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An energy map model for colloid transport

Patrice Bacchin

Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France

A B S T R A C T

When dispersed colloids are flowing, they experience interactions with the fluid (friction) and with other

colloids (surface interactions). These phenomena are usually taken into account through a Suspension Balance

Model (SBM) that couples mass and momentum balances. However, in many applications, the dispersed

particles flow close to an interface or inside a porous media. The flow in such a confined environment leads to

significant particle-wall interactions. This paper puts forward an energy map model that accounts for these

particle-wall interactions. A way to implement the energy map in the SBM is to introduce an interfacial pressure

concept. The new possibilities opened up by the energy map that account for interfacial interaction in the SBM

are analysed. A transient 1D case study for the transfer of colloids through a pore illustrates the potentialities of

the Suspension Balance Model integrating an Energy Map (SBM-EM). The model enables the description of the

transmission of the colloids through the energy map representing the membrane (mass balance) and the

consequences in terms of an out-of-equilibrium counter pressure (momentum balance). The counter osmotic

pressure is then explained by the interfacial interaction between the colloids and the interface; these interfacial

interactions that prevents the colloids from leaving the bulk volume generate forces that are transmitted to the

fluid (via the drag force), thus inducing osmosis. The energy map model can enable the incorporation of the

physical and chemical heterogeneities of the interacting surfaces. It might be of interest to explore the transfer

of colloids along or inside real surfaces (being a mosaic of nano- or micro-scale domaines with specific

interactions).

1. Introduction

The transport of colloids cannot be described only by classical

diffusive and convective mass transport terms. The main reasons are

the existence of both surface interactions between the colloids (or

between a colloid and its surrounding interface) and hydrodynamic

interactions between the particle and the fluid (interactions with the

shear rate). These interactions that occurs at a nano- or micro-scale are

deeply modifying the way in which colloids are diffusing and/or being

advected. For example, processes such as ultrafiltration, nanofiltration

or reverse osmosis, which are classically used to purify, eliminate and

concentrate colloids or nanoparticles, strongly depend on these inter-

facial phenomena. The level of fouling, its kinetics or even the way

colloids build up (porosity, hydraulic resistance or accumulation

reversibility) are driven by colloidal properties (Bacchin et al., 2011).

Such an impact of surface interactions is also crucial during the

transport of drug and carriers in the crowd environment of cells (Al-

Obaidi and Florence, 2015); the nano-scale interactions playing a

significant role on the hindered diffusion or advection towards cellular

goals.

It is therefore necessary to establish experimental and theoretical

connections between colloidal properties at a local (micro) scale and

the efficiency of the mass and momentum transport phenomena; this

knowledge is compulsory for the control of numerous processes that

deal with concentrated colloids and/or colloids in confined situations.

In a sheared flow, the colloids are submitted to hydrodynamic

interactions (due to the fluid velocity-drag force and to the velocity

gradient-shear induced diffusion or lateral migration). Additionally, in

a concentrated flow, colloids experience multi-body surface interaction

(i.e. DLVO forces, etc.). In these flows, it is crucial to account for the

momentum coupling or exchange between the fluid and the particle

phase. These interactions (and their coupling) can be taken into

account by the Lagrangian approach (like the Force Coupling Method

or the Monte Carlo procedure) or by the Eulerian approaches (two fluid

model, mixture models, suspension balance model). Multiple inter-

particle DLVO interactions have been implemented in the Force

Coupling Method in order to depict the collective effect induced by

the filtration through a pore (Agbangla et al., 2014). However, this

method, based on the tracking of individual particles (around 1 µm),

remains impossible to apply for describing the process scale (around

1 m). For this reason, the Eulerian approach that considers the

variation of spatial averaged variables, is more adapted for the
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description of the transport of concentrated colloidal dispersion. The

different hydrodynamic and colloidal forces can be accounted for with

two coupled momentum balances for both the particle phase and the

fluid phase (called for this reason the two fluid model (Noetinger,

1989)). These momentum balances are coupled by considering mo-

mentum exchanges. According to this formulation, the equation can be

written for the whole mixture (particles and fluid). It is then called the

suspension balance model (Nott and Brady, 1994) or the mixture

model (Jackson, 2000, 1997). Both the momentum exchange between

the particle and the fluid phases and the slip velocity between the

particles and the fluid have to be introduced as closure relationships in

order to fully describe the problem. This last Eulerian approach will be

introduced in the background section of this paper.

