G5,
CD44, CD9, CD10 CD13, CD59,
MSCA-1, CD81, CD24
CD271/NGFR, Nestin, DCX,
𝛽ΙΙΙ-tubulin, NeuN, GFAP, S-100,
A2B5, CNPase, musashi-1, p75,
snail-1, -2, slug, Sox-9
Nanog, Oct3/4, SSEAs (-1, -3, -4,
-5), Notch-1, -2, -3

CD45
CD34
CD14,

CD19 CD31,
CD117, CD133
HLA-DR

VEGF, uPA, IL-8, TSP-1,
IGFBP-3, TIMP-1, -4,
MMP-9, PAI-1 (serpin
E1), endostatin,
ANGPT-1, ANG, DPPIV,
EDN-1, PTX-3, PEDF
(serpin F1), PDGF-AA
and PDGF-AB/BB,
MCP-1

NGF, BDNF, NT-3, CNTF,
GDNF, MCP-1, VEGF, FGF-2,
PDGF-AA and PDGF-AB/BB,
MMP-9, ANG, TIMP-1, -4

Stem Cells from
Apical Papilla (SCAP)

CD90, CD73, CD105, CD146,
STRO-1, CD106, CD29, CD49,
CD51, CD61, CD166, ALDH1, 3G5,
CD44, CD9, CD10 CD13, CD59,
MSCA-1, CD34, CD81, CD24, c-Kit
CD271/NGFR, Nestin, NSE,
CNPase, musashi-1, p75, snail-1, -2,
slug, Sox-9
Nanog, Oct3/4, SSEAs (-1, -3, -4,
-5), TRA-1-60-, TRA-1-81, Notch -2,
-3

CD14
CD18
CD34
CD45
CD117
CD150

ANGPT-1, ANG, DPPIV,
EDN-1, PTX-3, PEDF
(serpin F1), IGFBP-1, -2,
-3, TIMP-1, -4, TSP-1,
VEGF, uPA, Activin A,
HGF, FGF-7, PIGF
(serpin E1), TGFb,
CXCL-16, persephin,
NRG1-b1, MCP-1

MDK, NEGF-1 (PTN), NEGF-2,
CXCR4, MANF, AHNAK, NRP2,
ANG, TIMP-1, -4, CXCL-16,
NRG1-b1, MCP-1

Table 2: Key references on the osteo/odontogenic, angiogenic, and neurogenic differentiation potential of dental MSCs in vitro and in vivo.

Dental MSCs
Osteo/odontogenic
differentiation Angiogenic differentiation Neurogenic differentiation

In vitro
In vitro and/or
in vivo (bone or
dentin/pulp)

In vitro In vitro and/or
in vivo In vitro In vitro and/or

in vivo

Stem cells from
Human
Exfoliated
Deciduous teeth
(SHED)

[26, 98]
[2, 53, 55, 60, 67,
82, 85, 89, 90,

93–95]
[67] [119, 120] [57, 67, 142, 143] [36, 53, 148, 150]

Dental Pulp
Stem Cells
(DPSCs)

[14, 21, 26, 49,
51, 54, 59, 61, 88,

97, 123]

[1, 13, 53, 55, 56,
62, 67, 69–

81, 84, 113, 114]

[51, 59, 67, 115,
123]

[62, 116–
118, 121, 122, 126–

128]

[51, 54, 59, 61,
67, 135–

139, 143, 144, 147]

[53, 56, 116, 140,
141, 151, 152]

Stem Cells from
Apical Papilla
(SCAP)

[4, 44, 47, 50,
97, 98, 102, 104–
106, 108, 110–112]

[52, 76, 99–
101, 103, 106, 109] [58, 124, 125] [121] [47, 52, 144] [145, 146]

in pulpectomized mature dog teeth by using a stromal
cell-derived factor-1a- (SDF-1a-) loaded silk fibroin scaffold
without DPSC transplantation [92].

Significant similarities, but also differences in osteo/
odontogenic differentiation potential, have been reported

for SHED. Pivotal studies by Miura et al. [2] showed that
SHED are characterized by osteoinductive capacity in vivo,
but only a quarter of the clones showed potential to generate
ectopic dentin-like tissue. SHED were also able to form
an osteoinductive template in immunocompromised mice,
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inducing the recruitment of host murine osteogenic cells to
repair critically sized calvarial defects [93]. Recently, it was
shown that both DPSCs and SHED combined with Platelet-
Rich Plasma (PRP) were able to regenerate vascularized bone
tissue around dental implants in dog and puppy models,
respectively [55]. Recent reports have also shown that 5-
year cryopreserved SHED were still able to proliferate and
undergo osteogenesis without immune reaction in a 9 mm
mandibular defect in dogs [94] and to enhance mandibular
distraction osteogenesis in a rabbit model [95].

Despite those studies showing the preferential osteogenic
versus odontogenic differentiation potential of SHED, other
studies also report that SHED are capable of differentiating
into functional odontoblasts in vitro [2] and of regenerating a
tissue with architecture and cellularity resembling the phys-
iologic dental pulp when seeded in biodegradable scaffolds
prepared within human tooth slices and transplanted into
immunodeficient mice [89]. It has been recently shown that
SHEDcan generate functional dental pulpwhen injectedwith
scaffolds (Puramatrix or rhCollagen) into full-length root
canals [85].

A very recent and interesting study mapping potential
molecular differences between SHED and DPSCs identified
several differentially regulated genes [96]. Among these
high-mobility group AT-hook 2 (HMGA-2) protein, a stem
cell-associated marker, together with several proliferation-
related genes showed a robust expression in SHED, while
ECM genes, such as collagen I, fibronectin, and signaling
molecules, such as VEGF, Fibroblast Growth Factor Receptor
1 (FGFR-1), and Insulin Growth Factor Receptor 1 (IGFR-1)
were upregulated in DPSCs, suggesting that SHED are more
competent in self-renewal and proliferation and DPSCs in
signaling and matrix synthesis.

