N

N

Evaluation of 6 and 10 Year-Old Child Human Body
Models in Emergency Events

Laure-Lise Gras, Isabelle Stockman, Karin Brolin

» To cite this version:

Laure-Lise Gras, Isabelle Stockman, Karin Brolin. Evaluation of 6 and 10 Year-Old Child Human Body
Models in Emergency Events. PLoS ONE, 2017, 12 (1), pp.e0170377. 10.1371/journal.pone.0170377 .
hal-01453171

HAL Id: hal-01453171
https://hal.science/hal-01453171
Submitted on 13 Feb 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01453171
https://hal.archives-ouvertes.fr

@° PLOS | ONE

Check for
updates

G OPENACCESS

Citation: Gras L-L, Stockman I, Brolin K (2017)
Evaluation of 6 and 10 Year-Old Child Human Body
Models in Emergency Events. PLoS ONE 12(1):
€0170377. doi:10.1371/journal.pone.0170377

Editor: Antoine Nordez, Universite de Nantes,
FRANCE

Received: May 18, 2015
Accepted: January 4, 2017
Published: January 18, 2017

Copyright: © 2017 Gras et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: Funding for this study was provided by
Folksam’s Research Fund and the Strategic Area of
Advance at Chalmers University of Technology.
The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The study was funded by
Folksam’s Research Fund and the Strategic Area of
Advance at Chalmers University of Technology.
However, this does not alter our adherence to
PLOS ONE policies on sharing data and materials.

RESEARCH ARTICLE

Evaluation of 6 and 10 Year-Old Child Human
Body Models in Emergency Events

Laure-Lise Gras'2**, Isabelle Stockman'®, Karin Brolin'®

1 Department of Applied Mechanics, Division of Vehicle Safety, Chalmers University of Technology,
Gothenburg, Sweden, 2 Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, Lyon,
France

® These authors contributed equally to this work.
* laurelise.gras @ gmail.com

Abstract

Emergency events can influence a child’s kinematics prior to a car-crash, and thus its inter-
action with the restraint system. Numerical Human Body Models (HBMs) can help under-
stand the behaviour of children in emergency events. The kinematic responses of two child
HBMs—MADYMO 6 and 10 year-old models—were evaluated and compared with child volun-
teers’ data during emergency events—braking and steering—with a focus on the forehead and
sternum displacements. The response of the 6 year-old HBM was similar to the response of
the 10 year-old HBM, however both models had a different response compared with the vol-
unteers. The forward and lateral displacements were within the range of volunteer data up to
approximately 0.3 s; but then, the HBMs head and sternum moved significantly downwards,
while the volunteers experienced smaller displacement and tended to come back to their ini-
tial posture. Therefore, these HBMs, originally intended for crash simulations, are not too stiff
and could be able to reproduce properly emergency events thanks, for instance, to postural
control.

