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CYCLICITY OF NON VANISHING FUNCTIONS IN
THE POLYDISC AND IN THE BALL

ERIC AMAR AND PASCAL J. THOMAS

Abstract. We use a special version of the Corona Theorem in
several variables, valid when all but one of the data functions are
smooth, to generalize to the polydisc and to the ball results ob-
tained by El Fallah, Kellay and Seip about cyclicity of non vanish-
ing bounded holomorphic functions in large enough Banach spaces
of analytic functions determined either by weighted sums of powers
of Taylor coefficients or by radially weighted integrals of powers of
the modulus of the function.

1. Introduction

The Hardy space can be seen as a space of square integrable func-
tions on the circle with vanishing Fourier coefficients for the negative
integers, a space of holomorphic functions on the unit disk, or the space
of complex valued series with square summable moduli, and the inter-
action between those viewpoints has generated a long and rich history
of works in harmonic analysis, complex function theory and operator
theory.

The present work aims at generalizing one particular aspect of this
to several complex variables: the study of cyclicity of some bounded
holomorphic functions under the shift operator in large enough Banach
spaces containing the Hardy space.

1.1. Definitions.

Definition 1. Let ω : Nd −→ (0,∞), where d ∈ N∗, and p ≥ 1. We
define the Banach space of power series in several variables

Xω,p :=

{
f(z) :=

∑
I∈Nd

aIz
I : ‖f‖pXω,p

:=
∑
I∈Nd

(
|aI |
ω(I)

)p
<∞

}
,

with the usual multiindex notation, z = (z1, . . . , zd) ∈ Cd, I = (i1, . . . , id) ∈
Nd, zI := zi11 · · · z

id
d .

We also write |I| := i1 + · · · + id, I! := i1! · · · id!. We say that ω is
nondecreasing if for any I, J , ω(I + J) ≥ ω(J).
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Recall that domains of convergence of power series are logarithmi-
cally convex complete Reinhardt domains (for a definition and those
terms and proofs, see e.g. [9], [8]). In what follows, we shall restrict our
attention to the cases of the polydisc Dd := {z ∈ Cd : max1≤j≤d |zj| <
1} and the unit ball Bd := {z ∈ Cd :

∑
1≤j≤d |zj|2 < 1}. The letter

Ω will stand for either one of those two domains, except in the more
general Theorem 11.

If ω(I) = 1 for any I, then we obtain the Hardy space H2(Dd), which
can also be described as the set of functions in the Nevanlinna class
of the polydisc with boundary values (radial limits a.e.) on the torus
(∂D)d which are in L2((∂D)d), and

‖f‖2
H2(Dd) =

∑
I∈Nd

|aI |2 =
1

(2π)d

∫
(∂D)d

|f |2dθ1 . . . dθd.

The standard references for Hardy spaces on polydiscs is [11].
There is a Hardy space for Bd, which is most easily described as as

the set of functions in the Nevanlinna class of the ball with boundary
values (radial limits a.e.) on the sphere ∂Bd which are in L2(∂Bd), and

‖f‖2
H2(Bd) =

∫
∂Bd

|f |2dσ,

where σ is the (2d− 1)-real dimensional Lebesgue measure normalized
so that σ(∂Bd) = 1. The standard reference for function theory on the
unit ball is [12]. Lemma 12 gives a description of H2(Bd) in terms of
the coefficients in the Taylor expansion.

Definition 2. We set ωDd

2 (J) := 1, and

ωBd

2 (J) :=
1

‖zJ‖H2(Bd)

=

(
(|J |+ d− 1)!

(d− 1)!J !

)1/2

.

We sometimes use the notation ω2(J) (without superscript) when
either of those quantities is meant.

We still have to understand in what sense a power series f can be
understood as a function of z ∈ Ω. We will want to consider weights
which satisfy the following relative monotonicity condition : there ex-
ists a constant Cm ≥ 1 such that, for any I, J ∈ Nd,

(1) Cmω(I + J) ≥ ω(J)ωΩ
2 (I).

One can check that ω = ωBd

2 itself verifies condition (1).
When Ω = Dd, then ωΩ

2 (I) = 1 and if Cm = 1, we recover the
usual monotonicity. We observe that for the polydisc, we can reduce
ourselves to the case Cm = 1.
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Lemma 3. Let Ω = Dd. If ω satisfies Condition (1), then Xω,p admits
an equivalent norm given by the nondecreasing weight

ω̂(I) := inf
J∈Nd

ω(I + J).

Proof. Since 0 ∈ Nd and we have (1), 1 ≥ ω̂(I)
ω(I)
≥ C−1

m , and

ω̂(I+K) = inf
J∈Nd

ω(I+K+J) = inf
J∈K+Nd

ω(I+J) ≥ inf
J∈Nd

ω(I+J) = ω̂(I).

�

Since the new norm is equivalent to the original one, the problem is
unchanged and there is no loss of generality in assuming that ω has
been modified and made nondecreasing, and we shall do so henceforth.

Lemma 4. Let Ω = Dd or = Bd.
If ω verifies the relative monotonicity condition (1) and

(2) logωΩ
2 (I) ≤ logω(I) ≤ logωΩ

2 (I) + o(|I|),
for any f ∈ Xω,p, the series defining f converges on Ω, and the map
Xω,p 3 f 7→ f(z) is continuous with respect to the norm ‖ · ‖Xω,p. In
particular, Xω,p can be seen as a subset of the space H(Ω) of holomor-
phic functions on Ω.

Furthermore, there is no larger domain on which every f ∈ Xω,p has
to be holomorphic.

This lemma will be proved in Section 2.
In the ball case, consider λ a probability measure on [0, 1).

Definition 5. The radially weighted Bergman space associated to λ is

B = Bp(λ) = Bp(λ)(Bd)

:=

{
f ∈ H(Bd) : ‖f‖pp :=

∫ 1

0

∫
∂Bd

|f(rζ)|p dσ(ζ)dλ(r) <∞
}
.

Typical examples are provided by dλ(r) = cα(1− r2)αr2d−1dr, where
α > −1 and cα is an appropriate normalizing constant; they correspond
to a weight cα(1−

∑
1≤j≤d |zj|2)α, z ∈ Bd.