Finally, SCAP appear as a cell population similar to, but
significantly different from, DPSCs [97]. Although the apical
papilla is the precursor tissue of the radicular pulp [18], it is an
anatomically distinct area separated by a cell-rich zone. SCAP
have been reported to display a higher proliferation rate,
number of population doublings, dental tissue regeneration
capacity, and STRO-1 expression in comparison with DPSCs
[68]. In addition, SCAP have shown a higher expression
of survivin and telomerase, two proteins critical for cell
proliferation [4]. In contrast, SCAP have been shown to
express lower levels of markers, such as Dentin Sialoprotein
(DSP), Matrix Extracellular Phosphoglycoprotein (MEPE),
transforming growth factor receptor II (TGFbRII), and Vas-
cular Endothelial Growth Factor receptor I (VEGFR1) com-
pared to DPSCs [19]. A recent study demonstrated significant
variations in the mineral composition of mineralized tissues
produced in vitro by various types of dental MSCs [98].
SCAP and SHEDproduced amore highlymineralizedmatrix
in comparison with DPSCs but with lower crystallinity and
carbonate substitution.

Studies have indicated that SCAP are capable of differ-
entiating into odontoblastic-like cells [97] and osteogenic
cells [99] in vitro and into vascularized dentin/pulp-like
complexes, after transplantation into immunodeficient mice,
in an appropriate carrier substrate [4, 68]. Additionally,
transplantation of SCAP inside a root-shaped HA/TCP

block coated with PDLSCs into the extraction socket of a
minipig lower incisor demonstrated the successful regenera-
tion of the root/periodontal structure over which a porcelain
crown has been placed [100]. Furthermore, SCAP could
generate cement/woven bone-like tissue with embedded
cementocytes/bone-like cells; however, the precise nature of
the mineralized tissue produced was not identified [101].

Although SCAP have not been so closely investigated
as DPSCs, several later reports provide significant insight
into the particular molecular mechanisms responsible for
SCAP biological responses to various microenvironments,
providing data pivotally useful for the design of future regen-
erative strategies for targeted dental TE. Among key inductive
factors demonstrated to exhibit a major role in SCAP osteo/
odontogenic differentiation are BMP-2 [102], BMP-9 [103],
and the conjunction of BMP-2 and VEGF [104]. Other
studies have highlighted the importance of Nuclear Factor
I-C (NFIC) known to be involved in the regulation of root
development [105] and its regulatory interaction with trans-
forming growth factor-𝛽1 (TGF-𝛽1) in inducing odontogenic
transformation of SCAP [106]. In a recent study, Plasminogen
activator Inhibitor 1 (PAI-1), has been suggested as pivotal
factor in inducing odontogenic differentiation of SCAP [107].
Finally, a number of studies have also closely studied the
signaling pathways regulating odontogenic differentiation of
SCAP; among these, differential activation of ALK5/Smad2
and MEK/ERK [108], canonical Wnt synergistic with BMP-9
[109], Notch [110], canonical NF-𝜅B [111], and ERK and JNK
signaling pathways in combination with a mechanical stress
stimulus have been indicated as having a paramount role in
the committed differentiation of SCAP [112].

It must be noted that a major problem concerning in
vivo studies aiming at regenerating functional dentin-pulp
complexes or bone around teeth and implants is the fact that
the majority have been conducted in ectopic implantation
models, mostly subcutaneously into immunocompromised
mice [13, 29, 67, 76], and to a less extent in renal capsules of
rats [113]. In contrast, only few attempts in orthotropic large-
animal models (dogs or mini pigs) have been performed by a
sole research group [70–73], probably in view of the consider-
able economic costs involved together with the ethical issues
associated with animal welfare. Most recently, a root implant
model in minipigs involving the middle sections of roots
from freshly extracted swine incisors filled with scaffolds
containing DPSCs and then implanted into the fresh postex-
traction sockets has been designed. This provided a valuable
animal (although not really orthotopic) model simulating
clinical situations [114].

Current pulp regeneration protocols have also been
recently systematically reviewed by Fawzy El-Sayed et al. [30].
From 1364 screened articles the authors selected five studies
for the quantitative analysis complying to specific inclusion/
exclusion criteria. They revealed that stem cell transplanta-
tion was linked with significantly greater regenerated pulp
and dentin per root canal total area when compared with
controls. A solitary study reported on capillaries/nerves per
unit surface area and found that the density of both nerves
and capillaries was noticeably greater in stem/progenitor cell-
transplanted pulps compared with controls [72]. The authors
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emphasized the paucity of quantitative evaluations of the
amount of regenerated tissue and the lack of consensus about
defining the primary outcomes of the regenerative proce-
dures, including neural, vascular, soft, or hard tissue/dentinal
regeneration as the primary limitation of the majority of
in vivo studies. It was also mentioned that conclusions
were drawn on the basis of histological assessments without
additional functional innervation and vascularization tests
to provide a more comprehensive assessment of functional
pulp/dentin regeneration. Interestingly, the majority of stud-
ies showed a high risk of selection, performance, detection,
and reporting bias. The main causes of this bias were
attributed to the fact that none of the studies had performed
sample size calculations to enhance statistical power, while
lack of standardization of the animal models and type of
experimental defects was a cause of significant heterogeneity.
In addition, no split-mouth designs were applied, while
clustering of statistical units within the same animal was a
common practice. Finally, randomization of treatments and
blinding of examiners were reported in very few studies.