Introduction

The protection of children in motor vehicle crashes has improved with the use of child
restraint systems; however, car crashes remain the second leading cause of death for children
between 5 and 14 years old [1]. The head is the most frequently injured body region among
forward-facing children [2,3]. To understand how children are injured, the causation scenarios
of head injuries in frontal impacts for rear-seated, restrained children have been studied [4]. It
was concluded that contact with the car interior is the principal cause of head injuries. In addi-
tion, emergency events such as braking, steering, or a combination of both influenced the kine-
matics of children prior to the impact, thereby affecting the child’s interaction with the restraint
systems. Consequently, there is a need to evaluate child protection, during emergency events,
together with the restraint systems and to understand the kinematic responses of children in
pre-crash situations. A validated child numerical model is an attractive tool for the assessment
of restraint systems in emergency events.
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Numerical Human Body Models (HBMs) are increasingly used to simulate both pre-crash
and in-crash occupant’s responses, especially adult models [5-10]. Nevertheless, child occu-
pant models remain sparse and not all age groups are represented [11]. Finite Element (FE)
models of children mostly represent the 3-year-old child [12-15]. Only the 3 year-old model
presented by Mizuno et al. [13] has been successively improved to increase its biofidelity
[14,15]. It has been validated by comparing its response with experimental corridors of child
volunteer data for the abdomen (lap belt loading) and with the Hybrid III 3 year-old physical
anthropomorpbhic test device response in calibration tests for the neck (pendulum test on the
thorax, acceleration: 230 m.s™ during 20 ms), thorax (pendulum test on the thorax, velocity: 6
m.s™) and spine (flexion test at 45 degrees) [13-15]. However this model was excluded from
the present study because it does not belong to the age group of interest, forward facing chil-
dren aged 5 to 14 years. Okamoto et al. [16] presented an FE model of a 6 year-old pedestrian,
although a publication presenting validation was not found. Two projects aim to develop FE
models of children of different age groups: the Digital Child Project proposed by the Southern
Consortium for Injury Biomechanics [17] and the Child Advanced Safety Project for European
Roads [18]. Nevertheless, publications describing the development, validation, and application
of these models were not found in the literature. Hence, there is a lack of available, validated, and
well published child occupant FE models. Multi Body (MB) models of child occupants were pre-
sented by van Rooij et al. [19]. A 3 year-old child facet model was developed and extended to 6
and 10 year-old child HBMs in the MAthematical DYnamic MOdel (MADYMO) code (TASS
International, Helmond, Netherlands) [20]. The anthropometry was based on the CANDAT
database [21] and mechanical properties were scaled down from the 50 percentile male model
[20]. Validation of the 6 and 10 year-old models was presented in the MADYMO Human Mod-
els Manual [20]. Their response was compared with scaled corridors obtained from the dynamic
hub impactor tests of Neathery [22] (impactor speed: 4.3 m.s™ and 6.7 m.s™"). The 6 year-old
model was also validated against: frontal thoracic pendulum tests (impactor mass: 3.5 kg, impac-
tor speed: 6 m.s') performed on paediatric post mortem human subjects [23]; abdominal belt
loading tests on porcine specimens [24]; and quasi-static neck tension tests on paediatric post
mortem human subjects [25].

To the best of the authors’ knowledge, the published validations and applications of the
child models have focused on the evaluation of child restraint systems or injury mitigation sys-
tems at acceleration levels above 20 g. Pre-crash or emergency events have not yet been studied
in the literature with child numerical models, even though these manoeuvers have the poten-
tial to significantly influence the outcome of a car-crash. In pre-crash simulations the focus is
on occupant kinematic instead of injury. Because of this, and in combination with the long
duration of pre-crash events and the lack of suitable FE models, MB models were preferred in
this study. In order to match the age group of interest, the 6 and 10 year-old commercially
available MB models were chosen.

The aim of this paper was to perform a first comparison of the MADYMO 6 and 10 year-
old child HBMs with experimental data from emergency events with child volunteers in order
to highlight their strengths and weaknesses to reproduce such situations. Indeed, because these
models were developed to be used in crash situations, and because of their lack of postural con-
trol compared with child volunteers, their response in emergency events may be not represen-
tative of child volunteers’ response. Therefore, knowing kinematic responses of the available
models is an important first step towards their further development and validation in the pre-
crash loading regime.
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Materials and Methods

The MADYMO HBMs representing 6 year-old (Child6YO) and 10 year-old (Child10YO) chil-
dren [20] were used to simulate experiments previously performed with child volunteers in
braking [26] and steering events [27]. The MADYMO Release 7.4.1 code was used for all simu-
lations and post processing was done using MATLAB version R2010b (MathWorks, Natick,
Massachusetts, U.S.A.).

Experimental Data

Previously published studies have presented child volunteer data for braking [26] and steering
[27] events performed on a test track with a Volvo XC70. The study protocol the authors are
referring to was reviewed and approved by The Ethics Board of Gothenburg, Sweden [26,27].
The driving study was conducted on a closed-circuit test track by a professional driving
instructor. Child volunteers were safely restrained and accompanied by a parent. Every child
and parent were aware of the test protocol. An informed consent form was signed by the
parents, and a small gift was given to the participating children. The test could be aborted at
any time by the child or parent. Children were not exposed to any injury risks or major dis-
comfort. The aims of this study were to quantify the kinematics of child occupants. A short
summary is given here; please refer to the original publications for detailed information. Child
volunteers were divided into two groups according to their stature: a short group (11746 cm)
and a tall group (143+5 cm). These stature requirements are close to the mean stature of 6
year-old (117 cm) and 10 year-old children (139 cm) [28]. All volunteers were restrained on
the right rear seat of the vehicle. The short children were tested while seated on a booster cush-
ion and the tall children were tested while seated on a booster cushion and while seated
directly on the vehicle seat. All volunteers were restrained by the standard three-point seat belt
of the test vehicle.

