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Let F q be the finite field with q elements and let ! be a primitive n-th root of unity in an extension eld F q d of F q . Given a polynomial P 2 F q [x] of degree less than n, we will show that its discrete Fourier transform (P (1); P (!); :::; P (! n¡1 )) 2 F q d n can be computed essentially d times faster than the discrete Fourier transform of a polynomial Q 2 F q d [x] of degree less than n, in many cases. This result is achieved by exploiting the symmetries provided by the Frobenius automorphism of F q d over F q .

INTRODUCTION

Let n = 2 `and let ! = e 2pi/n be a primitive n-th root of unity in C. The traditional algorithm for computing discrete Fourier transforms [START_REF] Cooley | An algorithm for the machine calculation of complex Fourier series[END_REF] takes a polynomial P 2 C[x] of degree <n on input and returns the vector (P (1); P (!); :::; P (! n¡1 )). If P actually admits real coecients, then we have P (! ¡i ) = P (! i ) for all i, so roughly n/2 of the output values are superuous. Because of this symmetry, it is well known that such real FFTs can be computed roughly twice as fast as their complex counterparts [START_REF] Bergland | A fast Fourier transform algorithm for real-valued series[END_REF][START_REF] Sorensen | Realvalued fast Fourier transform algorithm[END_REF].

More generally, there exists an abundant literature on the computation of FFTs of polynomials with various types of symmetry. Crystallographic FFT algorithms date back to [START_REF] Ten | Crystallographic Fast Fourier Transform[END_REF], with contributions as recent as [START_REF] Kudlicki | The crystallographic Fast Fourier Transform. Recursive symmetry reduction[END_REF], but are dedicated to crystallographic symmetries. So called lattice FFTs have been studied in a series of papers initiated by [START_REF] Guessoum | Fast algorithms for the multidimensional discrete Fourier transform[END_REF] and continued in [START_REF] Vince | Computing the Discrete Fourier Transform on a hexagonal lattice[END_REF][START_REF] Bergmann | The fast Fourier transform and fast wavelet transform for patterns on the torus[END_REF]. A more general framework due to [START_REF] Auslander | An equivariant Fast Fourier Transform algorithm[END_REF] was recently revisited from the point of view of highperformance code generation [START_REF] Johnson | Generating symmetric DFTs and equivariant FFT algorithms[END_REF]. Further symmetric FFT algorithms and their truncated versions were developed in [START_REF] Van Der Hoeven | Structured FFT and TFT: symmetric and lattice polynomials[END_REF].

In this paper, we focus on discrete Fourier transforms of polynomials P 2 F q [x] with coecients in the nite eld with q elements. In general, primitive n-th roots of unity ! only exist in extension elds of F q , say ! 2 F q d. This puts us in a similar situation as in the case of real FFTs: our primitive root of unity ! lies in an extension eld of the coecient eld of the polynomial. This time, the degree of the extension is d = [F q d: F q ] instead of 2 = [C: R]. As in the case of real FFTs, it is natural to search for algorithms that allow us to compute the DFT of a polynomial in F q [x] approximately d times faster than the DFT of a polynomial in F q d [x].

The main purpose of this paper is to show that such a speed-up by an approximate factor of d can indeed be achieved. The idea is to use the Frobenius automorphism q : F q d ! F q d; x 7 ! x q as the analogue of complex conjugation. If P 2 F q [x], then we will exploit the fact that P ( q k (! i )) = q k (P (! i )) for all 0 6 i < n and 0 6 k < d. This means that it suces to evaluate P at only one element of each orbit for the action of the Frobenius automorphism on the cyclic group h! i generated by !. We will give an ecient algorithm for doing this, called the Frobenius FFT .

Our main motivation behind the Frobenius FFT is the development of faster practical algorithms for polynomial multiplication over nite elds of small characteristic. In [START_REF] Harvey | Fast polynomial multiplication over F 2 60[END_REF], we have shown how to reduce multiplication in F 2 [x] to multiplication in F 2 60[x], while exploiting the fact that ecient DFTs are available over F 2 60. Unfortunately, this reduction involves an overhead of a factor 2 for zero padding. The Frobenius FFT can be thought of as a more direct way to use evaluation-interpolation strategies over F 2 60 for polynomial multiplication over F 2 . We have not yet implemented the algorithms in the present paper, but the ultimate hope is to make such multiplications twice as ecient as in [START_REF] Harvey | Fast polynomial multiplication over F 2 60[END_REF].

Let us briey detail the structure of this paper. In section 2, we rst recall some standard complexity results for nite eld arithmetic. We pursue with a quick survey of the fast Fourier transform (FFT) in section 3. The modern formulation of this algorithm is due to Cooley and Tukey [START_REF] Cooley | An algorithm for the machine calculation of complex Fourier series[END_REF], but the algorithm was already known to Gauÿ [START_REF] Gauss | Nachlass: Theoria interpolationis methodo nova tractata[END_REF].

In section 4, we introduce the discrete Frobenius Fourier transform (DFFT) and describe several basic algorithms to compute DFFTs of prime order. There are essentially two efficient ways to deal with composite orders. Both approaches are reminiscent of analogue strategies for real FFTs [START_REF] Sorensen | Realvalued fast Fourier transform algorithm[END_REF], but the technical details are more complicated.

The rst strategy is to reduce the computation of d discrete Fourier transforms of polynomials P 0 ; :::; P d¡1 2 F q [x] of degree <n to a single discrete Fourier transform of a polynomial P 2 F q d[x] of degree <n. This elegant reduction is the subject of section 5, but it is only applicable if we need to compute many transforms. Furthermore, at best, it only leads to the gain of a factor d / log d instead of d, due to numerous applications of the Frobenius automorphism q .