3.2. Angiogenic Properties of Dental MSCs

3.2.1. Endothelial Transdifferentiation Potential of Dental
MSCs. Encouraged by the exceptional “plasticity” of dental
MSCs, a limited number of studies have attempted to inves-
tigate the endothelial transdifferentiation potential of DPSCs
[51, 62, 115–118], SHED [119, 120], and SCAP [58, 121] in the
presence of specialized angiogenesis-inductive media (sum-
marized in Table 2). The endothelial shift of MSCs in these
studies is mainly indicated by the upregulation of typical
endothelial cell (EC) markers, such as PECAM-1, VEGFR-2,
vWF, and VE-cadherin and further evidenced by functional
assays, such as ability to form capillary-like structures on
Matrigel or other matrices or by uptake of Acetylated-Low
Density LipoProtein Lipase (Ac-LPL), but also by various in
vivo assays, including mouse Matrigel assays and Chicken
Chorioallantoic Membrane (CAM) assays [33, 34, 122].

According to the in vitro studies, coculture ofDPSCs [123]
or SCAP [124] with ECs significantly improved the angio-
genic potential of ECs, especially under hypoxic conditions
[124, 125]. SHEDdifferentiation intoVEGFR-2/CD31 positive
EC-like cells has been shown through a VEGF/MEK-1/ERK
signaling pathway [120]. Moreover, a VEGFR-2-dependent
function ofmurineDPSCs as pericyte-like cells has been sub-
stantiated, since a shRNA knockdown of VEGFR-2 produced
a decreased expression of VEGFA, VEGF receptors, and
Ephrin B-2 and reduced vascular density of Matrigel plugs
in vivo [118]. Finally, short-term exposure of SCAP to serum,
glucose, and oxygendeprivation (SGOD) conditions has been
shown to be potent in eliciting a proangiogenesis program,
as evidenced by activation of VEGF/VEGFR and Angiopoi-
etins/Tie pathways [58]. These results confirm that dental
MSCs can actually show considerable adaptability to severely
adverse microenvironmental conditions, by undergoing a
rapid endothelial shift rather than activating apoptosis.

Despite encouraging data, most of the above-mentioned
studies actually indicate but fail to prove a functional and

homogenous in vitro differentiation of MSCs into ECs, sug-
gesting that it might be inaccurate to designate EC-switched
MSCs as mature ECs, but rather as an intermediate EC-like
population, primarily supporting typical functions of mature
ECs or mainly acting in a paracrine way (as analyzed below).
Thus, identification of additionalmicroenvironmental cues as
well a more detailed understanding of the molecular mech-
anisms responsible for skewing dental MSCs into mature
ECs could constitute a critical step for utilizing them as
neoangiogenesis sources in TE.

In addition to in vitro data, additional evidence from in
vivo studies could show that SHED differentiate into ECs
when seeded in biodegradable scaffolds and transplanted
into immunodeficient mice [89]. DPSCs alone or primarily
in coculture with Human Umbilical Vein Endothelial Cells
(HUVEC) when encapsulated in three-dimensional peptide
hydrogel matrices (PuraMatrix) were able to support cell
survival, migration, and capillary network formation and to
regenerate vascularized pulp-like tissue after transplantation
in mice [126]. Iohara et al. [127] were able to isolate and char-
acterize a highly vasculogenic subfraction of side population
(SP) of CD31−/CD146− porcine tooth germ-derived dental
MSCs, while in later study the CD31− pulp fraction was used
successfully to reconstitute blood flow and capillary density
in amouse hindlimb ischemiamodel, to induce neurogenesis
in a cerebral ischemia model, and finally to reinstitute a
vascularized pulp in an ectopic root transplantation model
[116]. Similar results were reported for human DPSCs, which
showed ability to induce angiogenesis and reduce infarct size
in a myocardial infarction rat model [128].

3.2.2. Angiogenic Properties of Dental MSC Secretome.
Despite encouraging data on the endothelial transdifferenti-
ation potential of dental MSCs, significant lines of evidence
indicate that the rate of MSC engraftment after local or
systemic delivery in vivo remains problematically low at<10%
[129]. This contrasts with several other lines of evidence
suggesting that the angiogenic effects of MSCs are primarily
derived from secretion of several soluble factors, such as
growth factors, cytokines, chemokines, Extracellular Matrix
proteins and proteases, or even genetic material [130] as
a response to various microenvironmental cues (summa-
rized in Table 1), rather than their endothelial transdiffer-
entiation. There is growing interest in the investigation of
MSC “secretome” with the increasing recognition of the
paracrine/autocrine role of MSCs to many biological func-
tions, including cell proliferation, differentiation, signaling,
apoptosis, angiogenesis, and neurogenesis. Furthermore, the
use of cell-free approaches offers several advantages with
respect to concerns related to immunogenicity, tumorigenic-
ity, and transmission of infections, which, although currently
considered very low for autologous therapies with adult
MSCs, are still under investigation in “proof-of-concept”
clinical studies being underway in various fields of Medicine
and Dentistry.

Dental MSCs (DPSCs and SCAP) have been shown by
recent studies to secrete, under various stress conditions,
several pro- and antiangiogenetic factors able to stimulate
endothelialmotility and function [58, 121]. In particular, it has
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been shown that DPSCs secrete several proangiogenic factors
(VEGF, Monocyte Chemotactic Protein 1- (MCP-1), IL-8,
Insulin-Like Growth Factor Binding Protein 3 (IGFBP-3),
and Urokinase Plasminogen Activator (uPA)) and antiangio-
genic factors (Tissue InhibitorOfMetalloproteinase 1 (TIMP-
1), Plasminogen Activator Inhibitor-1 (PAI-1), endostatin,
and Thrombospondin-1 (TSP-1)), under serum deprivation
conditions [117], while in a later study by the same group
differential angiogenic secretome expression was observed
among various dental MSC types, including DPSCs, SCAP,
and DFSCs [121]. Interestingly, DPSCs and SCAP elicited
a predominant proangiogenic effect in vitro and in vivo
compared to DFSCs, which renders them an attractive cell
source for angiogenesis applications. Subsequently, it has
been shown that, under serum, glucose, and oxygen depri-
vation (SGOD) conditions, SCAP release higher numbers
and amounts of proangiogenic factors (Angiogenin, IGFBP-
3, and VEGF) and lower amounts of antiangiogenic factors
(Serpin-E1, TIMP-1, and TSP-1) in comparison with SOD or
SD alone, providing insights into the optimal precondition-
ing strategies for SC-based treatment of damaged/ischemic
tissues [58]. Most recently, SCAP secretome has been exten-
sively profiled [131]; it was found that a total of 2,046
proteins are released, including chemokines, angiogenic,
immunomodulatory, antiapoptotic, and neuroprotective fac-
tors, and ECM proteins. SCAP secreted significantly larger
amounts of chemokines and neurotrophins than BMMSCs,
whereas BMMSCs secreted more ECM proteins and proan-
giogenic factors.