During the braking event, the car was driven at 70 km/h and the driver applied the brakes
as fast as possible to a full stop, resulting in a mean maximum longitudinal deceleration of 1 g.
The braking event was divided into three phases (Fig 1). The first phase corresponded to a
decrease of the longitudinal acceleration until reaching a plateau. The acceleration level was
maintained during the second phase, and the third phase was the end of the event with the
increase of the acceleration. Phase I finished at 0.3 s, and Phase IT at 2 s.

The steering event was performed at 50 km/h with a mean maximum lateral acceleration of
0.8 g. The vehicle was turned to the right resulting in an inboard motion of the volunteers. The
steering event pulse (Fig 1) presented the same shape as the braking event, but at a lower pla-
teau value and with a longer duration. Data was presented for three points in time. A reference
point T1, before the event started corresponded to the initial position of the volunteer. The
point T2 was chosen in the middle of the ramping phase of the acceleration, 0.2 s after reaching
0.2 g, which corresponded to the time point 0.3 s in Fig 1. The point T3 was chosen 0.3 s after
T2,1i.e.,at 0.6 s in Fig 1, and corresponded to the end of the ramping phase.

Volunteer kinematic responses were determined from video tracking of markers on the
children. During steering events, kinematic analysis focused on the child’s lateral movement
of the upper torso and seat belt position relative to the child’s shoulder, and during braking
events, it focused on the forward trajectories for the forehead and external auditory canal (ear)
as well as head rotation and shoulder belt force.

Computational Models

Child HBMs. The Child6YO and Child10YO models are referenced in MADYMO as the
child facet occupant models [19,20]. They are modelled with 92 bodies. In the spine, each

PLOS ONE | DOI:10.1371/journal.pone.0170377 January 18,2017 3/23



o @
@ : PLOS | ONE Evaluation of Child Human Body Models in Emergency Events

A. Braking

A
N

Longitudinal Acceleration (m.s"z)
S & & & L o

2 3

o
RN

Time (s)
B. Steering

)
N

13

RN
o

o¢]

Lateral Acceleration (m.s

o N b~ O

0 1 2 3
Time (s)
Fig 1. Acceleration as function of time for the two events, adapted from Stockman et al. [26] and

Bohman et al. [27] with permission of the authors. (A) The braking event was split into three phases. (B) The
steering event was studied at two points in time, T2 and T3.

doi:10.1371/journal.pone.0170377.g001

vertebra is a separate body connected to neighbouring vertebrae by free joints with lumped
joint resistance models. The thorax and abdomen are composed of flexible bodies and the pelvis
is represented by facet elements. The shoulders, as well as the lower and upper limbs are a com-
bination of rigid bodies and joints. The skin is represented by an FE mesh. In terms of anthro-
pometry, the Child6YO model has a stature of 116 cm and weighs 21 kg, while the Child10YO
is 144 cm tall and weighs 35.5 kg. These values were close to the volunteers” anthropometry data
[26]: children of the short and tall groups were respectively 117+6 cm and 144+5 cm tall and
weighed 20 kg and 36 kg in average. Most of the mechanical properties are scaled down from
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Fig 2. Scheme of the seat model. Belt anchorage positions are represented with grey dots. The global
coordinate system is added to the figure.
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the adult 50 percentile male model and details can be found in the MADYMO Human Models
Manual [20].

Seat, booster cushion and seat belt models. The Child6YO model was simulated while
seated on a booster cushion (Britax Ranger) model, previously published by Andersson et al.
[29]. The Child10YO model was simulated while seated on the same booster cushion and
while seated directly on the seat cushion. The seat model (Fig 2) was composed of two planes
positioned to reproduce the geometry of the rear seat. The seat cushion was a 42-by-45 cm
plane that made a 10° angle with the car floor. The seat back was a 55-by-45 cm plane, and the
angle between the seat cushion and the seat back was 100°. Multi body contacts were defined
between the child models and the booster and the seat, respectively. The predefined contact
stiffness in the child models was used, which is a non-linear stiffness with hysteresis [30]. Con-
tact was defined with a friction parameter. Friction coefficient was set to 0.3 for contacts
between child models and the booster cushion and the seat cushion, and to 0.55 for the contact
between the booster cushion and the seat cushion.