The second strategy, to be detailed in section 6, is to carefully exploit the symmetries in the usual CooleyTukey FFT; we call the resulting algorithm the Frobenius FFT (FFFT). The complexity analysis is more intricate than for the algorithm from section 5 and the complete factor d is only regained under certain conditions. Fortunately, these conditions are satised for the most interesting applications to polynomial multiplication in F 2 [x] or when n becomes very large with respect to d.

In this paper, we focus on direct DFFTs and FFFTs. Inverse FFFTs can be computed in a straightforward way by reversing the main algorithm from section 6. Inverting the various algorithms from section 4 for DFFTs of prime orders requires a bit more eort, but should not raise any serious diculties. The same holds for the algorithms to compute multiple DFFTs from section 5.

Besides inverse transforms, it is possible to consider truncated Frobenius FFTs, following [START_REF] Van Der Hoeven | The truncated Fourier transform and applications[END_REF][START_REF] Van Der Hoeven | Notes on the Truncated Fourier Transform[END_REF][START_REF] Larrieu | The truncated fourier transform for mixed radices[END_REF], but this goes beyond the scope of this paper. It might also be worth investigating the use of Good's algorithm [START_REF] Good | The interaction algorithm and practical Fourier analysis[END_REF] as an alternative to the CooleyTukey FFT, since the order n usually admits many distinct prime divisors in our setting.

FINITE FIELD ARITHMETIC

Throughout this paper and unless stated otherwise, we will assume the bit complexity model for Turing machines with a nite number of tapes [START_REF] Papadimitriou | Com putational Com plexity[END_REF]. Given a eld K, we will write K[x] <n for the set of polynomials in K[x] of degree <n.

Let us write q = p for some prime number p and > 1. Elements in the nite eld F q are usually represented as elements of F p [x] / ((x)), where 2 F p [x] is a monic irreducible polynomial of degree . We will denote by M q (n) the cost to multiply two polynomials in F q [x] <n . Multiplications in F q can be reduced to a constant number of multiplications of polynomials in F p [x] < via the precomputation of a pre-inverse of . The multiplication of two polynomials in F q [x] <n can be reduced to the multiplication of two polynomials in F p [x] <2n using Kronecker substitution [START_REF] Zur Gathen | Modern Computer Algebra[END_REF]Corollary 8.27]. In other words, we have

M q (n) = O(M p ( n)).
The best currently known bound for M q (n) was established in [START_REF] Harvey | Faster polynomial multiplication over nite elds[END_REF]. It was shown there that M q (n) = O(n log q log(n log q) 8 log (nlog q) );

(2.1) uniformly in q, where log x := min fk 2 N: log k x 6 1g;

(2.2) log k := log k log:

Sometimes, we rather need to perform t multiplications P 1 Q; :::; P t Q with P 1 ; :::; P t ; Q 2 F q [x] <n . The complexity of this operation will be denoted by M q (n; t). Throughout this paper, it will be convenient to assume that M q (n; t) / (n log q) is increasing in both n and q. In other words, M p (n ; t)/(n ) is increasing in both n and .

The computation of the Frobenius automorphism q in F q d requires O(log q) multiplications in F q d when using binary powering, so this operation has complexity O(M q (d) log q). This cost can be lowered by representing elements in F q d with respect to so-called normal bases [START_REF] Blessenohl | On the normal basis theorem[END_REF]. However, multiplication in F q d becomes more expensive for this representation.

The discrete Frobenius Fourier transform potentially involves computations in all intermediate elds F q e where e divides d. The necessary minimal polynomials for these elds and the corresponding pre-inverses can be kept in a table. The bitsize of this table is bounded by 2 dlog 2 q e P ejd d. It is known [START_REF] Nicolas | Highly composite numbers by Srinivasa Ramanujan[END_REF] Another important operation in nite elds is modular composition: given P ; Q 2 F q [x] <n and a monic polynomial R 2 F q [x] of degree n, the aim is to compute the remainder

(P Q) rem R of the euclidean division of P Q by R.
If R is the minimal polynomial of the nite eld F q n F q [x] / (R(x)), then this operation also corresponds to the evaluation of the polynomial P 2 F q [x] <n at a point in F q n. If R and R 0 are two distinct monic irreducible polynomials in F q [x] of degree n, then the conversion of an element in F q [x] / (R(x)) to an element in F q [x] / (R 0 (x)) also boils down to one modular composition of degree n over F q .

We will denote by C q (n) the cost of a modular composition as above. Theoretically speaking, Kedlaya and Umans proved that C q (n) = (n log q) 1+o(1) [START_REF] Kedlaya | Fast polynomial factorization and modular composition[END_REF]. From a practical point of view, one rather has C q (n) = O(n 2 log q). If n is smooth and one needs to compute several modular compositions for the same modulus, then algorithms of quasi-linear complexity do exist [START_REF] Van Der Hoeven | Modular composition via factorization[END_REF].

Given primitive elements 2 F q d and 2 F q e with e j d, the paper [START_REF] Van Der Hoeven | Modular composition via factorization[END_REF] also contains efficient algorithms for conversions between F q [] and F q [][]. Using modular composition, we notice that this problem reduces in time C q (d) + (d / e) C q (e) + C q e(d / e) to the case where we are free to choose primitive elements and that suit us. We let V q (d; e) be a cost function for conversions between F q [] and F q [][] and denote V q (d) = max eje 0 jd (d/e 0 ) V q (e 0 ; e).