However, the picture is even more complex when the flow of

particles takes place in confined conditions, where interactions with the

walls are occurring. Furthermore, real surfaces are often chemically

heterogeneous on a micro- or a nano-scale (like a biological membrane

composed of lipid bilayers with inclusions) and can present local

morphological heterogeneity (for example asperities) that can induce

different local interaction energies when an object approaches the

surface. To account for this complexity, the particle-wall interactions

can be accounted for through an energy map. Several authors have

defined interactions maps to characterise the approach of colloids near

a surface. Interaction maps allows for example, the effect of the

roughness, through DLVO calculations (Hoek et al., 2003), to be

described. These maps have been used to determine the local equili-

brium position that is due to both lateral and normal components of

the DLVO force (Kemps and Bhattacharjee, 2005). Comparing the

hydrodynamic forces with a DLVO energy map can then help to have a

better evaluation of the interactions between colloids and heteroge-

neous surfaces (Shen et al., 2012). However, this energy map should be

integrated in a full transport model in order to account for the coupling

with diffusion, advection and hydrodynamic or colloidal interactions.

The aim of this paper is to propose a model that describes the

transport of colloids in (or close to) porous media and thus to integrate

the effect of both particle/particle and particle/wall interactions. The

approach taken will be to implement an energy map (for an interacting

surface) in a Suspension Balance Model.

2. Theoretical background

The Suspension Balance Model SBM (Nott and Brady, 1994) was

initially established to describe the non-Brownian migration of parti-

cles in suspension. The shear-induced migration was depicted by

considering the effect of particles in the fluid phase through a

particle-phase stress previously introduced by Batchelor (1970). This

work and further implementations (Morris and Boulay, 1999) allow to

relate the rheology of the suspension to the migration flux (mass

transfer) of particles. They demonstrated that the SBM approach was

encompassing the diffusive flux model (previously introduced by

Leighton and Acrivos (1987)), based on an empirical consideration

that mass flux is proportional to gradients in particle concentration and

shear rate. More recently, Lhuillier (2009) discussed the discrepancies

between the two-fluid approach and the SBM and proposed that the

force exchange on the particle phase was the sum of the interphase

drag forces, Fdrag (arising from the difference in velocity between the

particles and the fluid phases) and a stress-induced force, Σp (arising

from the gradient in the field of velocity). A review of the mixture

models for shear-induced migration in flowing, viscous and concen-

trated particle suspensions have highlighted the possibility of describ-

ing the non-equilibrium osmotic pressure and shear-induced diffusion

coefficients in the same model formulation (Vollebregt et al., 2010). All

these recent developments have been integrated in a revisited form of

the Suspension Balance Model (Nott et al., 2011) that will be the

starting point of the analysis done in the paper.

2.1. The suspension balance model (SBM)

The SBM is based on solving field equations written from the

volumic averaging of the governing equations (local momentum and

mass balances) on the two phases. These field equations resulting from

momentum and mass balances, are written below for the fluid phase,

the dispersed phase and the mixture (the balance for the mixture being

the sum of the two phases):

Momentum balance

For the dispersed phase

Σϕρ g nF
⎯→+

⎯→
+∇⋅ =0pp drag (1)

For the fluid

e Σϕ ρ g nF ϕ p η(1 − ) ⎯→−
⎯→

−∇(1 − ) +2 ∇⋅< > + ∇⋅ =0ff drag f (2)

For the mixture

e Σ Σρ g ϕ p η
⎯→−∇(1 − ) +2 ∇⋅< > + ∇⋅ +∇⋅ =0p fm f (3)

Mass balance

For the dispersed phase

ϕ

t
ϕu

∂
∂

=−∇⋅( ⎯→ )p (4)

For the fluid

ϕ

t
ϕ u

∂(1− )
∂

=−∇⋅((1 − ) ⎯→ )f (5)

For the mixture

u0 = ∇⋅⎯→m (6)

The revisited form (Nott et al., 2011) considers a momentum

exchange between the dispersed and the fluid phase via a drag force,

nF
⎯→
drag, and a contribution to the mixture momentum through the

divergence of a particle stress, Σ∇⋅ p, and through the divergence of a

fluid stress, Σ∇⋅ f . In the momentum balance, the other terms are the

effect of the gravity of each phases, the fluid pressure gradient and the

viscosity of the fluid phase (where e is the strain rate tensor linked to

the shear rate u γ∇ /2 = ̇/2f for an uniaxial flow). The mass balances

introduces the advective flux of the particle, up, the fluid velocity, uf ,

and the mixture velocity um coming from volume averaging,

ϕ ϕu +(1 − )up f .