The three-point seat belt was modelled by FE and MB elements and had the geometry of the
seat belt in the right rear seat of the vehicle. The MB elements connected the belt to the belt
anchorages, and the triangular membrane FE modelled the interaction between the belt and the
model. The lap belt’s anchorages were placed at the junction of the seat back and seat cushion
(5 cm from the seat cushion right and left sides; Fig 2). The shoulder belt’s lower anchorage was
the same as the right lap belt’s anchorage, while the upper anchorage was placed 60 cm above and
23.5 cm behind the left side of the seat back-to-seat cushion junction (Fig 2). When a booster
cushion was used, intermediate points attached under the guiding loops of the booster were
added to guide the belt. The belt was modelled without retractor. Data to model the seat and belt

PLOS ONE | DOI:10.1371/journal.pone.0170377 January 18,2017 5/23



@° PLOS | ONE

Evaluation of Child Human Body Models in Emergency Events

were obtained from the geometrical model of the Volvo XC70 car. An FE contact was defined
between the belt elements and facet elements of the child model, based on the predefined skin
mechanical properties.

Child models positioning. The initial positions of the child models were established by
positioning each model just above the seat or booster cushion and applying gravity for 4 sec-
onds until the model was in contact with the seat back and seat or booster cushion. During the
positioning, the spinal joints of the model were locked. The joint positions were recorded and
exported to define the initial joint positions of the models in the subsequent simulations. The
models were centred on the seat. After positioning, each model was restrained by the seat belt
using the belt-fitting tool available in XMADGic (TASS International, Helmond, Netherlands).
When seated on the booster cushion the shoulder belt was routed under the left guiding loop,
corresponding to the inboard side in a vehicle. Both the shoulder and lap belts were routed
along the skin facet elements. When seated on the booster cushion the shoulder belt was posi-
tioned on mid-shoulder for both models while it was close to the neck for the Child10YO
model when seated directly on the seat.

Braking and steering simulations. In total six simulations were performed: a braking
and a steering simulation with the Child6YO model seated on the booster cushion, a braking
and a steering simulation with the Child10YO model seated on the booster cushion, and a
braking and a steering simulation with the Child10YO model seated directly on the seat cush-
ion. The steering simulation was designed to represent a steering event to the right with an
inboard motion of the occupant in the right rear seat of the vehicle. For each simulation, the
braking and steering pulses (Fig 1) were applied to the seat model and gravity was applied to
the whole system. The global coordinate system was defined with the X-axis pointing forward
in the longitudinal direction, Y-axis in the lateral direction, and Z-axis upward in the vertical
direction (Fig 2).

Data Analysis

Braking event. For the braking event, the displacement of the forehead and upper ster-
num in the XZ-plane of the global coordinate system was output. In order to compare the vol-
unteer data with simulation data, the vertical displacements were plotted according to the
seated height of the models and volunteers, and the longitudinal displacements were consid-
ered to start in the same point. The forehead point was defined as a node on the forehead
above the eyes. The upper sternum point was a node on the skin, at the level of T1. A point
defining the auditory canal was used to calculate the change of head rotation in the sagittal
plane. This point was defined as the node at the right-most point of the head in the mid-sagittal
plane of the head. The shoulder belt force was measured. Forehead displacement, head rota-
tion and shoulder belt force were compared with volunteer data.

Steering event. For the steering event, the forehead and upper sternum displacement in
the YZ-plane of the global coordinate system were measured at times T2 and T3 (defined in
Fig 1). This corresponded to the inboard displacement relative to the centreline of the seat.
Only the lateral displacement of the upper sternum was compared with volunteer data.

Evaluation of Simulations’ Robustness with a Full Factorial Design of
Experiments

In order to evaluate the robustness of the performed simulations, a two-levels full factorial
design of experiments was performed [31]. The response variables were the displacements of
the forehead and upper sternum at the end of phase I for the braking event and at T2 for the
steering event. These response variables were considered depending on four parameters: child
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Table 1. Parameters of the design of experiments, their levels for each model and associated number of simulations.