FAST FOURIER TRANSFORMS

The discrete Fourier transform

Let K be any eld and let ! 2 K be a primitive n-th root of unity for some n > 0. Now consider a polynomial P 2 K[x] <n , where

K[x] <n := fP 2 K[x]: deg P < ng:
The discrete Fourier transform DFT ! (P ) of P with respect to ! is the vector DFT ! (P ) = (P (1); P (!); :::

; P (! n¡1 )) 2 K n :
If n is a small number, then DFT ! (P ) can be computed by evaluating P (! i ) directly for i = 0; :::; n ¡ 1, using Horner's method for instance. If n is a prime number, then Rader and Bluestein have given ecient methods for the computation of discrete Fourier transforms of order n; see [START_REF] Rader | Discrete Fourier transforms when the number of data samples is prime[END_REF][START_REF] Bluestein | A linear ltering approach to the computation of discrete Fourier transform[END_REF] and subsection 3.2 below.

In subsection 3.4, we are interested in the case when n is composite. In that case, one may compute DFT ! (P ) using the fast Fourier transform (or FFT). The modern formulation of this algorithm is due to Cooley and Tukey [START_REF] Cooley | An algorithm for the machine calculation of complex Fourier series[END_REF], but the algorithm was already known to Gauÿ [START_REF] Gauss | Nachlass: Theoria interpolationis methodo nova tractata[END_REF]. The output (P (! {

)) i<n of the FFT uses a mirrored indexation { that we will introduce in subsection 3.3 below.

We will denote by F q d(n) the cost of computing a FFT in the eld F q d.

Rader reduction

Assume that we wish to compute a DFT of large prime length n. The multiplicative group F n is cyclic, of order n ¡ 1. Let g 2 f1; :::; n ¡ 1g be such that g mod n is a generator of this cyclic group. Given a polynomial P = p 0 + + p n¡1 x n¡1 and j 2 f1; :::; n ¡ 1g with j = g l rem n, we have

DFT ! (P ) g l rem n = p 0 + X i=1 n¡1 p i ! i(g l rem n) = p 0 + X k=0 n¡2 p g ¡k rem n ! (g ¡k rem n)(g l rem n) = p 0 + X k=0 n¡2 p g ¡k rem n ! g l¡k rem n :
Setting

u k = p g ¡k rem n U = u 0 + + u n¡2 y n¡2 v l = ! g l rem n V = v 0 + + v n¡2 y n¡2 w l = DFT ! (P ) g l rem n ¡ p 0 W = w 0 + + w n¡2 y n¡2 ;
it follows that W = U V , when regarding U , V and W as elements of

K[y] n¡1 := K[y]/(y n¡1 ¡ 1):
In other words, we have essentially reduced the computation of a discrete Fourier transform of length n to a so-called cyclic convolution of length n ¡ 1.

Generalized bitwise mirrors

Let n be a positive integer with a factorization n = m 0 m `¡1 such that m j > 1 for each j. Then any index i < n can uniquely be written in the form

i = i 0 m 1 m `¡1 + + i `¡2 m `¡1 + i `¡1 ;
where i j < m j for all j < `. We call i 0 ; :::; i `¡1 the digits of i when written in the mixed base v = (m 0 ; :::; m `¡1 ). We also dene the v-mirror of i by

[i] v = i 0 + i 1 m 0 + i 2 m 0 m 1 + + i `¡1 m 0 m `¡2 : Whenever v is clear from the context, we simply write { instead of [i] v .
If v = (m 0 ) has length one, then we notice that

[i] (m0) = i:
Setting v ^= (m `¡1 ; :::; m 0 ), we also have

[[i] v ] v ^= i: Finally, given h 6 d, let v ] = (m 0 ; :::; m h¡1 ), v [ = (m h ; :::; m `¡1 ), n ] = m 0 m h¡1 and n [ = m h m `¡1 , so that v = (v ] ; v [ ) and n = n ] n [ . Then it is not hard to see that for all i ] < n ] and i [ < n [ , we have [i ] n [ + i [ ] v ] ;v [ = [i [ ] v [ n ] + [i ] ] v ]:

The Cooley-Tukey FFT

We are now in a position to recall how the FFT works. Let v ] = (m 0 ; :::; m h¡1 ), v [ = (m h ; :::; m `¡1 ), n ] = m 0 m h¡1 and n [ = m h m `¡1 be as at the end of the previous subsection. We denote ! ] = ! n [ and notice that ! ] is a primitive n ] -th root of unity. Similarly,

! [ := ! n ] is a primitive n [ -th root of unity. Recall that { [i] v for i < n.
For any i < n and j < n, we have

! { j = ! (i [ n ] +i ] )(j ] n [ + j [ ) = ! i ] j [ (! [ ) i [ j [ (! ] ) i ] j ] ; so that P (! { ) = X j [ <n [ " ! j [ i ] X j ] <n ] P j ] n [ + j [ (! ] ) j ] i ] # (! [ ) j [ i [ : (3.1)
In this formula, one recognizes two polynomial evaluations of orders n ] and n [ . More precisely, we may decompose the polynomial P as

P = P 0 ] (x ] ) + P 1 ] (x ] ) x + + P n [ ¡1 ] (x ] ) x n [ ¡1 ;
where x ] = x n [ and P 0 ] ; :::

; P n [ ¡1 ] 2 K[x ] ] <n ].
This allows us to rewrite (3.1) as

P (! { ) = X j [ <n [ (! j [ i ] P j [ ] ((! ] ) i ] )) (! [ ) j [ i [ : (3.2)
For each i ] < n ] , we may next introduce the polynomial

P i ] [ 2 K[x] <n [ by P i ] [ (x) = P 0 ] ((! ] ) i ] ) + + P n [ ¡1 ] ((! ] ) i ] ) x n [ ¡1
The relation (3.2) now further simplies into

P (! { ) = P i ] [ (! i ] (! [ ) i [ ): (3.3) 
This leads to the following recursive algorithm for the computation of discrete Fourier transforms.