2.2. A set of closure relationships for colloids

Closure relationships are necessary to close the problem and to be

able to determine the fluid properties (the velocity and the volume

fraction) from the previous set of equations (Eqs. (1)–(6)). A first

closure relationship expresses the drag force as a function of the slip

velocity between the particle phase, up, and the mixture phase, um:

nF
ϕ

V

u u

m ϕ

⎯→
=−

⎯→ − ⎯→⎯

( )
drag

p

p m

(7)

where m ϕ( ) is the mobility of the particles accounting for the effect of

the volume fraction, i.e. K ϕ πμa( )/6 where K ϕ( ) is the hindered settling

coefficient.

The writing of the stresses Σp and Σf is more controversial and a

different set of closure relationships have been proposed (as reviewed

in Vollebregt et al. (2010)). As underlined by Lhuillier (2009), some of

these sets of closure presents some inconsistencies. Clausen (2013)

proposes a more consistent formulation: this set of modified closure

relationship will be the starting point of the one proposed in this paper.

For low Péclet numbers, the particle-phase stress, Σp, can be written

by considering only the normal stress (NS) contribution (Clausen,

2013). Furthermore, a reasonable premise for colloidal particles at

moderate shear rates is to consider the stress as isotropic (Hallez et al.,



2016)) and equal to the particle pressure:

Σ Σ I IΠ ϕ γ Π ϕ Π ϕ γ= = − ( , ˙) = −( ( ) + ( , ˙))p p
NS

cc cc th cc mc (8)

where Π ϕ γ( , )̇cc is the generalized concept of particle pressure

(Deboeuf et al., 2009). Particle pressure includes different contribu-

tions that can be shared accordingly:

• The thermodynamic osmotic pressure, Π ϕ( ),cc th that also represents

the equation of state for colloids accounting for the entropic

contribution Π ϕ( )cc ent and the multi-body interactions (van der

Waals, electrostatic, etc.) Π ϕ( )cc mbi . The gradient in the osmotic

pressure is directly linked to the chemical potential gradient and

therefore to a thermodynamic force. This contribution is a reversible

thermodynamic property (elastic contribution) when the dispersive

forces (entropic or electrostatic) overcome the attraction i.e. if

>0.dΠ

dϕ

cc th If this last derivative is negative (for example when high

concentration lead colloids to interact at shorter distances with

attractive interactions), a spinodal decomposition occurs. Colloids

are no longer spontaneously thermodynamically dispersed: colloids

can interact with mechanical interactions and the particle pressure

is no longer osmotic (when osmotic is defined as an idealized,

spontaneous reversible and non-dissipative process, constituted of a

continuous sequence of equilibrium states).

• The mechanical particle pressure, Π ϕ γ( , )̇cc mc is the contribution of

the particle pressure due to mechanical contact between colloids

(inelastic collisions, friction) or between colloids and the fluid

presenting a dissipative irreversible character (viscous contribu-

tion). This contribution can be composed of the shear-induced

normal stress term of the particle-phase stress Π ϕ γ( , )̇cc shr , when

the concentrated particles are sheared, and the compressive yield

stress (Buscall and White, 1987) when the particles are in contact,

Π ϕ( )cc cys .

The fluid stress acting on the fluid momentum balance can be

defined as the contribution of the particle phase to the viscosity, η ϕ( )p ,

and of the thermodynamic osmotic pressure, Π ϕ( )th :

Σ e Iη η ϕ Π ϕ= 2 ( ) < > + ( )f f p cc th (9)

The particle contribution to the viscosity combines with eη2 ∇.< >f to

represent the shear viscosity of the mixture: η ϕ η η ϕ( )= (1+ ( )m f p . The

thermodynamic osmotic pressure is here accounted as an exchange

between the particle and the fluid phases, as proposed by Lhuillier

(2011) for the thermodynamic forces within the interphase force.

The addition of Eqs. (8) and (9) (also defined by Batchelor's, Σs, the

solid-phase stress) defines the total stress for the mixture (Eq. (3)),

thus accounting for a viscous term and a particle pressure term:

Σ Σ e Iη η ϕ Π ϕ γ+ = 2 ( ) < > − ( , ˙)p f f p cc mc (10)

This writing is consistent with the most commonly form (Miller

et al., 2009; Morris and Boulay, 1999) for non-Brownian suspensions,

accounting for a non-Brownian particle pressure contribution when

assuming no significant normal-stress difference.

2.3. The set of Eulerian equations to solve

Combining the field equations (Section 2.1) and the modified

rheological model enables o the set of the Eulerian equation to solve

to be defined.