Let λ be a probability measure on [0, 1)d, the elements of which
are denoted r := (r1, . . . , rd). The torus (∂D)d is endowed with its
normalized Haar measure denoted by dθ.

Definition 6. The weighted Bergman space associated to λ is

B = Bp(λ) = Bp(λ)(Dd)

:=

{
f ∈ H(Dd) : ‖f‖pp :=

∫
[0,1)d

∫
Td

∣∣f(r1e
iθ1 , . . . , rde

iθd)
∣∣p dθdλ(r) <∞

}
.
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Let H∞(Ω) stand for the set of bounded holomorphic functions on
Ω. In each case, the conditions on λ ensure that H∞(Ω) ⊂ Bp(λ).

Note that the norms of the monomials are given by moments of the
measure λ. In the case where Ω = Dd,

‖zI‖pp =

∫
[0,1)d

rpIdλ(r),

so that log(‖zI‖−1
p ) is a concave function of I.

When p = 2, B2(λ) is a Hilbert space and the monomials zI form an
orthogonal system. Notice that in Xω,2, ‖zI‖ω,2 = ω(I)−1, so that

B2(λ)(Dd) = Xω,2 with ω(I) =

(∫
[0,1)d

r2Idλ(r)

)−1/2

.

In the case where Ω = Bd,

‖zI‖pp =

(∫ 1

0

rp|I|dλ(r)

)(∫
∂Bd

|ζI |pdσ(ζ)

)
.

When p = 2, since the surface measure dσ on ∂Bd desintegrates as an
integral of Haar measures on tori, the monomials (zJ) again form an
orthogonal system, and in this case

‖zI‖2
2 =

(∫ 1

0

r2|I|dλ(r)

)
ωBd

2 (J)−2,

so that

B2(λ)(Bd) = Xω,2 with ω(I) =

(∫ 1

0

r2|I|dλ(r)

)−1/2

ωBd

2 (J).

In general, whenever we consider a space X, we define the correspond-
ing weight by ω(J) := 1/

∥∥zJ∥∥
X

.

1.2. Main results. Let X be a Banach space as above, defined by
power series or as a weighted Bergman space.

Definition 7. We say that a function f ∈ X is cyclic if for any
g ∈ X, there exists a sequence of holomorphic polynomials (Pn) such
that limn→∞ ‖g − Pnf‖X = 0.

Note that using the word “cyclic” is a slight abuse of language, since
for d ≥ 2 we are not iterating a single operator, but taking composi-
tions of the multiplication operators by each of the coordinate functions
z1, . . . , zd. It is, however, a straightforward generalization of the usual
notion of cyclicity under the shift operator f(z) 7→ zf(z).

By Lemma 4 in the case of power series spaces, or by the mean value
inequality in the case of Bergman spaces, the point evaluations are
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continuous, therefore any cyclic f must verify that f(z) 6= 0 for any
z ∈ Ω.

Definition 8. (1) When Ω = Dd, for any k ∈ N, let

1

ω̃(k)
:=

d∑
j=1

‖zkj ‖X =
d∑
j=1

‖zkej‖X ,

where (ej) stands for the elementary multiindices of Nd: e1 =
(1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), etc, so kej = (0, . . . , 0, k, 0, . . . , 0),
with k in the j-th place.

(2) When Ω = Bd, for any k ∈ N, let

1

ω̃(k)
:=

∑
J, |J |=k

pJ
ω(J)

,

where pJ is the multinomial coefficient, pJ := |J |!
J !

.

When X = Xω,p and Ω = Dd, notice that

d−1 min
1≤j≤d

ω(kej) ≤ ω̃(k) ≤ min
1≤j≤d

ω(kej).

Note that if ω satisfies (2) then log ω̃(k) = o(k), but the converse does
not hold when d > 1.

Here are two interesting special cases of our results.

Theorem 9. Let Ω := Dd or Bd.
Suppose that limk→∞ ω̃(k) = ∞, and ω satisfies (1) and (2), and

that

(3)
∑
k≥1

(
log ω̃(k)

k

)2

=∞.

Let U ∈ H∞(Ω), verifying U(z) 6= 0 for any z ∈ Ω.

• (i) If d ≥ 1, p ≥ 1 and X = Bp(λ), then U is cyclic in X.
• (ii) If Ω = Dd and X = Xω,2, then U is cyclic in X.

When we demand a growth condition of a slightly stronger nature
on ω̃, we can expand the range of spaces where the result applies.

Theorem 10. Let X = Xω,p, with p ≥ 2, or X = Bp(λ). If limk→∞ ω̃(k) =
∞, and ω satisfies (1), (2) and

(4) lim sup
k

log ω̃(k)√
k

=∞,

then any zero-free U ∈ H∞(Ω) is cyclic in X.
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1.3. Previous results. Many results have been proved for the case
d = 1, and even more for p = 2. In one dimension, Ω = D and ω = ω̃
of course. When furthermore p = 2, Xω,2 has a norm equivalent to that
of a Bergman space if and only if logω(n) is a concave function of n
[3, Theorem A.2 and Proposition 4.1].

In his seminal monograph [10], N. K. Nikolski proved that if ω is non-
decreasing, limk→∞ ω(k) = ∞, logω(k) = o(k), logω(n) is a concave
function of n and

(5)
∑
k≥1

log ω̃(k)

k3/2
=∞,

then any zero-free f ∈ H∞(D) is cyclic in Xω,2.
Our main inspiration comes from [5], where O. El Fallah, K. Kellay

and K. Seip show, still for d = 1 and p = 2, that (3), with no condition
of concavity, is enough to imply cyclicity of any nonvanishing bounded
function. Even though (3) is a stronger condition than (5), the concav-
ity condition means that there exist weights to which the new result
applies while Nikolski’s cannot [5, Remark 2].

The novelty in the present work is of course that we have several
variables, and exponents p 6= 2. We also notice that it is not necessary
to make use of the inner-outer factorization: the much easier Harnack
inequality suffices.

1.4. A Corona-like Theorem. As in [5], our main tool is a ver-
sion of the Corona Theorem. In full generality, this is still a vexingly
open question in several variables, be it in the ball or the polydisc.
However, following an earlier result of Cegrell [4], a simpler proof [1]
gives a Corona-type result in the special case where most of the given
generating functions are smooth. That result is enough to yield the
required estimates in this instance. For Ω a bounded domain in Cd, let
A1(Ω) := H(Ω) ∩ C1(Ω).