Algorithm FFT ! (P )

Input: P 2 K[x] <n Output: (P (! { )) i<n .
if `= 1 then compute the answer using a direct algorithm and return it Take

0 < h < `, n ] = m 0 m h¡1 and n [ = m h m `¡1 Let ! ] := ! n [ , ! [ := ! n ] , x ] := x n [ Decompose P (x) = P 0 ] (x ] ) + + P n [ ¡1 ] (x ] ) x n [ ¡1 for i [ < n [ do Compute (P i [ ] ((! ] ) i ] )) i ] <n ] := FFT ! ](P i [ ] ) for i ] < n ] do Let P i ] [ (x) := P 0 ] ((! ] ) i ] ) + + P n [ ¡1 ] ((! ] ) i ] ) x n [ ¡1 Let P ~i] [ (x) := P i ] [ (! i ] x) Compute (P i ] [ (! i ] (! [ ) i [ )) i [ <n [ := FFT ! [ ¡ P ~i] ] return (P (! { )) i<n = (P i ] [ (! i ] (! [ ) i [ )) i=i ] n [ +i [ <n
If the m i are all bounded, then this algorithm requires O(n log n) operations in K. For practical purposes it is best though to pick h such that n [ and n ] are as close to n p as possible. This approach is most cache friendly in the sense that it keeps data as close as possible in memory [START_REF] David | Ffts in external of hierarchical memory[END_REF].

FROBENIUS FOURIER TRANSFORMS

The discrete Frobenius Fourier transform

Let F q F q d be an extension of nite elds. Let q : F q d ! F q d; x 7 ! x q denote the Frobenius automorphism of F q d over F q . We recall that the group h q i generated by q has size d and that it coincides with the Galois group of F q d over F q .

Let ! 2 F q d be a primitive n-th root of unity with F q d = F q [!]. Recall that n j q d ¡ 1 and gcd(n; q) = 1. We will write h! i for the cyclic group of size n generated by !. The Frobenius automorphism q naturally acts on h! i and we denote by r q (! i ) the order of an element ! i under this action. Notice that r q (! i ) j d. A subset S h!i is called a cross section if for every ! j 2 h!i, there exists exactly one ! i 2 S such that ! i = q k (! j ) for some k 2 N. We will denote this element ! i by S (! j ). We will also denote the corresponding set of indices by I = fi < n: ! i 2 S g. Now consider a polynomial P 2 F q [x] <n . Recall that its discrete Fourier transform with respect to ! is dened to be the vector DFT ! (P ) = (P (1); P (!); :::; P (! n¡1 )):

Since P admits coecients in F q , we have

P ( q k (! j )) = q k (P (! j ))
for all j; k 2 N. For any ! j 2 h! i, this means that we may retrieve P (! j ) from P ( S (! j )). Indeed, setting ! i = S (! j ) with ! i = q k (! j ), we obtain P (! j ) = q ¡k (P (! i )). We call DFFT !;S (P ) = (P (! i )) i2I

the discrete Frobenius Fourier transform of P with respect to ! and the section S. Let ! i 2 S and r = r q (! i ). Then q r leaves ! i invariant, whence q r (P (! i )) = P ( q r (! i )) = P (! i ). Since F q r is the subeld of F q d that is xed under the action of q r , this yields

P (! i ) 2 F q rq(! i ):
It follows that the number of coecients in F q needed to represent DFFT !;S (P ) is given by

X i2I r q (! i ) = n: (4.1)
In particular, the output and input size n of the discrete Frobenius Fourier transform coincide.

Twiddled transforms

In the CooleyTukey algorithm from section 3.4, the second wave of FFTs operates on twiddled polynomials

P ~i] [ (x) := P i ] [ (! i ] x) instead of the polynomials P i ] [ (x
). An alternative point of view is to directly consider the evaluation of P i ]

[ at the points (! [ ) i [ with i [ < n [ and where = ! i ] . We will call this operation a twiddled DFT .

The twiddled DFFT is dened in a similar manner. More precisely, assume that we are given an s-th root of unity 2 F q d such that the set h! i is stable under the action of q . Assume also that we have a cross section S of h!i under this action and the corresponding set of indices I = fi < n: ! i 2 S g f0; :::; n ¡ 1g. Then the twiddled DFFT computes the family DFFT ;!;S (P ) := (P ( ! i )) i2I :

Again, we notice that

X i2I r q ( ! i ) = n: (4.2)
We will denote by F q;d (n) the complexity of computing a twiddled DFFT of this kind.

The naive strategy

If n is a small number, then we recall from section 3.1 that it is most ecient to compute ordinary DFTs of order n in a naive fashion, by evaluating P (! i ) for i < n using Horner's method. From an implementation point of view, one may do this using specialized codelets for various small n.