Momentum balance

For the dispersed phase

I Iϕρ g nF Π Π
⎯→ +

⎯→
− ∇. − ∇. = 0p drag cc th cc mc (11)

For the fluid

e Iϕ ρ g nF ϕ p η Π(1 − ) ⎯→ −
⎯→

− ∇(1 − ) + 2∇. < > + ∇. = 0f drag m cc th

(12)

For the mixture

e Iρ g ϕ p η Π
⎯→−∇(1 − ) +2 ∇. < > − ∇. =0m m ccmc (13)

Mass balance

For the dispersed phase

ϕ

t
ϕu

∂
∂

=−∇. ( ⎯→ )p (14)

For the fluid

ϕ

t
ϕ u

∂(1− )
∂

=−∇. ((1 − ) ⎯→ )f (15)

For the mixture

u0 = ∇. ⎯→
m (16)

The momentum balance for the particle phase (Eq. (11)) permit the

drag force to be expressed. The drag force being linked to the slipping

velocity (Eq. (7)), it is possible to express the particle velocity as

follows:

u u m ϕ V ρg
Π

ϕ

⎯→ =⎯→ + ( ) ( ⎯→−
∇

)p m p
cc

(17)

The particle velocity can be implemented in the mass balance for

the dispersed phase (Eq. (14)) leading to Eq. (20). This equation has to

be solved together with the Eqs. (18) and (19) (the mixture mass

balance and the mixture momentum balance respectively) to have the

full set of the 3 SBM equations:

u∇.⎯→ =0m (18)

e Iρ g ϕ p η ϕ Π
⎯→ − ∇(1 − ) + 2∇⋅ ( ) < > − ∇ = 0m m cc mc (19)

ϕ

t
u ϕ m ϕ V ϕρg Π

∂
∂

=−∇⋅(⎯→ ) − ∇⋅( ( ) ( ⎯→−∇ ))m p cc (20)

The solving of these 3 equations then enables the identification of

the mixture velocity, um, the fluid pressure p, and the volume fraction

of colloids, ϕ. The other variable can easily be determined from this 3

variables; for example the particle velocity can be determined from Eq.

(17).

2.4. Physical consistencies of the set of equations

It has to be noted that the gradient of the complete particle

pressure, Π∇ cc (combining thermodynamic and mechanic contribu-

tions) acts in the mass transport equation (Eq. (20)) as proposed in the

classical diffusive flux model (Deboeuf et al., 2009; Leighton and

Acrivos, 1987). However, the momentum, due to the gradient of the

thermodynamic contribution of the solid pressure, is released in the

fluid (Eq. (12)). Consequently, only the gradient of the mechanical part

of the particle pressure, Π∇ mc, plays a role on the momentum balance of

the mixture (Eq. (13)). This differentiation of the solid pressure action

emphasizes the dual behavior of colloids that are both exchanging

“thermodynamical” energy with the fluid, due to the Brownian motion

(collisions with the liquid molecules) and dissipate “mechanical”

energy in the mixture (collisions and friction with the particles). Such

a way to write models enables the description of the equilibrium

between the static pressure and the osmotic pressure (Eq. (12) leads to

Iϕ p Π∇(1 − ) = ∇. cc th ) when the drag force is zero (at equilibrium).

Furthermore, for non-equilibrium conditions, the Eq. (11) describes

the equivalence between drag force and the gradient in osmotic

pressure as already discussed by Wijmans et al. (1985) and

Elimelech and Bhattacharjee (1998) for polarization concentration.

At the end, as schematized in Fig. 1, in this rheological model for

the phase stresses, the presence of colloidal particles under a given load



(under a shear rate and under a concentration gradient) contributes to

the modification of the momentum exchanges with:

• a dissipative contribution in the fluid phase, eη η ϕ2∇. ( ) < >f p due to

the particle phase. Such a term contributes to the mixture effective

viscosity in the Stokes equation.

• a storage contribution in the solid phase through the gradient in

particle pressure, IΠ ϕ γ−∇. ( , )̇cc . The particle pressure here ac-

counts for the storage of the energy in concentrated or high-sheared

zone. The thermodynamic contribution to this energy IΠ ϕ∇. ( )cc th

can be later released in the fluid phase. The storage is then an elastic

contribution (occurring only when a force is applied i.e. non-

permanently). The similarity between osmotic pressure and storage

modulus of viscoelastic dispersion has been experimentally evi-

denced (Mason et al., 1997). The other part of the energy storage,

due to mechanical interaction IΠ ϕ γ−∇. ( , ˙)cc mc , can be released in

the mixture, where it will be dissipated.

A key feature of this proposed set of modified closure relationships

for colloids is the differentiation between the thermodynamic and the

mechanic parts of the particle pressure that are acting on the fluid and

mixture momentum balances, respectively.