Theorem 11. Let Ω be a bounded pseudoconvex domain in Cd, such
that the equation ∂̄u = ω, 1 ≤ q ≤ n, admits a solution u = Sqω ∈
L∞(0,q−1)(Ω) when ∂̄ω = 0, ω ∈ L∞(0,q)(Ω), with the bounds :

‖u‖∞ ≤ Eq‖ω‖∞.

There exists a constant C = C(d,Ω) such that if N ∈ N, N ≥ 2, and
if fj ∈ A1(Ω), 1 ≤ j ≤ N − 1, fN ∈ H∞(Ω), verify

sup
z∈Ω

max
1≤j≤N

|fj(z)| ≤ 1, inf
z∈Ω

N∑
j=1

|fj(z)| ≥ δ > 0,
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then there exist g1, . . . , gN ∈ H∞(Ω) such that
∑N

j=1 fj(z)gj(z) = 1 and
for 1 ≤ j ≤ d,

max
1≤j≤N

‖gj‖∞ ≤ C(d,Ω)N4d+2 max1≤j≤N−1 ‖∇fj‖d∞
δ2d+1

.

Note that the polydisc and the ball verify the hypotheses of the
theorem.

1.5. Structure of the paper. First we clarify the easy relationship
between weights and domains of convergence in Section 2. Then we
gather some preliminary results and a first reduction of the problem in
Section 3. Theorem 11 is proved in Section 6, and used in the proofs
of the two main theorems. The relatively easy proof of Theorem 10 is
given in Section 4. Theorem 9 will follow from a more general and more
technical result, Theorem 19, which is stated and proved in Section 5.

2. Domains of convergence

Lemma 12. Let f be holomorphic on the unit ball Bd, represented by
the Taylor expansion f(z) =

∑
J aJz

J . Then f ∈ H2(Bd) if and only if∑
J∈Nd

(
|aJ |

ωBd

2 (J)

)2

<∞, where (ωBd

2 (J))−2 =
(d− 1)!J !

(|J |+ d− 1)!
.

Proof. The surface measure dσ on ∂Bd desintegrates as an integral
of Haar measures on tori, so the monomials (zJ) form an orthogonal
system in H2(Bd), which is a basis since the polynomials are dense in
the space. Then ‖f‖2

H2(Bd)
=
∑

J |aJ |2‖zJ‖2
H2(Bd)

. The explicit value of

‖zJ‖H2(Bd) = (ωBd

2 (J))−1 (Definition 2) can be found in [12, p. 12]. �

As an immediate consequence of this Lemma and of the remarks
before Definition 2, if Xω,p is as in Definition 1 and p ≥ 2, and if for
all J , ωΩ

2 (J) ≤ ω(J), then H2(Ω) ⊂ Xω,p.

Definition 13. For z ∈ Cd, let |z|Dd := max1≤j≤d |zj|, |z|2Bd :=
∑

1≤j≤d |zj|2.

In each case, Ω = {z : |z|Ω < 1}.
Proof of Lemma 4. The last statement follows from the fact that (1)
implies that H2(Ω) ⊂ Xω,p, as in the remark before the Definition.

To prove the convergence of the series, write f(z) =
∑

J aJz
J and

take a point z such that |z|Ω = ρ < 1. Since Xω,p ⊂ Xω,∞, |aJ | � ω(J)
and it will be enough to prove the convergence of

∑
J ω(J)|zJ |.

In the case where Ω = Dd, then

log(ω(J)|zJ |) ≤ |J | log ρ+ o(|J |) ≤ −η|J |
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for some η > 0 when |J | is large enough, so the general term is domi-
nated by the general term of a convergent geometric (multi)series.

In the case where Ω = Bd, for any k ∈ N,

|z|2kΩ =
∑

J :|J |=k

|J |!
J !
|z2J |.

First consider only sums of terms with all powers even:∑
J :|J |=k

ω(2J)|z2J | ≤ sup
J :|J |=k

(
ω(2J)J !

|J |!

) ∑
J :|J |=k

|J |!
J !
|z2J |

≤ sup
J :|J |=k

(
ω(2J)J !

|J |!

)
ρ2k,

so using (2), we need to estimate ω2(2J)2(J !)2

(|J |!)2 .

Stirling’s formula implies that for any n ∈ N,

log(n!) = n(log n− 1) + o(n),

so we have, for |J | = k,

log

(
ω2(2J)2(J !)2

(|J |!)2

)
= log

(
(2k + d− 1)!(J !)2

(d− 1)!(2J)!(k!)2

)
=

= (2k + d− 1) (log(2k + d− 1)− 1)− 2k(log k − 1)

+ 2
d∑
i=1

ji(log ji − 1)−
d∑
i=1

2ji(log(2ji)− 1) + o(k)

= 2k log 2− 2
d∑
i=1

ji log 2 + 2k

(
log(k +

d− 1

2
)− log k

)
+ o(k)

= 0 +O(1) + o(k) = o(k).

This proves that
∑

J :|J |=k ω(2J)|z2J | is dominated by the general
term of a convergent geometric series for k large enough.

Now consider a general J such that |J | = k: then J = 2J ′+K, with
j′i = 2 [ji/2], and K ∈ {0, 1}d. Let 2J ′′ := J +K. Condition (1) shows
that ω(J) � ω(2J ′) � ω(2J ′′), |zJ | ≤ |z2J ′ |, and each J ′ corresponds to
at most 2d different multi-indices J . So

∑
J :|J |=k ω(J)|zJ | is dominated

by the general term of a convergent geometric series for k large enough.
Continuity of the evaluation map follows, for instance, from the Dom-

inated Convergence Theorem applied to the series. �

Lemma 14. Suppose that H∞(Ω) is a multiplier space for X; or that
X = Xω,p, with p ≥ 2 and ω verifying (1). Let g ∈ H∞(Ω), K ∈ Nd.
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Then

‖zKg‖Xω,p ≤
Cm
ω(K)

‖g‖H∞(Ω).