It is significant to note that secretion of various soluble
factors by MSCs may occur either via exocytosis or via
release of extracellular vesicles (EVs). These include either
exosomes (30–100 nm in size, originating from intracellular
microvesicles) or microvesicles (100–1000 nm in size, orig-
inating from the plasma membranes) [132]. A recent study
showed that DPSC-derived exosomes suppress carrageenan-
induced acute inflammation in mice [133]. This was among
other reasons attributed to the fact that SHED exosomes
contain annexin A1 that acts as mediator of the antimigratory
effects of glucocorticoids, thereby suppressing edema forma-
tion.

3.3. Neurogenic Properties of Dental MSCs

3.3.1. Neurogenic Transdifferentiation Potential of Dental
MSCs. Numerous studies so far have highlighted the inher-
ent neurogenic differentiation potential of dental MSCs
(summarized in Table 2), attributed to their neural crest
embryonic origin [134]. DPSCs [51, 135–141], SHED [36,
57, 142, 143], and SCAP [4, 47, 125, 144–146] have shown
enhanced potential for differentiation into a variety of neural
lineages, including functionally active dopaminergic cells
and glial cells, leading proposals for dental MSCs to be
used for regenerative therapy of several neurodegenerative
diseases [37]. Notably, dental MSCs, while still in an undif-
ferentiated state, constitutively express markers of neural
stem/progenitor, as well as mature neural cells, includ-
ing SOX-2, tenascin C, ENO-2, MAP2ab, c-FOS, Nestin,
Neurofilament (NEF-H and NEF-L), Glial Fibrillary Acidic

Protein (GFAP), bIII-tubulin, Microtubule-Associated Pro-
tein 2 (MAP-2), and many others [143]. However, the data
regarding the neural differentiation potential of dental MSCs
seem to vary for different cell types and their subpopulations
in the vast body of studies published to date [37], preventing
safe comparative conclusions regarding the superiority of any
one cell type in regenerating neural tissues.

An overview of existing literature actually reveals the
wide range of diversity encountered in the neural differenti-
ation protocols used so far by different research groups. This
complexity is connected to (1) the culturemicroenvironment,
(2) the application of either single- or in most recent studies
multiple-stage differentiation protocols often alternating cell
suspension (in the form of spheroids/neurospheres) with
adherent cell culture systems, and (3) the biological endpoints
explored by each study.

Regarding the cell culture conditions, a variety of sub-
strates, predominantly poly-l-lysine [36, 57, 140], poly-l-
ornithine with/without lamin [147], gelatin [4, 47], and more
rarely other substrates, have been used, while in most studies
direct culture in culture-treated polystyrene [61, 125, 135,
137, 138, 141, 144] forms the commonest practice. However,
the absence of comparative studies makes conclusions about
the superiority of one substrate over the other impossible.
Regarding the neuroinductive culture media, most studies
use either the Neurobasal A or conventional primarily
Dulbecco’s Modified Eagle’s Medium (DMEM)/F12 media
in their neural differentiation protocols. These are used in
conjunction with various neural supplements (most com-
monly the B27 [36, 125, 142, 144, 148, 149], but also the
N2 consisting of a mixture of insulin, transferrin, pro-
gesterone, selenium, and putrescine [137] and the insulin-
transferrin-selenium (ITS) supplement [54] or their com-
binations [143]) in a serum-free approach. Alternatively, in
other studies, the media are supplemented with conventional
fetal calf (FCS) or Fetal Bovine Serum (FBS) at least for
the first-stage preincubation phase [135]. In addition to
these supplements, various growth factors, mainly Epidermal
Growth Factor (EGF) and basic Fibroblast Growth Fac-
tor (FGF-2) and, to a less extent, Nerve Growth Factor
(NGF), Neurotrophin 3 (NT-3), Brain-Derived Neurotrophic
Factor (BDNF), Sonic Hedgehog (SHH), Glial Cell Line-
Derived Neurotrophic Factor (GDNF), and so forth, have
been used to induce neural maturation. These are addition-
ally supported by neuroinductive small molecules, such as
beta-mercaptoethanol, 5-azacytidine, retinoic acid, dibutyryl
cyclic adenosine monophosphate (dbcAMP), 3-Isobutyl-1-
Methylxanthine (IBMX), Dimethyl Sulfoxide (DMSO), Buty-
lated Hydroxyanisole (BHA), forskolin, and hydrocortisone
[37]. All these factors and supplements have been variously
used in a number of studies, overall making it impossible to
define an ideal culture microenvironment or neural induc-
tion approach.

Neural differentiation in the majority of these studies
is evaluated by the expression of neural markers (such
as NCAM, GFAP, GAP-43, GABA, NeuN, bIII-tubulin,
synapsin, NSE, and NFL [37]), while very few have carried
out functional assessments.Methodsmost applied to confirm
functional neural transformation include the patch-clamp
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analysis of the voltage-dependent Na+ or K+ channels [139–
141, 147] and the fluorescent detection of intracellular Ca2+
flux upon stimulation with neurotransmitters [135].