The same naive strategy can also be used for the computation of DFFTs and twiddled DFFTs. Given a cross section S h!i and the corresponding set of indices I = fi < n: ! i 2 S g, it suces to evaluate P ( ! i ) separately for each i 2 I. Let r i = r q ( ! i ) j d be the order of ! i under the action of q . Then ! i actually belongs to F q r i, so the evaluation of P ( ! i ) can be done in time n M q r i(1) + O(n r i log q). With the customary assumption that M q n(1) / n is increasing as a function of n, it follows using (4.2) that the complete twiddled DFFT can be computed in time

F q;d (n) 6 n X i2I M q r i(1) + O(n 2 log q) 6 n 2 d M q d(1) + O(n 2 log q):
Assuming that full DFTs of order n over F q d are also computed using the naive strategy, this yields

F q;d (n) 6 1 d F q d(n) (1 + o(1)): (4.3)
In other words, for small n, we have achieved our goal to gain a factor d.

Full Frobenius action

The next interesting case for study is when n is prime and the action of q on h!i is either transitive, or has only two orbits and one of them is trivial. If 2 h! i, then ! 0 = 1 always forms an orbit of its own in h!i, but we can have jS j = 2. If 2 / h!i, then it can happen that S is a singleton. This happens for instance for a 9-th primitive root of unity 2 F 2 6, for ! = 3 2 F 4 , and n = 3.

If S is a singleton, say S = f g, then we necessarily have r q () = n = d and the DFFT reduces to a single evaluation P () with P 2 F q [x] <n and 2 F q n. This is precisely the problem of modular composition that we encountered in section 2, whence F q;d (n) = C q (n). The speed-up F q n(n) / C q (n) with respect to a full DFT is comprised between 1 and n, depending on the eciency of our algorithm for modular composition. Theoretically speaking, we recall that C q (n) = (n log q) 1+o (1) , which allows us to gain a factor n/(n log q) for any > 0.

In a similar way, if 2 h! i and jS j = 2, then the computation of one DFFT reduces to n additions (in order to compute P (1)) and one composition modulo a polynomial of degree n ¡ 1 (instead of n). Remark 4.1. Assume that n is prime, 2 h!i and jS j = 2. If we are free to choose the representation of elements in F q d, then the DFFT becomes particularly efficient if we take F q d = F q [!]. In other words, if 2 F q [x] is the monic minimal polynomial of ! over F q (so that deg = d = n ¡ 1), then we represent elements of F q d as polynomials in F q [x] modulo . Given P 2 F q [x] <n , just writing down P (!) = (P ¡ P d )(!) then yields the evaluation of P at !, whence F q;d (n) = M q (1; n) + O(n log q).

Rader reduction

For large prime orders n and 2 h!i, let us now show how to adapt Rader reduction to the computation of DFFTs in favourable cases. With the notations from section 3.2, we have

(! g `rem n ) q = ! (g `q) rem n = ! g `+ rem n
for all `, where < n ¡ 1 is such that g = q. The action of q therefore induces an action q : `7 ! `+ on Z/((n ¡ 1) Z).

Let us assume for simplicity that the order of the additive subgroup generated by in Z/ ((n ¡ 1) Z) is comprime with := (n ¡ 1)/ . Then there exists an element < n ¡ 1 of order in Z / ((n ¡ 1) Z) and Z /((n ¡ 1) Z) = hi h i. Consequently,

F q [ y] n¡1 = F q [ y ]
[y ] :

We may thus regard the product W = U V as a bivariate polynomial in y and y . Let W ~2 F q [y ] be the constant term in y of this bivariate polynomial. From W ~, we can recover P (! g `rem n ) for every `2 h i. By construction, the ! g `rem n with `2 h i actually form a section of h! i n f1g under the action of q . This reduces the computation of a DFFT for the section S := f! g `rem n : l 2 h ig [ f1g to the computation of W ~. As to the computation of W ~, assume for simplicity that F q contains a primitive (n ¡ 1)-th root of unity. Recall that U has coecients in F q whereas V admits coecients in F q . Notice also that V does not depend on the input P , whence it can be precomputed. We compute W ~as follows in the FFT-model with respect to y . We rst transform U and V into two vectors U ^2 (F q [y ]

) and V ^2 (F q [ y ]

) . The computation of V ^may again be regarded as a precomputation. The computation of the Fourier transform W ~2 F q now comes down to modular compositions of degree over F q . We nally transform the result back into W ~. Altogether, this yields

F q; (n) 6 2 F q () + C q () + O(n log q):
It is instructive to compare this with the cost of a full DFT of length n over F q n ¡1 using Rader's algorithm:

F q n¡1(n) 6 2 F q n¡1() + 2 F q n ¡1() + O(n 2 log q):
Depending on the eciency of modular composition, the speed-up for DFFTs therefore varies between n / and n. Notice that the algorithm from the previous subsection becomes a special case with parameters = n ¡ 1 and = 1.

MULTIPLE FOURIER TRANSFORMS

Parallel lifting

Let F q d be an extension of F q and assume that its elements are represented as polynomials in a primitive element 2 F q d of degree d. Given d polynomials P 0 ; :::; P d¡1 2 F q [x] <n , we may then form the polynomial

P = P 0 + P 1 + + P d¡1 d¡1 2 F q d[x]:
If n j q ¡ 1 and ! is a primitive n-th root of unity in the base eld F q , then we notice that DFT ! (P ) = DFT ! (P 0 ) + + DFT ! (P d¡1 ) d¡1 :

(5.1)

In other words, the discrete Fourier transform operates coefcientwise with respect to the basis 1; ; :::

; d¡1 of F q d.
Recall that F q (n; t) stands for the cost of computing t Fourier transforms of length n over F q . The maps (P 0 ; :::; P d¡1 ) 7 ! P 0 + + P d¡1 d¡1 and its inverse boil down to matrix transpositions in memory. On a Turing machine, they can therefore be computed in time O(n d log d log q). From (5.1), it follows that

F q (n; d) 6 F q d(n) + O(n d log d log q): (5.2)
This relation does not give us anything really new, since we made the assumption in section 2 that M q (n; t)/(n log q) is increasing in both n and q. Nevertheless, it provides us with an elegant and explicit algorithm in a special case.