Observe that in the special case K = 0, X = Xω,p, we get back the
fact that H2(Ω) ⊂ Xω,p.

Proof. Under the first assumption, we immediately have

‖zKg‖pX ≤ ‖z
K‖pXω,p

‖g‖H∞(Ω) =
1

ω(K)
‖g‖H∞(Ω).

Under the second assumption, by scaling we may assume 1 = ‖g‖H2(Ω) ≤
‖g‖H∞(Ω). Let g(z) =

∑
J aJz

J . Then supJ
|aJ |2
ω2(J)2

≤ 1. Then

‖zKg‖pXω,p
=
∑
J

|aJ |p

ω(J +K)p
≤
(

sup
J

ω2(J)

ω(J +K)

)p∑
J

|aJ |p

ω2(J)p

≤ Cp
m

ω(K)p

∑
J

|aJ |2

ω2(J)2
=

Cp
m

ω(K)p
≤ Cp

m

ω(K)p
‖g‖pH∞(Ω).

�

3. Auxiliary results

3.1. Multiplier property.

Definition 15. We shall say that H∞(Ω) is a multiplier algebra for
X if there exists Cm > 0 such that

∀f ∈ X, ∀g ∈ H∞(Ω), gf ∈ X and ‖gf‖X ≤ Cm‖g‖∞‖f‖X .

Notice that, since constants are in X, this implies that H∞(Ω) ⊂ X.
It is immediate that H∞(Ω) is a multiplier algebra for each Bp(λ)(Ω),

with Cm = 1. In the case of Xω,p, writing ωΩ
∞(I) := ‖zI‖−1

L∞(Ω), an

obvious necessary condition is that

(6) Cmω(I + J) ≥ ωΩ
∞(I)ω(J),

but sufficient conditions are not so easy to state in general.
Observe that (6) is very similar to (1). In fact, ωDd

∞ (I) = ωDd

2 (I) = 1
for all I, and one can show that

ωBd

2 (I) ≥ ωBd

∞ (I) ≥ ωBd

2 (I)−O(log |I|),
by an appropriate minoration of |zI | on a strip of ∂Bd of width com-
parable to |I| around its maximum modulus set (we omit the details;
this can provide an alternate proof of Lemma 4 without recourse to
Stirling’s formula).
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3.2. Some tools. Our first technical tool is a bound from below for
the modulus of a zero-free bounded holomorphic function.

For z ∈ Ω, z∗ := z/|z|Ω ∈ ∂Ω, where |z|Ω is as in Definition 13.

Lemma 16. Let U be a zero-free holomorphic function on Ω such that
‖U‖∞ ≤ 1, and z ∈ Ω. Let c2 := log 1

|U(0)| . Suppose k ≥ 4c2. Then, for

Ω = Dd,

|U(z)|+ |z1|k + · · ·+ |zd|k ≥ e−2c
√
k,

and for Ω = Bd,

|U(z)|+
∑
|J |=k

|fJ(z)| ≥ e−2c
√

2k,

where fJ(z) := pJz
2J = |J |!

J !
z2J .

Proof. The conclusion is obvious if z = 0. If not, define a holomorphic
function on D by fz∗(ζ) := U(ζz∗). Then

• ‖fz∗‖∞ ≤ 1;
• fz∗(0) = U(0);
• ∀ζ ∈ D, fz∗(ζ) 6= 0;
• fz∗(|z|Ω) = U(z).

The Harnack inequality applied to the positive harmonic function log |fz∗|−1

shows that

|fz∗(ζ)| ≥ exp

(
−1 + |ζ|

1− |ζ|
log

1

|U(0)|

)
≥ exp

(
− 2

1− |ζ|
log

1

|U(0)|

)
.

The computation implicit at the beginning of the proof of [5, Lemma

3] shows that infD |fz∗(ζ)|+ |ζ|k ≥ e−2c
√
k as soon as k ≥ 4c2; applying

this to ζ = |z|Ω, we find

|U(z)|+ |z|kΩ ≥ fz∗(|z|Ω) + |z|kΩ ≥ e−2c
√
k.

In the case where Ω = Dd, this yields

|U(z)|+ |z1|k + · · ·+ |zd|k ≥ |U(z)|+ ( max
1≤j≤d

|zj|)k ≥ e−2c
√
k.

In the case where Ω = Bd, substituting 2k for k, we obtain

|U(z)|+ (|z1|2 + · · ·+ |zd|2)k = |U(z)|+
∑
|J |=k

|fJ(z)| ≥ e−2c
√

2k.

�

Lemma 17. If X = Xω,p or Bp(λ) from Definitions 1 or 6 or 5 respec-
tively, then the space of polynomials C[Z] := C[Z1, . . . , Zd] is dense in
X.
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Proof. By construction, the polynomials are dense in Xω,p.
For f ∈ Bp(λ)(Dd), r = (r1, . . . , rd) ∈ [0,∞)d, let

mr,p(f) :=

∫
Td

∣∣f(r1e
iθ1 , . . . , rde

iθd)
∣∣p dθ

denote the mean of |f |p on the torus T(r) of multiradius r. Since
|f |p is plurisubharmonic, this is an increasing function with respect
to each component of r. In particular, if we set for any γ ∈ (0, 1),
fγ(z) := f(γz), mr,p(fγ) ≤ mr,p(f) for each r.

We claim that limγ→1 ‖f − fγ‖Bp(λ) = 0. Indeed, ‖f − fγ‖Bp(λ) =∫
[0,1)d

Fγ(r)dλ(r), where

Fγ(r) :=

∫
Td

∣∣f(r1e
iθ1 , . . . , rde

iθd)− fγ(r1e
iθ1 , . . . , rde

iθd)
∣∣p dθ.

Since |f − fγ|p ≤ Cp(|f |p + |fγ|p),
Fγ(r) ≤ Cp(mr,p(f) +mr,p(fγ)) ≤ 2Cpmr,p(f) ∈ L1(dλ).

Since fγ → f uniformly on the torus T(r) for each r as γ → 1, Fγ(r)→
0 for each r, and we can apply Lebesgue’s Dominated Convergence
theorem.

For each γ ∈ (0, 1), fγ is holomorphic on a larger polydisc, so can be
uniformly approximated by truncating its Taylor series.