Finally, a small number of studies have performed in vivo
transplantation of dentalMSCs to assess cell engraftment and
neural marker expression [140] but also for neural disease
treatment in various experimental animal models. Prediffer-
entiated SHED-derived neurospheres were applied into the
striatum of parkinsonian rats and significant improvement
in behavioral impairment as compared to the implantation
of control undifferentiated SHED was reported [36]. Similar
results were achieved after inducing neural maturation of
SHED into dopaminergic neuron-like cells and transplan-
tation in parkinsonian rats [150]. Moreover, transplantation
of neural-induced SHED in a rat Spinal Cord Injury (SCI)
model led to complete recovery of hindlimb motor function
[148]. All of the above studies support that neural preinduc-
tion of undifferentiated MSCs before in vivo transplantation
increases the expression of neural surface receptors and
therefore the grafting efficiency into the nervous system,
potentially improving clinical outcomes. In a very interesting
recent study, the entire apical papilla was transplanted in a
SCI (hemisection) model, in comparison to transplantation
of human SCAP inside fibrin hydrogels [146]. Significantly,
the delivery of SCAP in their original niche (entire apical
papilla) improved gait and reduced glial reactivity, as com-
pared to the classical TE approach of cell expansion and
delivery in 3D scaffolds.This highlights the importance of the
3D organization of stem cells and the surrounding microen-
vironment. Finally, another important set of in vivo studies
were carried out by Sasaki et al. [151, 152]. They used silicone
tube conduits filled with a collagen gel containing rat DPSCs
and managed to bridge an experimental gap in the rat facial
nerve. In a subsequent study, [152] the same group replaced
the nonabsorbable silicon material with a degradable PLGA
tube that was readily resorbed simultaneously promoting
nerve regeneration.

3.3.2. Neurogenic Properties of Dental MSC Secretome. There
is a growing body of evidence questioning the ability of
dental MSCs to differentiate into functional neurons after
transplantation in vivo and supports the idea that their
neurogenic action is primarily exerted as in the case of
angiogenesis through multiple neurotrophic factors found in
their secretion products and acting in a paracrine manner
(Table 1). Sakai et al. [53] showed that transplantation of
DPSCs into rat SCI lesions lead to functional recovery despite
only glial rather than neuronal differentiation being observed
under these extreme conditions, suggesting a paracrine-
mediated action. Mead et al. [153] contended that DPSCs
have limited potential to differentiate into neurons and fail
to integrate into the retina, after transplantation. The same
group found that DPSCs have a more favorable neurotrophic
secretome, rich in NGF, BDNF, and NT-3, in comparison
with BMMSCs [154], which is efficient in promoting survival
and neuritogenesis/axogenesis of bIII-tubulin positive retinal
cells after transplantation into the vitreous body of the eye;
this effect was neutralized after the addition of specific

Fc-receptor inhibitors, overall suggesting a paracrine effect.
Various other studies have reported on the existence of
multiple neurotrophic factors, including NGF, BDNF, NT-
3, CNTF, GDNF, VEGF, and FGF-2 [53, 154–156] in DPSC
secretome. Finally, DPSCs mobilized by G-CSF were shown
to secrete a panel of neurotrophic and angiogenic factors
(BDNF,GDNF, IGF,NGF, andVEGF) capable of regenerating
myelinated fibers in a rat sciatic nerve defect model [157].

A series of studies on the neuroregenerative/neuro-
protective properties of SHED secretome have been also pub-
lished by the group of Mita et al. using various experimental
neural disease models. They have found that SHED-derived,
serum-free Conditioned Medium (SHED-CM) improved
cognitive function in an Alzheimer’s disease mouse model
[158] and enhanced recovery of focal cerebral ischemia in rats
after intranasal administration [159]. Additionally, SHED-
CM after intracerebral administration in mice with perinatal
hypoxia-ischemia-induced brain injury generated an anti-
inflammatory environment, reduced tissue loss, and signifi-
cantly improved the neurological outcomeby converting aM1
proinflammatory to an M2 anti-inflammatory environment.
The latter was primarily attributed to the combined secretion
of MCP-1 and the Secreted Ectodomain of Sialic Acid-
Binding Ig-Like Lectin-9 (ED-Siglec-9) among 28 proteins
detected in SHED-CM [160]. These results have been also
validated by other groups that used SHED-CM for peripheral
nerve regeneration across nerve gaps on rat sciatic nerve gap
models [161]. A recent study also investigated the neuropro-
tective role of SHED-derived exosomes, highlighting another
mechanism of their paracrine-mediated action [162].

In contrast to DPSCs and SHED, little data exist so far on
the neurogenic activity of SCAP secretome. A recent study
[145] demonstrated that SCAP release BDNF responsible
for triggering directed axonal targeting both in vitro and in
vivo, as shown by microfluidic and Matrigel implant exper-
iments. Yu et al. also detected several neurotrophic factors
in SCAP secretome, includingMidkine (MDK), Pleiotrophin
(PTN), Mesencephalic Astrocyte-Derived Neurotrophic Fac-
tor (MANF), Neuroblast Differentiation-Associated Protein
(AHNAK), and Neurophilin 2 (NRP2).

Thus, we seem to be able to conclude that the neurore-
generative/neuroprotective properties of dental MSCs are
primarily exerted through a paracrine mechanism rather
than on their potential for in vivo differentiation into mature
neural phenotypes. Current research trends are focusing
on the preconditioning strategies to enhance neurogenic
properties of dental MSC secretome, as an effective surrogate
therapeutic module for stem cell transplantation therapies in
the treatment of neurodegenerative diseases.