3. Implementation of an energy map in SBM: the SBM-EM

model

When colloids flow close to an interface or inside a porous material,

each particle experiences an additional force that can result in a force

toward the bulk if the interactions are repulsive or toward the surface if

the interactions are attractive. It is possible to access this force by

performing the derivative of the interaction energy. The colloid/inter-

face potential interaction energy (a free energy), Vic, can be calculated

for each point of the fluid where the particle can flow, then, constituting

an energy landscape: the energy map, x y zV( , , )i . This energy map can

also be associated to a pressure, considering V=V Πi p i where x y zΠ ( , , )i is

the interfacial pressure (that can also be the mapped parameter). The

associated force per unit of particle volume is given by the interfacial

pressure gradient ∇Πi. The additional force per unit of volume of fluid

is then the product of the volume fraction, multiplied by the gradient of

the interfacial pressure:

ϕ Π− ∇ i (21)

This term is implemented in the dispersed phase momentum

balance (Eq. (11)). The term ϕ− ∇Π (x, y, z)i can also be written

Π x y z ϕ−∇ ( , , , )ic where Πic is the contribution of the interface to the

colloid bulk pressure, Π ϕ( )cc .

The new set of equations is given in Supplementary information

(S3). When the SBM equation is combined together with the closure

relationship (as previously discussed in Section 2.3), a set of three

equations (later called SBM-EM for Suspension Balance Model with

Energy Mapping) has to be solved.

Conservation of the velocity of the mixture:

u∇. ⎯→ =0m (22)

Momentum balance

eρ g ϕ p η ϕ Π ϕ ϕ Π x y z
⎯→ − ∇(1 − ) + 2∇. ( ) < > − ∇ ( ) − ∇ ( , , ) = 0m m cc mc i

(23)

Mass balance

ϕ

t
u ϕ m ϕ V ϕρg Π ϕ ϕ Π x y z

∂
∂

=−∇. (⎯→ ) − ∇. ( ) ( ⎯→−∇ ( )− ∇ ( , , ))m p cc i (24)

It has to be noted, that even if the physical context is different, this

set of equations can show some similarities with the ones used by

Jacazio et al. (1972). These describe electro-osmosis where the Nernst

Planck equation is combined with the Navier Stokes equation that

includes an electrokinetics term for the exclusion of ions by the

stationary phase.

4. The energy map: an ingredient to understand complex

mechanisms

In a general way, the interfacial energy introduced in the energy

map, x y zV Π ( , , )p i , can be defined as the energy needed to bring the

dispersed phase close to the interface. It has to be noted that this

interfacial pressure presents some similarities with a disjoining pres-

sure (Derjaguin and Churaev, 1974). This energy can take different

forms and thus describe different mechanisms. In the most conven-

tional way, this interaction energy can represent the potential interac-

tion energy between the particle and the interface (for example through

particle/wall surface interactions: electrostatic interaction, van der

Waals, polymer brush, etc.). However, this energy can also reflect the

potential energy that an object must acquire in order to be transported

in the map. For example, this energy can represent the stretching

energy that is required to deform a plasmid DNA and, then, to enable

its penetration inside a channel (Li et al., 2015). This energy can also

represent the energy needed for a molecule to be solubilized in a

material (as in the diffusion/solubilization model in reverse osmosis).

This colloid/interface energy can then help to take into account various

types of interaction in a global way: the interaction of the colloid with

the interface but also the internal interaction within the colloid (change

in configuration or phase change) needed to be transferred. (Fig. 2).

The consequences of the introduction of the energy map in Eqs.

(23) and (24) can first be investigated by analysing the contribution of

each term of the SBM-EM model and secondly, by considering the

mechanisms that can be described when coupling two of these terms:

– classically, the coupling of the convective term ϕum and the diffusive

mass flux m Π(ϕ)V ∇ ccp describes the polarization layer mechanism

that can develop in a boundary layer. The effect of the multibody

interaction and of the shear induced diffusion can be accounted

through the Πcc th and the Πcc sh contributions respectively.

– the coupling of the diffusive mass flux Π∇ cc with the interfacial

pressure ϕ Π∇ i describes the distribution of the concentration with

the interfacial pressure: an exclusion if the interfacial pressure is

positive (repulsion) or an accumulation if the interfacial pressure is

negative (attraction). When considering the distribution of the

colloids between two phases having a difference of interfacial

pressure Πi, a partition coefficient, K, can be defined as the ratio

between the concentration in the phase (where it exists Πi) and the

concentration in the bulk phase (where Π =0i ). With the limits of an

Fig. 1. Schematic view of the SBM modified rheological model for colloidal dispersion.