When Ω = Bd, we can perform an analogous (and simpler) argument.
�

3.3. First reduction. We begin by showing that it is enough to obtain
a relaxed version of the conclusion.

Lemma 18. Let U ∈ H∞(Ω) be a non-vanishing function.
If either:

• (i) H∞(Ω) is a multiplier algebra for X,
• or (ii) X = Xω,p, p ≥ 2 and (1) is satisfied,

and if there exists a sequence (fn) ⊂ H∞(Ω) such that

lim
n→∞

‖1− fnU‖X = 0,

then U is cyclic in X.

Proof. By Lemma 17, it is enough to show that we can approximate
any polynomial P .

Let us show that it is enough to prove that for any ε > 0, there exists
Q ∈ C[Z] such that ‖1−QU‖X ≤ ε.

Let P (z) :=
∑
|J |≤N aJz

J , then

‖P − PQU‖X = ‖P (1−QU)‖X ≤ ‖P‖∞‖1−QU‖X
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in the case of assumption (i), and

‖P (1−QU)‖X ≤
∑
|J |≤N

|aJ |‖zJ(1−QU)‖X ≤ Cm

∑
|J |≤N

|aJ |
ωΩ

2 (J)

 ‖1−QU‖X ,
in the case of assumption (ii), and each upper bound can be made
arbitrarily small by choosing Q.

In the case of assumption (i), let us then show that the constant
function 1 can be approximated. Let ε > 0. Take f ∈ H∞(Dd) such
that ‖1 − fU‖X < ε/2. By Lemma 17, we can choose Q ∈ C[Z] such
that ‖f −Q‖X ≤ 1

Cm‖U‖∞
ε
2
, where Cm is as in Definition 15. Then

‖1−QU‖X ≤ ‖1−fU‖X +‖U(f−Q)‖X <
ε

2
+Cm‖U‖∞‖f−Q‖X ≤ ε.

In the case of assumption (ii), again take f so that ‖1 − fU‖ω,p is
small, then because H2(Ω) ⊂ Xω,p,

‖fU −QU‖ω,p ≤ C‖fU −QU‖H2 ≤ C‖U‖∞‖f −Q‖H2 ,

and this last quantity can be made arbitrarily small by taking Q a
Taylor expansion of f for instance. �

4. Proof of Theorem 10

Proof of Theorem 10.
Observe that if X = Bp(λ), then H∞(Ω) is a multiplier algebra, so

Lemma 14 always applies here.
Case 1: Ω = Dd.
Let c2 := − log |U(0)| and B > 2c(2d+ 1). By the hypothesis of the

theorem, there exists a strictly increasing sequence (nk)k≥1 such that
for all k, log ω̃(nk) ≥ B

√
nk.

By Lemma 16 and Theorem 11, we get gj ∈ H∞(Dd), for j =
1, . . . , d+ 1, such that

(7) gd+1U + g1z
nk
1 + · · ·+ gdz

nk
d = 1,

and

(8) ∀j = 1, . . . , d+ 1, ‖gj‖∞ ≤ C(d)ndke
2c(2d+1)

√
nk .

Set fk := gd+1, we get, using Lemma 14,
(9)

‖1− fkU‖X ≤
d∑
j=1

∥∥gjznk
j

∥∥
X
≤ Cm

d∑
j=1

‖gj‖∞
ω(nkej)

≤ Cm
C(d)ndke

2c(2d+1)
√
nk

ω̃(nk)
.
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By the choice of B, this tends to 0 as k → ∞. It only remains to
apply lemma 18 to conclude.

Case 2: Ω = Bd.
Let c, (nk) be as above and B > 2c

√
2(2d+ 1).

By Theorem 11, we will get g0, gJ ∈ H∞(Dd), for |J | = nk, such that

(10) g0U +
∑
|J |=nk

gJfJ ≡ 1,

where fJ is as in Lemma 16.
We need to estimate the size of the gJ , g0.
First

∑
|J |=nk

|fJ(z)| = |z|2nk
Ω < 1.

The number of terms in the Bezout equation is

N = N(d, k) = #
{
J ∈ Nd : |J | = nk

}
=

(nk + d− 1)!

nk!(d− 1)!
≤ nd−1

k .

We also need ‖∇fJ‖∞. We have

∂

∂zi
fJ = pJ2ji

z2J

zi
⇒ ∇fJ = pJz

2J(
2j1
z1

, ...,
2jd
zd

) = 2fJ(z)(
j1

z1

, ...,
jd
zd

).

If we set J̃ := (max(0, 2j1 − 1), ...,max(0, 2jd − 1)) and
z̃i := z1 · · · zi−1ẑizi+1 · · · zd, where ẑi is omitted, then

∇fJ(z) = 2pJz
J̃(j1z̃1, ..., jdz̃d).

So we get, because |z̃i| ≤ 1 in the ball,

|∇fJ(z)| ≤ 2pJ

∣∣∣zJ̃ ∣∣∣ d∑
i=1

ji |z̃i| ≤ 2pJ

∣∣∣zJ̃ ∣∣∣ |J | .
But if we write J ′ := ((j1 − 1)+, . . . , (jd − 1)+), then |zJ̃ | ≤ |z2J ′ | and∑
|J ′|=nk−d pJ ′ |z

2J ′| < 1. Furthermore,

pJ ≤
nk(nk − 1) · · · (nk − d+ 1)

j1 · · · jd
pJ ′ ≤ ndkpJ ′ .

All together then, ‖∇fJ(z)‖∞ ≤ C(d)nd+1
k .

By Lemma 16 (in the case of the ball),

δ = inf
z∈Bd

|U(z)|+
∑
|J |=nk

|fJ(z)|

 ≥ e−2c
√

2nk .

Gathering the estimates, we get

(11) ‖gJ‖∞ ≤ C(d)N(d, k)4d+2e2c(2d+1)
√

2nk ≤ C(d)n5d2

k e2c(2d+1)
√

2nk .
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Then let fk = g0 (at the nk step)

(12) ‖1− fkU‖X ≤
∑
|J |=nk

‖gJfJ‖X ≤ Cm
∑
|J |=nk

pJ‖z2J‖X‖gJ‖∞

≤ Cm
C(d)n5d2

k e2c(2d+1)
√

2nk

ω̃(nk)
,

and we finish as before. �

5. Proof of Theorem 9

5.1. Main intermediate result.

Theorem 19. Let X be a Banach space as in Definitions 1, 5 or 6.
Suppose that H∞(Dd) is a multiplier algebra for X. Suppose also that
limk→∞ ω̃(k) = ∞, that log ω̃(k) = o(k), and that conditions (1), (2)
and (3) hold.