4. Establishment of Clinical-Grade Dental
MSCs and Challenges to Be Overcome
before Clinical Application

Despite the very promising results of the plethora of TE
approaches published to date on the application of dental
MSCs for the regeneration of various tissues, very few clinical
trials mainly in the form of new methodological paradigms
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or “proof-of-concept” (phase I/II, safety/efficacy) studies
have been conducted or are currently being conducted.
This is in complete contrast to the rapidly growing number
of clinical trials using other MSC sources (mainly BM-
MSCs) in treatment of various bone/articular, cardiovascular,
neurological, immune, and blood pathologies (data found
on https://clinicaltrials.gov/). The unique biological value of
MSCs lies in the combination of differentiation potential
into tissue-forming cells and the paracrine-mediated revas-
cularization/reinnervation of the regenerated tissues, under
an immunosuppressive/immunoregulatory “deck” limiting
probability for adverse reactions [163].

However, one of the basic factors still hindering extensive
clinical application of MSC-based therapies is among others
the difficulty encountered in the ex vivo expansion of clinical-
grade, xeno-free MSCs under Good Manufacturing Prac-
tice (GMP) conditions, as described in the EU Regulation
2003/94/EC [164] (GMP is that part of quality assurancewhich
ensures that products are consistently produced and controlled
to the quality standards appropriate to their intended use and
as required by themarketing authorization) and in compliance
to the EU regulations (1394/2007) [165] established for
the clinical use of Advanced Therapy Medicinal Products
(ATMPs). These have been defined as “biological medicinal
products containing or consisting of living cells or sub-cellular
fractions with biological functions.” AMTPs do not belong
to the same category of drugs or transplants because (1)
they contain viable allogeneic or autologous cells undergoing
ex vivo substantial manipulations (as defined in the EU
Regulation 1394/2007, Annex 1) and (2) they may be applied
in “non-homologous use,” that is, at sites not physiologically
present or to perform biological functions they do not usually
participate in. ATMPs are considered Cell-Based Medicinal
Products (CBMPs) when containing living cells or tissues.
CBMPs are “medicinal products presented as having properties
for, or used in or administered to, human beings with a
view to treating, preventing or diagnosing a disease in which
the pharmacological, immunological or metabolic actions are
carried out by cells or tissues” [166].

The recent literature on the subject has questioned
whether epigenetic (e.g., homing receptor/ligand expres-
sion, cytokine/growth factor production, lineage commit-
ment/differentiation, and programmed senescence) [20, 21]
and genetic alterations (e.g., transformation, fusion, and gene
transfer) occurring during expansion culture [167] may affect
the therapeutic potential of stem cells in a positive or negative
way. For example, the changes shown might be beneficial
for site-specific application depending on the target tissues
but adverse for systemic administration or vice versa. Since
development of adequate numbers of high quality SCs at early
passages is a prerequisite for any safe cell therapy treatment,
considerable effort has been put into evaluating the conse-
quences of the cultivation process on stem cell behavior, in
particular, in developing reliable standardization protocols
in the form of Standard Operating Procedures (SOPs) to be
routinely applied to characterize (1) phenotypic and genetic
stability of cultured dental MSCs, (2) efficacy in regenerating
target tissues, (3) the permitted population doubling before
senescence becomes a problem, (4) the absence of microbial,

viral, fungal,mycoplasma, endotoxin, or other contamination
in cultured cells, and (5) lack of tumorigenicity, toxicity, and
immunogenicity, something highlighted in recent reports
discussing current challenges towards clinical application
of dental MSCs [168, 169]. It becomes clear from these
reports that the lack of reliable characterization methods and
reference standards for the evaluation of each of the above
mentioned important parameters presents a major hurdle for
the development of cGMP-grade cells and respective CBMPs.

Among other parameters, significant efforts have been
made to replace animal sera used in conventional media due
to their highly variable and often unknown composition,
the immunological risks associated with serum proteins,
and the potential of transmission of prion diseases [170].
Considering the significant impact of serum components
in MSC maintenance and multilineage differentiation [171],
efforts to replace it with autologous or allogeneic sera or with
proprietary serum-free media of unknown formulations by
different companies have yet to be validated for their efficacy,
while their use is still restricted by the prohibitive cost. The
need for development of chemically definedmedia which can
maintain “stemness” without adversely affecting MSC func-
tion, immunoregulatory properties, and phenotype remains
a significant problem to be overcome for cGMP production
of MSCs [172].

Apart from establishment of clinical-grade dental MSCs,
SOPs must be also developed for each of the successive steps
leading to clinical application including (1) scaling-up of
culture systems to produce the desired cell numbers based
on the targeted therapeutic goal (upstream process); this
might range from thousands to billions of cells depending
on the size of the defect; a major problem to achieve this
lies on the significant variability in donors and the derived
cell lines, which may significantly complicate the culture
scale up for high-throughput production in automated and
parallel culturing systems [173]; (2) harvesting (preferably by
mechanical means or by a cGMP enzymatic process using
recombinant enzymes and avoiding porcine-derived trypsin
or similar reagents [174]), volume reduction, and isolation of
the desired cell populations (downstream possess); in par-
ticular, for cell isolation, molecular-tagging based methods
have been employed to purify dental MSCs by using specific
molecular markers; among these methods, fluorescence-
activated cell sorting (FACS) has been mostly used offering
the advantage ofmultiparametric analysis for several markers
[175]; although FACS systems have been recently upgraded
to cGMP function [176], they have limited capacity for large-
scale MSC processing and significantly high costs; the same
reservations can be made for the magnetism and adsorption-
based cell separation systems (MACS), which are considered
to represent the “gold” standard method for cell purification,
but they also have limited scalability and low efficacy to
obtain high cell numbers [177]; (3) loading into appropriate
carriers and preserving the final ATMP in safe conditions
for immediate or later application. The latter requires robust
cryopreservation processes with minimal adverse effects
on cell survival and “stemness” characteristics [178]. While
the conventional slow-freezing and rapid-thawing method
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in liquid nitrogen or its vapor phase is the “state-of-the-
art” method [179], other methods such as vitrification by
the “open pulled straw” method using high cryoprotectant
concentrations and ROCK inhibitor treatment together with
flash freezing in liquid nitrogen have been proposed to
result in higher cell survival rates [180]. However, direct
contact with liquid nitrogen is considered a major drawback,
as it may increase the risk of cross-contamination among
samples. It still remains quite challenging that all of the
above-mentioned steps, which are routinely used for research
purposes, have to be optimized, upgraded, and standardized
to be carried out under cGMP conditions and followed
by quality assessments to secure safety and efficacy of the
delivered cell-based products, making the whole process
quite complicated and extremely time-consuming.