Symmetric multiplexing

Let us next consider an s-th root of unity and a primitive n-th root of unity ! 2 F q d. Given u = ! i , we have for all k, q k (P ( q ¡k (u))) = P 0 (u) q k (1) + + P d¡1 (u) q k ( d¡1 ):

Abbreviating P ;k (u) := q k (P ( q ¡k (u))) and setting

B = 0 B @ 1 d¡1 q d¡1 (1) q d¡1 ( d¡1 ) 1 C A P (u) = 0 @ P ;0 (u) P ;d¡1 (u) 1 A V P (u) = 0 @ P 0 (u) P d¡1 (u) 1 A it follows that P (u) = B V P (u):
Now given the twiddled discrete Fourier transform DFT ;! (P ) := (P ( ! i )) i<n of P , we in particular know the values P (u); :::; P ( q d¡1 (u)). Letting the Frobenius automorphism q act on these values, we obtain the vector P (u). Using one matrix-vector product V P (u) = B ¡1 P (u), we may then retrieve the values of the individual twiddled transforms DFT ;! (P i ) at u. Doing this for each u 2 S in a cross section of h!i under the action of q , this yields a way to retrieve the twiddled DFFTs of P 0 ; :::; P d¡1 from the twiddled DFT of P .

Recall that F q;d (n; t) denotes the complexity of computing the DFFTs of t elements of F q [x] <n over F q d. Since B is a Vandermonde matrix, the matrix-vector product B ¡1 P (u) can be computed in time O(M q (d) log d) using polynomial interpolation [START_REF] Zur Gathen | Modern Computer Algebra[END_REF]Chapter 10]. Given DFT ;! (P ), we may compute each individual vector P (u) in time O(d M q (d) log(d q)) using the Frobenius automorphism q . Since there are jS j orbits in h! i under the action of q , we may thus retrieve the DFFT ;! (P i ) from DFT ;! (P ) in time O(jS j d M q (d) log q d ). In other words,

F q;d (n; d) 6 F q d(n) + O(jS j d M q (d) log q d ):
(5.3)

Multiplexing over an intermediate field

In the extreme case when ; ! 2 F q , every ! i 2 h!i has order one under the action of q and jS j = n. In that case, the bound (5.3) is not very sharp, but (5.2) already provides us with a good alternative bound for this special case. For r 2 / f1; dg with r j d, let us now consider the case when u = ! i has order at most r under the action of q for all i, so that u 2 F q r. Let 2 F q r be a primitive element in F q r over F q , so that F q r = F q [] and F q d = F q r[]. Given our d polynomials P 0 ; :::; P d¡1 2 F q [x] <n , we may form

P [i] = P ir + + P ir +r ¡1 r ¡1 2 F q r[x] <n (i < d/r) P = P [0] + P [1] + + P [d/r ¡1] d/r ¡1 2 F q d[x] <n : Then we have DFT ;! (P ) = DFT ;! (P [0] ) + + DFT ;! (P [d/r ¡1] ) d/r ¡1 :
Moreover, we may compute (DFFT ;! (P ir + j )) j <r from DFT ;! (P [i] ) for each i < d / r, using the algorithm from the previous subsection, but with the additional property that at least one u 2 h!i has maximal order r = [F q r: F q ] under the action of q .

If n is prime and 2 h! i, then the above discussion shows that, without loss of generality, we may assume that ! has order d under the action of q . This means that ! i has maximal order d for every i 2 f1; :::; n ¡ 1g, whereas ! 0 = 1 has order one. Hence, jS j = (n ¡ 1) / d + 1. Similarly, if n is prime and 2 / h! i, then we obtain a reduction to the case when ! i has maximal order d for all i 2 f0; :::; n ¡ 1g, whence jS j = n/d. In both cases, we obtain the following:

Proposition 5.1. If n is prime, then F q;d (n; d) = F q d(n) + O(n M q (d) log q d ):
Remark 5.2. We recall that n 6 q d ¡ 1, whence log n 6 log q d . When using the best known bound (2.1) for M q (n) and F q d(n) M q d(n), it follows for some constant C > 0 that Fq;d(n; d)

F q d(n) > 1 + C d log q log (d log q) 8 log (dlog q) log(n d log q) 8 log (ndlog q) > 1 + 8 C log q log (d log q):
In other words, we cannot hope to gain more than an asymptotic factor of d/log d with respect to a full DFT.

If n is not necessarily prime, then the technique from this section can still be used for every individual u. However, the rewritings of elements in F q d as elements in F q r[] and F q [][] have to be done individually for each u using modular compositions. Denoting by r i the order of ! i under q , it follows that

F q;d (n; d) = F q d(n) + X i2I V q (d; r i ) + X i2I O(r i M q r i(d /r i ) log q d ) 6 F q d(n) + n V q (d) + O(n M q (d) log q d ):
Notice that conversions of the same type correspond to modular compositions with the same modulus. If n is smooth, then it follows that we may use the algorithms from [START_REF] Van Der Hoeven | Modular composition via factorization[END_REF] and keep the cost of the conversions quasi-linear.