Then any U ∈ H∞(Dd), verifying U(z) 6= 0 for any z ∈ Dd is cyclic
in X.

Proof. Now we need to distinguish two cases according to the growth
of ω(k).

Case 1: supk
log ω̃(k)√

k
=∞.

Then Theorem 10 applies.

Case 2: supk
log ω̃(k)√

k
= B < ∞. To deal with this more delicate

case, we shall need the full power of the proof scheme in [5]. Since our
Corona-like estimates are slightly different from those in dimension 1,
we first need a refined version of [5, Lemma 1].

Lemma 20. Let ω̃ be as in Theorem 19. Let C0 > 0. Then there exists
a strictly increasing sequence (nk)k≥1 such that∑

k≥1

(log ω̃(nk))
2

nk
=∞,

and for all k, log ω̃(nk+1) ≥ 2 log ω̃(nk) and log ω̃(nk) ≥ C0 log nk.

The last condition is the only novelty with respect to [5, Lemma 1].

Proof. First notice that there exists an infinite set E ⊂ N∗ such that
for all n ∈ E, log ω̃(n) ≥ C0 log n. Indeed, if not, for n large enough,
we would have

log ω̃(n) ≤ C0 log n ≤ n1/4,

and (3) would be violated.
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Now let n0 = 1 and if nj is defined, let

n′j+1 := min {n > nj : log ω̃(n) ≥ 2 log ω̃(nj)} ,
nj+1 := min {n > nj, n ∈ E : log ω̃(n) ≥ 2 log ω̃(nj)} .

Obviously, nj < n′j+1 ≤ nj+1. We claim that

S :=
∑
j≥0

nj−1∑
k=n′j

(
log ω̃(k)

k

)2

<∞.

Accepting the claim, the proof finishes as in [5]:

∑
k≥1

(
log ω̃(k)

k

)2

≤ S +
∑
j≥0

n′j+1−1∑
k=nj

(
log ω̃(k)

k

)2

≤ S +
∑
j≥0

4 (log ω̃(nj))
2

n′j+1−1∑
k=nj

1

k2
≤ S + 4

∑
j≥0

(log ω̃(nj))
2

nj − 1
,

so the last sum must diverge.
We now prove the claim. If n′j ≤ k < nj, then n /∈ E, so for j large

enough and n′j ≤ k < nj, log ω̃(k) ≤ k1/4, thus

(13)

nj−1∑
k=n′j

(
log ω̃(k)

k

)2

≤
∑
k≥n′j

1

k3/2
≤ 2√

n′j − 1
.

The definition of nj implies that ω̃(nj) ≥ C02j, and n′j+1 /∈ E (if it is
distinct from nj+1) so

C0 log n′j+1 > log ω̃(n′j+1) ≥ 2 log ω̃(nj) ≥ C02j,

and the series with general term the last expression in (13) must con-
verge. �

We follow the proof of [5, Theorem 1], with a couple of wrinkles.
Choose A := max(2, logC(d)) where C(d) is the constant in (8) when

Ω = Dd (resp. (11) when Ω = Bd). Then for c2 = − log |U(0)| as above,
let C2

1 := (8
√

2(2d+ 1)Ac)2 +B2. We choose C0 ≥ C1/c when Ω = Dd

(resp. C0 ≥ 5d2C1

2
√

2(2d+1)c
when Ω = Bd), and define the sequence (nj) as

in Lemma 20 above. For any given j0 ∈ N, let α2
j :=

(log ω̃(nj0+j))
2

nj0+j
,

N := min

{
M :

M∑
j=1

α2
j ≥ (8

√
2(2d+ 1)Ac)2

}
,
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λj := αj

(∑N
i=1 α

2
i

)−1/2

.

Notice that for any j, αj ≤ B by the hypothesis of Case 2, and that

N∑
i=1

α2
i ≤

N−1∑
i=1

α2
i + α2

N ≤ (8
√

2(2d+ 1)Ac)2 +B2 = C2
1 ,

so that λj ≥ αj/C1. Clearly, λj ≤ αj/(8
√

2(2d+ 1)Ac).

We write Uj := Uλ2j , so that U =
∏N

j=1 Uj. As above, choose fj :=

gd+1 satisfying (7) and (8), but with Uj instead of U and nj0+j instead
of nk. The quantity c must then be replaced by cλj.

When Ω = Dd, the bound (8) can be rewritten

(14) ‖fj‖∞ ≤ exp
(
2c(2d+ 1)λj

√
nj0+j + d log nj0+j + logC(d)

)
.

Notice that

cλj
√
nj0+j ≥

c

C1

log ω̃(nj0+j) ≥
cC0

C1

log nj0+j ≥ log nj0+j,

by our choice of C0, so that

(15) ‖fj‖∞ ≤ expA
(
2c(2d+ 1)λj

√
nj0+j + 1

)
.

We finish as in [5]. Let f :=
∏N

j=1 fj. Since

1− fU = 1−
N∏
j=1

fjUj =
N∑
k=1

(1− Ukfk)
k−1∏
j=1

fjUj,

‖1− fU‖X ≤ Cm

N∑
k=1

‖1− Ukfk‖X
k−1∏
j=1

‖fjUj‖∞,

which by (9) becomes

(16) ≤ Cm

N∑
k=1

C(d)ndj0+ke
2c(2d+1)

√
nj0+k

ω̃(nj0+k)

k−1∏
j=1

‖fj‖∞

≤ Cm

N∑
k=1

1

ω̃(nj0+k)
exp

(
A

k∑
j=1

(2c(2d+ 1)λj
√
nj0+j + 1)

)
,
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and using the growth of log ω̃(nj) obtained in Lemma 20,

≤ Cm

N∑
k=1

1

ω̃(nj0+k)
exp

(
Ak +

k∑
j=1

1

4
log ω̃(nj0+j)

)

≤ Cm

N∑
k=1

exp

(
Ak − 1

2
log ω̃(nj0+k)

)
.