Other scientific, technological, policy, and commer-
cial development challenges and hurdles have also to be
addressed before extensive clinical application of dental MSC
therapies using commercially available ATPMs to replace
the biomaterial-based treatment modalities currently being
used in clinical dentistry, in a solid, evidence-based manner.
Another challenging point to be considered before applica-
tion of dental MSC therapies in clinical dentistry is that most
currently applied biomaterials and clinical methodologies
have despite reported biological and technical complications
high overall survival and success rates [181]. In addition,
they are related to nonlife threatening diseases; therefore any
novel alternative therapies need to be shown to have marked
superiority to be established as clinically routine processes.

In contrast to medical literature, very limited published
work exists so far on the development of clinical-grade
dental MSCs and related ATMPs. In an effort to avoid
serum-containing media, Tarle et al. [182] evaluated the
capacity of chemically defined serum-free culture systems
to effectively expand and maintain the stem cell properties
of SHED and PDLSCs. Although these cells proliferated
at lower rates in serum-free conditions, their multilineage
differentiation potential and differential expression of 84
stem cell-associated genes showed only minor differences
compared to the serum-containing medium, thus validating
application of such serum-free, cGMP conditions for their
safe and effective expansion. The same group proposed use
of fibronectin an important serum component for optimizing
the initial recovery of DPSCs from pulp biopsies under
serum-free conditions [183]. Lizier et al. [184] developed
a protocol of scaling-up large numbers of dental MSCs at
early passages bymechanical transfer (i.e., without enzymatic
treatment) into new culture dishes, thus minimizing risk of
loss of their “stemness.” Other novel cell culture systems for
large-scale expansion such as cell factories and bioreactors
have been proposed as extremely effective for other oral MSC
types [169]. However, no studies exist so far on the application
of these systems to dental MSC expansion, which would
be important towards optimizing 3D microenvironments for
targeted dental TE.

A recent report [185] described manufacturing strategies
of DPSC-based ATMPs to improve safety, efficacy, and
consistency of their GMP production. The authors proposed
the use of impacted third molars of young healthy donors

between 5 and 7 Nolla’s developmental stage (i.e., from
complete crown upto one third of root completed) as ideal
dental MSC sources. Regarding culture conditions, they
proposed explant culture instead of enzymatic dissociation,
although bothmethods have been associated with advantages
anddisadvantages [186, 187], both being capable of recovering
approximately 1 million cells from one third molar within 2
weeks. The authors also proposed the precoating of culture
plates with a mixture of human placental collagens I and III,
use of GMP reagents, such as TrypLe� or Accutase�, and
serum-free, clinical-grade culture media. Finally, they con-
sidered typical MSC markers such as CD105, CD90, and
CD73 proposed by ISCT as being expressed by several MSC
populations and therefore being nonspecific and proposed a
large and multiparametric immunophenotyping as crucially
important.

Based on the above, the process for the development
of clinical-grade, xeno-free, GMP-compliant dental MSCs
cultures and of the respective dental MSC-based CBPMs for
preclinical and clinical evaluation is illustrated in Figure 1.

5. Dental MSCs-Based Clinical Trials

A significant number of studies have already been published
using MSCs for the regeneration of orofacial bones, includ-
ing sinus augmentation and regeneration of large- (cleft
palate, alveolar ridge augmentation, maxillary replacement,
mandibular fracture, replacement, and osteoradionecrosis
cases) or small-size bone defects. These studies, mainly com-
prised of case reports/series together with few randomized
controlled clinical trials (RCTs), have been systematically
reviewed by Padial-Molina et al. [188] and Jakobsen et al.
[189]. In the majority of these studies, BMMSCs and to a
lesser extent other MSC types such as periosteum-derived
MSCs or adipose tissue-derivedMSCs have been used.These
cells were cultured in growthmedia containing bovine serum,
autologous serum, or other growth media and the cells either
were preinduced or were not preinduced towards osteogenic
differentiation before cell transplantation.

In contrast, very few clinical studies using dental MSCs
have been published so far. Two successive studies by the
group of Papaccio et al. [190, 191] reported on the use
of autologous DPSCs, combined with a collagen sponge,
to repair human mandible bone defects after extraction of
third molars. The authors reported optimal vertical bone
repair three months after surgery and complete restoration
of periodontal tissue back to the second molars. They also
evaluated the bone quality three years after transplantation
and found that an entirely compact rather than spongy bone
was the final outcome, without any serious clinical implica-
tions. Notably, these studies were performed in the absence of
the above-described universally accepted protocols of GMP-
compatible production of DPSCs. Nakashima et al. [192]
published a series of studies in the potential of mobilized
DPSCs to regenerate pulp in dog pulpectomized teeth and
based on this they have initiated a clinical trial with pending
announcement. This will provide significant insight into the
potential for bringing dental MSC-based pulp regeneration
into clinical reality. Finally, besides already published studies,
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Figure 1: Process for the development of clinical-grade, xeno-free, GMP-compliant dental MSC cultures and of the respective dental MSC-
based CBPMs for preclinical and clinical evaluation.

an electronic search in the https://clinicaltrials.gov/ database
under the key words “mesenchymal stem cells” resulted in
595 clinical trials (excluding 11 which have been withdrawn),
applying MSCs in various medical conditions, while only 4
clinical trials have been initiated using dental stem cells, as
analytically described in Table 3.