The load in the dispersion (exerted through the shear rate or the density) acts both on the

fluid and the particle phases. These phases exchange momentum through the interphase

drag force. The different phases can dissipate energy through viscosities (one part coming

through the viscosity of the fluid and another from the viscosity induced by the particles

– a function of their density, ϕ, and the way particles are sheared, γ ̇). The different phases

can also contribute in storing the mechanical energy (one part being stored in the fluid-

through the fluid pressure, p- and one part being stored in the particle phase in high

density, ϕ, or/and in high sheared zone, γ ̇-through the particle pressure).



ideal non-interacting dispersion (if the osmotic pressure follows the

Van’t Hoff law), this equilibrium leads to a Boltzmann distribution:

Π ϕ Π K e−∇ − ∇ =0 ⇐⇒ =cc i
ideal

Π V

kT
−

i p

(25)

– the coupling of the convection ϕum and the interfacial pressure term

m Π(ϕ)V ∇ ccp represents the balance between the hydrodynamic drag

force and the particle-wall force

– in the momentum balance, the coupling between the hydrostatic

pressure, ϕ p−∇(1 − ) and the interfacial pressure, ϕ Π− ∇ i, permits

the effect of the osmotic pressure on the driving pressure to be

described. It will be shown in the next section that this term allows

to express the counter pressure due to osmosis in a reverse osmosis

process.

The model can also describe the phase transitions that occur when

attractive interaction predominate over repulsions (characterized with

a zero derivative of the osmotic or the interfacial pressure). A phase

transition can occur for a critical volume fraction that corresponds to

the zero derivative of the “bulk” osmotic pressure then representing a

homogeneous aggregation of particles. For the interfacial pressure, the

phase transition is represented by critical coordinates in the energy

map that will conduct to a heterogeneous aggregation with particle/

wall contact. The model can then describe the critical fluxes (or

velocities) conditions leading to these heterogeneous (Bacchin et al.,

1995) or homogeneous phase transitions (Bacchin et al., 2011, 2002).

The full SBM-EM model is then able to describe the effect of the

multi-body interactions (particle/particle and particle/wall) on both

the mass and momentum transports. It enables the local analysis of the

dynamic transport of colloidal fluid that account for nanoscale inter-

actions; the energy map enables the description of these interactions

but also their possible patchy character (when interactions change

along a surface). The tuning of this interacting architecture can be the

key point for facilitated transport mechanisms or for non-adhesive

surface design (Jiang and Cao, 2010). The model enables the investiga-

tion of the complex coupling between the flow and the multi-body

surface interactions (in the bulk and the wall) that occur during the

flow of concentrated dispersions in confined environment. These

potentialities are illustrated in the next section through a simplified

case study for the uniaxial transfer of colloids through a membrane.

5. Case study: transient transfer of a colloid through a

membrane

The SBM-EM model enable the 2D simulation of the transfer of

colloids inside a membrane by accounting the specific interactions

between the pore wall and the colloids (Fig. 3 left part). However, in

this paper, the simplest case study will be considered. The case study

represents the transfer of a solute along the pore axis or through a

dense membrane. The problem will then be considered in 1D (the z

direction normal to the membrane surface) with no shear (η ϕ γ( ) =̇0)m ,

and when the particle pressure has only a thermodynamical contribu-

tion (Π = 0cc mc therefore corresponds to the absence of deposition).

Eqs. (23) and (24) are simplified to the partial differential equations:

d ϕ p

dz
ϕ

dΠ z

dz
−

(1− )
−

( )
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(26)
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Fig. 2. The SBM-EM model considers the fluid (a mobile phase), the dispersed phase

(that can be either mobile or immobile according to the slipping velocity) and the

interface (an immobile phase). Frictions leading to viscous dissipation are accounted for

through the fluid and the particle-induced viscosity and the colloid mobility, m, when

slipping conditions exit. The momentum energy leading to energy storage in the different

phases are accounted for through generalized colloid pressure that can include the

osmotic pressure contribution (function of the volume fraction), the compressive yield

stress, the shear-induced pressure (function of the shear) and the colloid interfacial

pressure (function of the energy map and then of the spatial coordinates).

Fig. 3. Representation (on the left) of the 2D energy map induced by a charged pore (simulation realised by Y. Hallez according to Hallez et al. (2014)). For the case study of this paper,

only the 1D case is treated which corresponds to the transfer on the pore axis or through a dense membrane. The interfacial pressure (on the right) is a function of z with a positive

interfacial pressure inside the membrane, MB, and progressive variations in exclusion layers, EX. The interfacial pressure is zero in the surrounding concentration polarization layers,

PL.



where um represents the permeate flux and is constant along z

(according to Eq. (22)). The interfacial pressure will then be a function

of z: the non-dimensional distance on the axis normal to the membrane

surface.