Now choose j0 such that log ω̃(nj0) ≥ A, the sum above has terms with
better than geometric decrease, so is bounded by ω̃(nj0+1)−1/2, which
can be made arbitrarily small by choosing j0 large enough.

When Ω = Bd, we need to make the changes indicated at the begin-
ning of the argument, and replace the bound (14) by the following:

‖fj‖∞ ≤ exp
(

2c
√

2(2d+ 1)λj
√
nj0+j + 5d2 log nj0+j + logC(d)

)
.

Then the choice (for Ω = Bd) of C0 implies that 2c
√

2(2d+1)λj
√
nj0+j ≥

5d2 log nj0+j, and this leads again to (15). In the succession of majora-
tions that follow, (16) becomes

≤ Cm

N∑
k=1

C(d)n5d2

j0+ke
2c
√

2(2d+1)
√
nj0+k

ω̃(nj0+k)

k−1∏
j=1

‖fj‖∞

≤ Cm

N∑
k=1

1

ω̃(nj0+k)
exp

(
A

k∑
j=1

(2c(2d+ 1)λj
√
nj0+j + 1)

)
,

and the proof concludes in the same way. �

5.2. Proof of Theorem 9. We now obtain cyclicity results as soon as
we can prove that H∞(Dd) is a multiplier algebra on the space X. As
remarked after Definition 15, this is always the case when X = Bp(λ).
So we obtain Theorem 9 (i).

When X = Xω,2 and ω is relatively nondecreasing, then Lemma 3
reduces us to the nondecreasing case, where the multiplication opera-
tors by each zj are commuting contractions on a Hilbert space. Von
Neumann’s inequality was generalized by Ando in the case of two con-
tractions, and to an arbitrary number of weighted shifts by Michael
Hartz [6]: this is precisely our situation. It implies that for any poly-
nomial f , and thus for any f ∈ H∞(Dd), ‖fg‖X ≤ ‖f‖∞‖g‖X . So we
obtain Theorem 9 (ii).
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6. Proof of the Corona theorem with smooth data

We begin by constructing a partition of unity which exploits the
smoothness of the data.

Because of the corona hypothesis, and fj is continuous up to the

boundary of Ω, for 1 ≤ j ≤ N − 1, we have that g(z) :=
∑N−1

j=1 |fj(z)|
is continuous in Ω, and even Lipschitz with a constant controlled by
max1≤j≤N−1 ‖∇fj‖∞.

Set

U ′N := {z ∈ Ω̄ : g(z) <
N − 1

4N
δ} and UN := {z ∈ Ω̄ : g(z) <

N − 1

2N
δ},

and

Uj := {z ∈ Ω̄ : |fj| >
δ

5N
} and U ′j := {z ∈ Ω̄ : |fj| >

δ

4N
}.

Then U ′j b Uj, 1 ≤ j ≤ N .

Lemma 21. There exist C1 > 0 and χj ∈ C∞c (Uj), j = 1, ..., N , such

that for z ∈ Ω, 0 ≤ χj ≤ 1,
∑N

j=1 χj(z) = 1, and∣∣∣∣χjfj
∣∣∣∣ ≤ C1N

δ
, ‖∇χj‖∞ ≤

C1N
2

δ
max

1≤i≤N−1
‖∇fi‖∞, j = 1, . . . , N,

max
1≤j≤N

sup
z∈Ω

|∇χj(z)|
|fj(z)|

≤ C1
N3

δ2
max

1≤i≤N−1
‖∇fi‖∞,

where C1 is an absolute constant.

Proof. We can construct a function ψN ∈ C∞c (UN) such that 0 ≤ ψN ≤
1 and ψN ≡ 1 on U ′N , with ‖∇ψN‖∞ ≤ C

δ
, for instance by composing

|g| with an appropriate smooth one-variable function.
We have

O := Ū ′N ∪
N−1⋃
j=1

U ′j ⊃ Ω̄,

because for z /∈
⋃N−1
j=1 U ′j, then

∀j = 1, ..., N − 1, |fj(z)| ≤ δ

4N
⇒

N−1∑
j=1

|fj(z)| ≤ N − 1

4N
δ ⇒ z ∈ Ū ′N .

Now we construct a partition of unity {χj}j=1,...,N subordinated to {Uj}
in the usual way: we take a nonnegative function ψj ∈ C∞c (Uj) such that
ψj ≤ 1 everywhere and ψj ≡ 1 on U ′j, with ‖∇ψj‖∞ ≤ C N

δ
‖∇fj‖∞.

We set

χj :=
ψj∑N
k=1 ψk

.
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Since
∑N

k=1 ψk ≥ 1, we have 0 ≤ χj ≤ 1, χj ∈ C∞c (Uj) and χ1 + · · · +
χN = 1 on Ω̄ and

‖∇χj‖∞ ≤ C
N2

δ
max

1≤i≤N−1
‖∇fi‖∞.

This yields a partition of unity such that
χj

fj
∈ C∞(Ω̄) for 1 ≤ j ≤ N

and for j ≤ N − 1,
∣∣∣χj

fj

∣∣∣ ≤ 5N
δ

, because supp χj ⊂ Uj, where |fj| > δ
5N

and χj ≤ 1.
For j = N on the other hand, we have supp χN ⊂ UN and, by the

corona hypothesis,

z ∈ UN ⇒ |fN(z)| ≥ δ − g(z) = δ − N − 1

2N
δ =

N + 1

2N
δ

hence ∣∣∣∣χNfN
∣∣∣∣ ≤ 2N

(N + 1)δ
≤ 5N

δ
.

An analogous reasoning yields the bound on
|∇χj |
|fj | , 1 ≤ j ≤ N . �

Proof of Theorem 11. We shall now go through the Koszul complex
method, introduced in this context by Hörmander [7], to obtain the
explicit bounds we need. We follow the notations of [2].

Let ∧k(CN) be the exterior algebra on CN , let ej, j = 1, ..., N, be the
canonical basis of ∧1(CN), and eα := eα1 ∧ · · · ∧ eαk

, αj ∈ {1, . . . , N},
the associated basis of ∧k(CN).