6. Conclusions

Despite the constraints and limitations of current research
approaches, it is safe to conclude that dental MSCs, including
DPSCs, SHED, and SCAP, have been extensively studied
in the past years by the dental research community using
highly sophisticated in vitro and in vivo systems; this has
led to a substantial understanding of their unique biological
properties. As a result, bioengineering of various constituents
of dental tissues such as dentin, pulp, or alveolar bone using
dental MSC-based TE approaches has now been achieved. In
addition, “proof-of-concept” studies for whole-tooth regen-
eration [193–195] are among the most fascinating recent
advances, however, despite the intriguing possibilities that are
opened up, there is still considerable need for further work
to attain “clinical reality.” Nevertheless, the major challenge
still remains: how can and will the results of this extremely
time-consuming, laborious, and costly research be translated
into clinical therapeutic modules available to the patient;
who is the final recipient of this groundbreaking technology.
To consolidate the clinical utility of dental MSCs and/or
their secretome in Regenerative Dentistry, there is pressing

need for the initiation of well-designed RCTs aiming at the
regenerative treatment of various oral tissues.Thiswill allow a
full understanding of the potential risks involved in the use of
these technologies and spur efforts to surmount any problems
and create a viable therapy option, a potentialmilestone in the
application of science to clinical settings.
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CTDM: Cryopreserved Treated Dentine
Matrices

CXCL-16: Chemokine (C-X-C motif) Ligand 16
dbcAMP: Dibutyryl Cyclic Adenosine

Monophosphate
DCX: Doublin or Lissencephalin-X

(encoded by DCX gene), most known
as Doublecortin

DFSCs: Dental Follicle Stem Cells
DMEM: Dulbecco’s Modified Eagle’s Medium
DMP-1: Dentin Matrix Protein 1
DMSO: Dimethyl Sulfoxide
DPPIV: Dipeptidyl Peptidase-4
DPSCs: Dental Pulp Stem Cells
DSP: Dentin Sialoprotein
ECM: Extracellular Matrix
EDN-1: Endothelin 1
ED-Siglec-9: Secreted Ectodomain of Sialic

Acid-Binding Ig-Like Lectin-9
EGF: Epidermal Growth Factor
EG-VEGF (PK1): Endocrine Gland-Derived Vascular

Endothelial Growth Factor or
Prokineticin-1

EVs: Extracellular Vesicles
FBS: Fetal Bovine Serum
FCS: Fetal Calf Serum
FGF: Fibroblast Growth Factor
FGFR-1: Fibroblast Growth Factor Receptor 1
GABA: Gamma-Aminobutyric Acid
GAP-43: Growth Associated Protein 43
G-CSF: Granulocyte-Colony Stimulating

Factor
GDF-15: Growth Differentiation Factor 15
GDNF: Glial Cell Line-Derived Neurotrophic

Factor
GFAP: Glial Fibrillary Acidic Protein
GMP: Good Manufacturing Practice
GMSCs: Gingival Mesenchymal Stem Cells
HA/TCP: Hydroxyapatite/Tricalcium

Phosphate
HGF: Hepatocyte Growth Factor
HMGA-2: High-Mobility Group AT-hook 2
HUVEC: Human Umbilical Vein Endothelial

Cells
IBMX: 3-Isobutyl-1-Methylxanthine
IGF-1: Insulin-like Growth Factor 1
IGFBP: Insulin-like Growth Factor Binding

Protein
IGFR-1: Insulin Growth Factor Receptor 1
IL: Interleukin
ISCT: International Society of Cellular

Therapy
MANF: Mesencephalic Astrocyte-derived

Neurotrophic Factor
MAP-2: Microtubule-Associated Protein 2
MCP-1: Monocyte Chemotactic Protein 1
MDK: Midkine
MEPE: Matrix Extracellular

Phosphoglycoprotein

MMP: Matrix Metalloproteinase
MSCs: Mesenchymal Stem Cells or

Mesenchymal Stromal Cells
NCAM-1: Neural Cell Adhesion Molecule 1
NFIC: Nuclear Factor I-C
NFL: Neurofilament
NGF: Nerve Growth Factor
NRCAM: Neuronal Cell Adhesion Molecule
NRG-1-B-1: Neuregulin Beta 1
NRP-2: Neurophilin 2
NSE: Neuron Specific Enolase
NT-3: Neurotrophin 3
OMSCs: Oral Mucosa Stem Cells
PAI-1 (serpin E1): Plasminogen Activator Inhibitor-1
PDGF: Platelet-Derived Growth Factor
PDLSCs: Periodontal Ligament Stem Cells
PEDF (serpin F1): Pigment Epithelium-Derived Factor
PGA: Polyglycolic Acid
PIGF: PhosphatidylInositol-Glycan

Biosynthesis Class F
PLA: Polylactic Acid
PRP: Platelet-Rich Plasma
PSCs: Periosteum-Derived Stem Cells
PTN: Pleiotrophin
PTX-3: Pentraxin 3
SCAP: Stem Cells from Apical Papilla
SCF: Stem Cell Factor
SCI: Spinal Cord Injury
SCs: Stem cells
SDF-1a: Stromal Cell-Derived Factor-1a
SGSCs: Salivary Gland-Derived Stem Cells
SHED: Stem Cells from Human Exfoliated

Deciduous teeth
SHH: Sonic Hedgehog
SOPs: Standard Operating Procedures
TACE: Tumor Necrosis Factor-A Converting

Enzyme
TDMs: Treated Dentin Matrices
TE: Tissue Engineering
TGFb: Transforming Growth Factor Beta
TGFbRII: Transforming Growth Factor Beta

Receptor II
TIMP: Tissue Inhibitor of Metalloproteinase
TSP-1: Thrombospondin-1
uPA: Urokinase Plasminogen Activator
VE-cadherin: Vascular Endothelial cadherin
VEGF: Vascular Endothelial Growth Factor
VEGFR-1: Vascular Endothelial Growth Factor

Receptor I
vWF: von Willebrand Factor.
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