A continuous differentiable function is used to depict the variation

of the interfacial potential along z (the function is given in S4 of the

Supplementary information). The non-dimensional maximum value of

the function,
V

kT

Πp icmax , is taken at –ln(0.1) which leads to a value of 0.1

for the partition coefficient according to the Eq. (25). The interfacial

pressure variation allows then to define polarization layers, PL (where

interfacial pressure is zero), the exclusion layer, EX (where the gradient

of interfacial pressure is localized) and the membrane layer, MB (where

the interfacial pressure is maximum). All of the simulation data,

together with the osmotic pressure (fully described in Bacchin et al.

(2006)) are given in the Supplementary information (S4).

To perform simulations, the boundary conditions are classically

defined with a constant volume fraction at the inlet, ϕ0=0.001, and a

non-diffusive flux at the outlet. The initial condition is a neil volume

fraction all along z. The simulations are coded with python language

(Canopy Enthought package) by using the fipy partial differential

equation solver (Guyer et al., 2009). The full code is available on

request.

The results of the transient simulation for a mixture velocity, um, of

10−5 m/s are presented in Fig. 4. These conditions correspond to a

Péclet number of 0.46, when defined as u δ D/m bl 0 with δbl being the

thickness of the boundary layer thickness (10−6 m) and D0, the

diffusion coefficient in dilute conditions (2.18·10–11 m2/s). The simu-

lation are continuously depicting the polarization layer formation

induced by the membrane surface exclusion, the convection-diffusion

balance inside the membrane and the exclusion at the extremities of

the membrane. At steady state, the volume fraction is, ϕp=0.256, in the

permeate side leading to a solute retention, R = 1 − =0.744
ϕ

ϕ
p

0
.

The description of the transfer through a membrane is classically

described by an analytical relationship (see S5 of the Supplementary

information), based on (1) the coupling of a convection-diffusion

balance inside the membrane, and (2) the coupling in the boundary

layer, and (3) a partition coefficient (with a concentration discontinu-

ity) between the membrane and the outside solution. Simulations have

been performed for different permeate velocities (or Péclet number)

and the solute retention at steady state is compared to this analytical

model in Fig. 5. The analytical model appears with two dashed lines

due to the fact that the Pe numbers used in the analytical equation can

be written differently depending on whether the exclusion layers are

accounted for in the membrane thickness or in the boundary layer

thickness. The simulation results are close to the result obtained with

the analytical expression. The small discrepancies could result from the

way the partition is accounted for: with a ramp of potential in the

simulation and with a discontinuity in the concentration profile in the

analytical expression. The effect of the slope of the ramp, that could

explain the facilitated transfer observed when working with pores that

exhibit a conic shape of an hour glass shape (Gravelle et al., 2013; Li

et al., 2015), will be further investigated.

Solving of the mass balance (Eq. (18)) with the 1D energy map

(Fig. 3) enables a description of the main transport phenomena that

occurs through a membrane, with:

– the convection-diffusion balance inside the membrane that explains

the increase in the retention for a small Péclet number, usually

observed in reverse osmosis process (when the convection enables

the reduction of the negative impact of the diffusion on the

selectivity)

– the polarization layer in the boundary layer near the interface that

leads to a decrease in retention for a higher Péclet number, usually

observed in ultrafiltration (when the increase in concentration at the

membrane interface favors the transmission of the solute in the

permeate).

From the integration of the momentum balance (Eq. (20)), it is also

possible to determine the counter pressure that will be opposed to the

difference in static pressure. The counter pressure, CP, can be

determined by integrating the momentum balance term, ∫ ϕdΠic. The

counter pressure has been determined for the simulations performed

for different Péclet numbers. The results are presented in Fig. 6 where

the counter pressure is plotted as a function of the difference between

the maximum of the osmotic pressure in the concentrate and the

osmotic pressure in the permeate, Π Π−cc max cc per (that is classically

used for the counter pressure estimation). The values obtained from

the integration of the interfacial pressure and from the “bulk” osmotic

pressure difference are similar. The discrepancy can be explained from

the writing of the counter pressure, CP, obtained through the integra-

tion of the momentum balance for the particle phase (Eq. (S3-1)) along

the exclusion layers and the membrane layers:

∫ ∫CP ϕdΠ Π nF dz= =∆ +
EX MB

ic cc
EX MB

drag
+ + (28)

This relationship links the counter pressure to the osmotic pressure

difference and to the drag force along the exclusion and the membrane

layers. Assuming the absence of an additional contribution of a

compressive yield stress Πcc cys (that could represent the pressure drop

in a deposit layer), the difference in particle pressure, Π∆ cc, is mainly

due to the thermodynamic contribution, Π∆ cc th. The counter pressure is

Fig. 4. The transient variation of the volume fraction, ϕ, along z (the vertical lines

represent the membrane thickness-full lines and the exclusion layers-dashed lines). The

simulation are continuously describing the polarization layer formation, the exclusion

near the membrane inlet, the convection-diffusion inside the membrane, the exclusion

near the membrane outlet and the filtrate side.