Let Lkr be the space of bounded and infinitely differentiable differ-
ential forms in Ω of type (0, r) with values in ∧k(CN). The norm on
these spaces is defined to be the maximum of the uniform norms of the
coefficients.

We define two linear operators on Lkr .

∀ω ∈ Lkr , Rf (ω) := ω ∧
N∑
j=1

χj
fj
ej ∈ Lk+1

r .

We see that ‖Rfω‖ ≤ Cf‖ω‖, with

(17) Cf := N sup
1≤j≤N,z∈Ω

∣∣∣∣χj(z)

fj(z)

∣∣∣∣ .
The operator df : Lk+1

r −→ Lkr is defined by induction and linearity.
For ω ∈ L0

r, dfω = 0. To define the operator on L1
r, set df (ej) := fj

and extend by linearity.
To define df on Lk+1

r , for eα ∈ ∧k(CN), 1 ≤ j ≤ d, set

df (eα ∧ ej) := fjeα − df (eα) ∧ ej ∈ Lkr .



20 ERIC AMAR AND PASCAL J. THOMAS

It follows that ‖df‖L(Lk+1
r ,Lk

r ) ≤ C(k) max1≤j≤N ‖fj‖∞.

It is easily seen by induction that d2
f = 0, ∂̄dfω = df ∂̄ω and

dfω = 0⇒ df (Rfω) = ω,

i.e. λ = Rfω is a solution to the equation dfλ = ω when the necessary
condition dfω = 0 is verified.

Together with the operator ∂̄ : Lkr −→ Lkr+1, we have a double com-
plex, whose elementary squares are commutative diagrams.

We now construct by induction, for 0 ≤ k ≤ N , forms ωk,l ∈ Lkl and
αk,l ∈ Lk+1

l , where l ≤ k ≤ l + 1.
We start with ω0,0 = 1,

ω1,0 := Rf (ω0,0) =
N∑
j=1

χj
fj
ej ∈ L1

0.

Then, if ωk,k−1 is given, we set ωk,k := ∂̄ωk,k−1; if ωk,k is given, we set
ωk+1,k := Rfωk,k. This construction stops for k = d since there are no
(0, d+ 1) forms on Cd.

Claim. For any k ≥ 0, dfωk+1,k = ωk,k.
We prove the claim by induction. It is enough to see that dfωk,k = 0.

For k = 0, this is true by construction. For k ≥ 1, assume the property
holds at rank k − 1. Then

dfωk,k = df ∂̄ωk,k−1 = ∂̄dfωk,k−1 = ∂̄ωk−1,k−1 = ∂̄2ωk−1,k−2 = 0.

From the construction, we have ‖ωk+1,k‖ ≤ Cf‖ωk,k‖, with Cf de-
fined in (17). Since

ωk,k = ∂̄(Rfωk−1,k−1) = ∂̄

(
ωk−1,k−1 ∧

N∑
j=1

χj
fj
ej

)
= ωk−1,k−1∧∂̄

(
N∑
j=1

χj
fj
ej

)
because ωk−1,k−1 is ∂̄-exact, we find ‖ωk,k‖ ≤ D′f‖ωk−1,k−1‖, with

D′f := N sup
1≤j≤N,z∈Ω

‖∇χj(z)‖
|fj(z)|

.

By an immediate induction, ‖ωk,k‖ ≤ (D′f )
k, ‖ωk+1,k‖ ≤ Cf (D

′
f )
k.

We proceed with the construction of the forms αk,l, by descending
induction. Set αd+2,d = αd+1,d = 0. Since ∂̄ωd+1,d = 0 by degree
reasons, there exists u ∈ Ld+1

d−1 such that ∂̄u = ωd+1,d, and ‖u‖ ≤
Ed‖ωd+1,d‖. We set αd+1,d−1 = u.

Suppose given αk+1,k = dfαk+2,k, with ∂̄ωk+1,k − ∂̄αk+1,k = 0 (this is
trivially verified when k = d). Then the hypothesis on Ω implies that
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there exists u ∈ Lk+1
k−1 such that

‖u‖ ≤ Ek‖ωk+1,k − αk+1,k‖ and ∂̄u = ωk+1,k − αk+1,k.

Then we set αk+1,k−1 := u.
Finally, we put αk,k−1 := dfαk+1,k−1. We need to check the condition

on ∂̄:

∂̄αk,k−1 = df ∂̄αk+1,k−1 = df (ωk+1,k − dfαk+2,k) = dfωk+1,k = ωk,k = ∂̄ωk,k−1.

The following diagram, where S stands for the operator solving the ∂̄
equation, describes the whole complex for n = 2, N = 3.

The bounds on the solution of the Cauchy-Riemann equation ∂̄ and
those on ωk,l imply that

‖αk+1,k−1‖ ≤ Ek
(
Cf (D

′
f )
k + ‖df‖‖αk+2,k‖

)
,

from which we deduce by induction

‖αk+1,k−1‖ ≤ Cf

d−1∑
j=k

(D′f )
j‖df‖j−k

j∏
i=k

Ej + ‖df‖d
(
d−1∏
j=k

Ej

)
‖αd+1,d−1‖,

so taking into account the bound ‖αd+1,d−1‖ ≤ Ed‖ωd+1,d‖, we have for
any k

‖αk+1,k−1‖ ≤ C(d)‖f‖d∞

(
d∏
j=1

Ej

)
Cf (D

′
f )
d.
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Finally, we claim that a solution to the Bezout equation is given by the
components of γ1,0 := ω1,0 − α1,0 =:

∑N
j=1 gjej.

Indeed, ∂̄(α1,0− ω1,0) = 0, so the coefficients of γ1,0 are holomorphic
functions, and

N∑
j=1

gjfj = df (γ1,0) = df (ω1,0 − dfα2,0) = df (ω1,0) = ω0,0 = 1.

The bound on the gj follows from the bounds on ‖α1,0‖ and ‖ω1,0‖ and

Lemma 21, which gives Cf ≤ C N2

δ
, D′f ≤ C N4

δ2
. �
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[7] L. Hörmander. Generators for some rings of analytic functions. Bull. Amer.
Math. Soc., 73 (1967), 943–949.
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