THE FROBENIUS FFT

Let n = m 1 m `and v = (m 1 ; :::; m `) be as in section 3.3 and let ! 2 F q d be a primitive n-th root of unity. In this section we present an analogue of the FFT from section 3.4: the Frobenius FFT (or FFFT). This algorithm uses the same mirrored indexation as the CooleyTukey FFT: given P 2 F q [x] <n , it thus returns the family (P (! { )) i2I . We start with the description of the index set I = fi < n: ! { 2 S g that corresponds to the so-called privileged cross section S of h! i.

Privileged cross sections

Given i < n, consider the orbit O q (! { ) := h q i(! { ) of ! {
under the action of h q i. We dene

q;v (! { ) := ! | j := min f0 6 j < n: ! | 2 O q (! {
)g:

Then S := im q;v is a cross section of h!i under the action of q ; we call it the privileged cross section for q (and v). Now let h 6 d, v ] = (m 0 ; :::; m h¡1 ), v [ = (m h ; :::; m `¡1 ), n ] = m 0 m h¡1 and n [ = m h m `¡1 be as above. Then ! ] := ! n [ is a primitive n ] -th root of unity. Let S ] := im q;v ] be the corresponding privileged cross section of h! ] i. Proposition 6.1. We have

S ] = S n [ := fu n [ : u 2 S g: Proof. Let i = i ] n [ + i [ and j = j ] n [ + j [ with i ] ; j ] < n ] and i [ ; j [ < n [ be such that ! | = q k (! {
) for some k. Since

(! { ) n [ = (! i [ n ] +i ] ) n [ = (! i ] ) n [ = (! ] ) i ] ;
and similarly

(! | ) n [ = (! ] ) j ] , it follows that (! ] ) j ] = q k ((! ] ) i ] ). Inversely, given j ] < n ] with (! ] ) j ] = q k ((! ] ) i ] )
for some k, we claim that there exists a j

[ < n [ such that ! j = q k (! { ) for j = j ] n [ + j [ . Indeed, (! ] ) j ] = q k ((! ] ) i ] ) implies that (! j ] ) n [ = ( q k (! { )) n [ , whence ! j ] / q k (! {
) is an n [ -th root of unity. This means that there exists a j

[ < n [ with ! j ] / q k (! { ) = (! n ] ) ¡j [ , i.e. ! | = ! j ] +j [ n ] = q k (! {
). Now assume that j is minimal with

! | = q k (! {
) for some k. Given ] < n ] such that (! ] ) ] 2 O q ((! ] ) i ] ), the above claim shows that there exists a [ 

< n [ such that ! 2 O q (! { ) for = ] n [ + [ . But then j 6 , whence j ] 6 ] . This shows that ! | 2 S implies (! | ) n [ = (! ] ) j ] 2 S ] .
Inversely, assume that j ] < n ] is minimal such that (! ] ) j ] 2 O q ((! ] ) i ] ). Then the above claim implies that there exists a j

[ < n [ such that ! | 2 O q (! {
) for j = j ] n [ + j [ . Without loss of generality we may assume that j [ was chosen minimal while satisfying this property. Given

] < n ] , [ < n [ and = ] n [ + [ with ! 2 O q (! { ), we have (! ] ) ] 2 O q ((! ] ) i ] ). Consequently, j ] 6 ] and j [ 6 [ whenever j ] =
] . In other words, j 6 . This shows that (! ] ) j ] 2 S ] implies the existence of a j

[ < n [ with ! | 2 S and (! | ) n [ = (! ] ) j ] .

The main algorithm

We are now in a position to adapt the CooleyTukey FFT. In the case when `= 1 or n is prime, we will use one of the algorithms from section 4 for the computation of twiddled DFFTs.

Algorithm FFFT ! (P )

Input: P 2 F q [x] <n Output: (P (! { )) i2I . if `= 1 then return DFFT 1;! (P ) Take h = `¡ 1, n ] = m 0 m h¡1 and n [ = m h m `¡1 Let ! ] := ! n [ , ! [ := ! n ] , x ] := x n [ Let I ] := fi ] < n ] : (! ] ) i ] 2 S n [ g Decompose P (x) = P 0 ] (x ] ) + + P n [ ¡1 ] (x ] ) x n [ ¡1 for i [ < n [ do (P i [ ] ((! ] ) i ] )) i ] 2I ] := FFFT ! ](P i [ ] ) for i ] 2 I ] do Let P i ] [ (x) := P 0 ] ((! ] ) i ] ) + + P n [ ¡1 ] ((! ] ) i ] ) x n [ ¡1 Notice that P i ] [ 2 F q r[x] := F q (! ] ) i ] [x],
where r is the order of (! ] ) i ]

Let I i ] [ := fi [ < n [ : ! i ] n [ +i [ 2 S g if ! i ] ; ! [ 2 F q [(! ] ) i ] ] then Let P ~i] [ (x) := P i ] [ (! i ] x) Compute (P i ] [ (! i ] (! [ ) i [ )) i [ 2I i ] [ := FFT ! [ ¡ P ~i] ] else Compute (P i ] [ (! i ] (! [ ) i [ )) i [ 2I i ] [ <DFFT ! i ] ;! [ ;S i ] [ (P i ] ] ) return (P (! { )) i2I = (P i ] [ (! i ] (! [ ) i [ )) i ] 2I ] ;i [ 2I i ] [
For the usual FFT, it was possible to choose h in such a way that n ] n [ , and we recall that this improves the cache eciency of practical implementations. However, this optimization is more problematic in our setting since it would require the development of an ecient recursive algorithm for twiddled FFFTs. This is an interesting topic, but beyond the scope of the present paper.