Fig. 5. Membrane retention calculated as a function of the Pe number. The line of

symbols represent the simulation results. These results are compared to the ones

obtained with an analytical expression, based on a partition coefficient.



therefore linked to the difference in osmotic pressure, Π∆ cc th, at the

interfaces between the exclusion and the bulk that are very close to the

maximum osmotic pressure and the permeate osmotic pressure

(Fig. 4):

∫ ∫ϕdΠ Π Π nF dz= − +
EX MB

ic cc th max cc th per
EX MB

drag
+ + (29)

The difference between the calculated counter pressure and the

osmotic pressure difference is due to the drag force that can be seen as

the out-of-equilibrium contribution to the counter pressure. This

contribution highlights the gap with the spontaneous reversible process

(due to the osmotic pressure difference) that is valid only if considering

a sequence of equilibrium states (quasi-static process) i.e. if the process

is carried out sufficiently slowly. The out-of-equilibrium term is linked

to the drag force which is accounting for dissipative effects (internal

friction); this term is not taken into account when considering the

idealized succession of equilibrium states (Peppin et al., 2005). This

gap is negative when um< up (for low Péclet numbers) and becomes

positive when um> up. The Peclet number for which the curve crosses

the bisector can be associated to the critical Péclet number, i.e. when

um=up. For lower Peclet number, the discrepancy can be described via a

Staverman coefficient, σ of 0.8 (when the counter osmotic pressure is

written, σ Π Π( − )cc max cc per ).

The SBM-EM model can enable having a good description of both

the concentration profile and the solute transmission through the

membrane (Fig. 5) and the impact of the accumulation on the out-of-

equilibrium counter osmotic pressure (Fig. 6). The counter osmotic

pressure is therefore explained by the interfacial interaction between

the colloids and the interface. These interactions prevent the colloids

from leaving the volume, which then lead to a modification of the

movement of the particles at the interface that becomes non-isotropic

near the interface. The colloids exchange momentum with the interface

and a part of this momentum is returned to the dispersed phase (via

the energy principle of action and reaction), thus generating additional

gradient in colloid pressure. This gradient of particle pressure, induced

by the interface, generates a force that is transmitted to the fluid (via

the drag force), that result in osmosis. The model can also describe the

shear-induced mechanisms and the formation of gel or deposit layer at

the membrane surface (Bacchin et al., 2002). Another interesting

aspect of this model lies in the fact that the energy map can easily be

adapted to describe more complex transfer problems that can be

encountered in membrane processes.

6. Conclusions

The concept of the energy map is implemented in the Suspension

Balance Model (SBM) in order to account for transport phenomena due

to particle/wall interactions. This Eulerian model can then simulta-

neously describe the effect of multibody particle-particle interactions

(through the osmotic pressure or the generalized concept of particle

pressure) and the particle-wall interactions (through an interfacial

pressure relative to the free energy due to the colloid-wall interaction).

The interfacial pressure is a key parameter that characterizes the

particle/wall interaction: the energy map represents the value of the

interfacial pressure spatially. The gradient in the energy map leads to

additional terms of transport phenomena (implemented in the mass

balance) and of momentum exchange (implemented in the momentum

balance). A new set of equation has been established for this full model

(SBM-EM). The coupling of the additional new terms enables account-

ing for the Boltzmann exclusion of colloids near the interfaces, the

presence of heterogeneous critical flux (when the advection leads to

overcome the map energy barrier) and the osmotic flow (through the

momentum exchange term). The model is applied for a 1D modeling of

the transfer through a membrane. It enables the description of the

retention of a solute through a membrane (i.e. through the polarization

layer, the exclusion layers and inside the membrane) and the determi-

nation of the out-of-equilibrium counter pressure (that can be seen as

the direct consequence of the colloid's interaction with the semi-

permeable membrane wall). The model is compared to the analytical

relationships that exist for 1D problem. At the end, the SBM-EMmodel

enables the representation of the interaction of the colloids with their

environment (for example when the dispersion flows in a confined

media). The energy map can allow flexibility in incorporating the

physical and chemical heterogeneities of the interacting surfaces. It

might be of interest to explore the transfer of colloids along or inside

real surfaces (being a mosaic of nano or microscale domain with

specific interactions).
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