Complexity analysis

Let us now perform the complexity analysis of FFFT ! . For k 2 f0; :::; `¡ 1g, we first focus on all FFTs and twiddled DFFTs that are computed at stage k using a fallback algorithm. These FFTs and twiddled DFFTs are all of length m k . Given e j e 0 j d, let k;e;e 0 be the number of transforms of a polynomial in F q e[x] <mk over F q e 0 . From (4.2), it follows that X eje 0 jd m k k;e;e 0 e = n:

Now a naive bound for the cost of an FFT or twiddled DFFT of a polynomial in F q e[x] <mk over F q e 0 is F q e ;e 0 /e (m k ) 6 F q e 0(m k ) + m k M q e(1): (6.1)

This means that the cost of all FFTs and twiddled DFFTs at stage k is bounded by

F k := X eje 0 jd
k;e;e 0 F q e ;e 0 /e (m k ) 6 X eje 0 jd k;e;e 0 F q e 0(m k ) + n M q d(1) d :

Now k;e;e 0 can only be non zero if e 0 6 m k e. Consequently,

F k 6 X eje 0 jd k;e;e 0 e e 0 e F q e 0(m k) e 0 + n M q d(1) d 6 X eje 0 jd k;e;e 0 e m k F q d(m k) d + n M q d(1) d 6 n d (F q d(m k ) + M q d(1)):
The total cost of all FFTs and twiddled DFFTs of prime length is therefore bounded by

F 0 + + F l¡1 6 n d (F q d(m ) + M q d(1));
where m = max (m 1 ; :::; m k ).

Strictly speaking, if e is a proper divisor of e 0 , then the output of a twiddled DFFT of a polynomial in F q e[x] <mk over F q e 0 does not use the standard representation for F q e 0, so the result must be converted. The cost of all such conversions at stage k is bounded by For a number a with prime factorization a = p 1 i1 p r ir , let (a) := i 1 + + i r . We also denote N k;e = P eje 0 m k k;e;e 0 e and notice that N k+1;e 0 = P eje 0 m k k;e;e 0 e. Let us show by induction over k that

C 0 + + C k ¡1 6 X ejd N k;e (e) Vq(d) d :
This is clear for k = 0, since N 0;1 = n and N 0;e = 0 for e > 1.

Assuming that the relation holds for a given k, we get This completes the induction and we conclude that the total conversion cost is bounded by

C 0 + + C k 6 X
C 0 + + C `¡1 6 n (d) Vq(d) d :
This concludes the proof of the following result: Theorem 6.2. If m 0 ; :::; m `¡1 are all prime, then F q;d (n) 6 n d (`F q d(m ) + `Mq d( 1) + (d) V q (d));

where m = max (m 1 ; :::; m `¡1 ).

Remark 6.3. If the m k are very small, then we have shown in section 4.3 that (6.1) can be further sharpened into F q e ;e 0 /e (m k ) e e 0 F q e 0(m k ): As a consequence, the bound for F q;d (n) becomes 1) + (d) V q (d)):

F q;d (n) . n d (`F q d(
Remark 6.4. It is also possible to treat the case when e = e 0 apart in the bound for F k , thereby avoiding the factor m k > e 0 / e whenever possible. A similar analysis as for the cost of the conversions then yields 1) + (d) F q d(m ) + (d) V q (d) :

Whenever we can manage to keep m and V q (d) / d small with respect to `, this means that we gain a factor d with respect to a full DFT.

Frobenius FFTs over 𝔽 2 60

Let us now study the special case when q = 2 and d = 60. This case is useful for the multiplication of polynomials P ; Q 2 F 2 [x] with P Q 2 F 2 [x] <n . The idea is to compute the Frobenius FFTs (P (! {

)) i2I and (Q(! {

)) i2I , to perform the pointwise multiplications ((P Q)(! {

)) i2I and to retrieve P Q by doing one inverse Frobenius FFT.

Modulo zero padding, we have some flexibility in the choice of n, which should divide 2 60 ¡ 1. In particular, for polynomials P and Q of large degree, we may choose n to be a multiple of 61 and take m 1 = 61 and h = 1 (instead of h = `¡ 1) for the top call of the algorithm FFFT from section 6.2. By selecting the representation of F 2 60 as explained in Remark 4.1, this means that F 2 [(! ] ) i ] ] = F 2 for a single i ] = 0 and F 2 [(! ] ) i ] ] = F 2 60 for the remaining 60 indices 0 < i ] < 61. In other words, one Frobenius FFT of length n reduces to one Frobenius FFT of length n/61 and one full FFT over F 2 60 of length n/61.

We choose the remaining m 2 ; :::; m `to be small prime numbers, so as to minimize the cost of the full FFT over F 2 60 of length n / 61. For the remaining FFFT of length n / 61, we may then apply Theorem 6.2 and Remark 6.3. From a practical point of view, the computation of this remaining FFFT should take about c / 60 times the time the computation of a full FFT of length n/61 for some small constant c > 1.

We conclude that one entire FFFT of length n can be performed approximately 61 ¡ c times faster as a full FFT of length n. We hope that this will lead to practical implementations for polynomial multiplication in F 2 [x] that are approximately twice as ecient as the implementation from [START_REF] Harvey | Fast polynomial multiplication over F 2 60[END_REF].

C 6 X

 6 k := X e= / e 0 jd k;e;e 0 V q (e 0 ; e) e= / e 0 jd m k k;e;e 0 e Vq(d) d

F

  d(m ) m + `Mq d(