MODELS 6YO on booster cushion 10YO on booster 10YO on seat cushion
cushion
PARAMETERS PARAMETERS LEVELS
Parameter A: Child model initial posture Leaning againstthe seat | Leaning againstthe seat | Leaning against the seat
back back back
Upright position Upright position Upright position

Parameter B: Belt routing Standard position Standard position Standard position

Closer to the neck Closer to the neck Closer to the neck
Parameter C: Friction coefficient between the child model and the 0.2 0.2 0.2
booster or seat 0.4 0.4 0.4
Parameter D: Friction coefficient between the booster cushion and 0.3 0.3
the seat 0.8 0.8
NUMBER OF SIMULATIONS 16 braking 16 braking 8 braking

16 steering 16 steering 8 steering

doi:10.1371/journal.pone.0170377.t001

model initial posture (A), belt routing (B), contact friction coefficient between child and
booster cushion and/or seat (C), and contact friction coefficient between booster cushion and
seat cushion (D) (Table 1). The child model initial posture (A) was defined either as the child
model leaning against the seat back (according to the chapter Child models positioning) or as
the child model in a more upright position with an angle of 0.2 radians at the joint between the
sacrum and the 5™ lumbar vertebra. The upright position was chosen to represent a child mov-
ing forward in order to reach something or speak with the driver. The belt routing parameter
(B) corresponded either to the same seat belt anchorage as described in Fig 2 or to a seat belt
anchorage with the upper anchorage of the shoulder belt placed 2 cm closer to the middle of
the seat back along the Y direction that resulted in a shoulder belt position closer to the neck
of the child models. These postures were chosen because they were representative of the shoul-
der belt initial position noticed during the experiments with child volunteers [27]. Contact
friction coefficient between the child model and the booster cushion and/or seat (C) was set
either to 0.2 or 0.4. These values were chosen arbitrarily around the value of 0.3 which was
used in the main simulations. The contact friction coefficient between the booster cushion and
the seat cushion (D) was set either to 0.3 or 0.8. These values were chosen around the value of
0.55 which was used in the main simulations, and were also chosen so that they were similar to
friction coefficients in the parametric study with a 3-year-old multibody model in crash events
by Andersson et al. [29].

The effect of all the parameters (A-D) on the response variables were evaluated for each
child model, and for both braking and steering events. This resulted in a total of 80 simulations
(Table 1). To compute the effect of a parameter, the average response of all simulations for
which the parameter was set at its first level was subtracted from the average response of all
simulations in the considered model configuration, and the same calculation was done for the
second level of each parameter. The trajectories of the forehead and upper sternum obtained
for the 80 simulations were also compared with the results of the six main simulations.

Results
Braking Event

The kinematic responses of the child HBMs were different from the child volunteers and did
not fall within the experimental corridors of the volunteer data (Figs 3 and 4). During the sim-
ulations, the upper torso of the model started to move forward while the head moved forward
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Initial position 2 Y

Fig 3. Simulation results for the Child10YO. The Child10YO response when seated on the booster cushion
is compared with a child volunteer of corresponding age at three points in time during the braking event: initial
position, end of Phase | (0.3 s) and end of Phase Il (2 s). Figures extracted from the datasets presented in
Stockman et al. [26] with permission of the authors.

doi:10.1371/journal.pone.0170377.9003

and downward. Then, because of the interaction with the shoulder belt and the head’s inertia,
a rotation of the upper torso around the vertical axis took place, especially when the models
were seated on the booster cushion. As a consequence, for the models seated on the booster
cushion, the belt slipped off the shoulder during the acceleration plateau of the braking pulse,
and the head continued to move downward. Analysis of the shoulder belt position on the
shoulder prior to the braking event and at maximum forward displacement, for the child vol-
unteers, showed that the shoulder belt maintained the same position throughout the event for
all children except two in the short group. One where the shoulder belt slipped off the shoulder
momentarily before the braking event and one where the shoulder belt slipped off during the
braking event, both when seated on a BC.

Generally, the HBMs experienced a greater forward displacement than the volunteers (Fig
4, Table 2). The forward displacements in the XZ-plane of the HBMs at the end of Phase I
were 2-7 cm greater than the volunteers’ mean displacement. At the end of Phase II the differ-
ence was greater than 10 cm and outside the volunteer ranges for the HBMs on booster cushion,
while the Child10YO on the seat cushion was within the experimental range. The displacement
of the forehead and upper sternum targets were also different if a booster cushion was used (Fig
4). The forward displacement at the end of Phase II of the Child10YO model seated on a booster
cushion was 44% greater for the forehead and 100% greater for the upper sternum than for the
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Fig 4. Forehead and upper sternum displacements in the braking event, in the XZ-plane of the global
coordinate system. Displacements are presented for the Child6YO (A), the Child10YO on a booster cushion
(B) and on the seat cushion (C), and the experimental data [26]. HBMs: black solid line. Corridor from volunteer
data: white area with black solid border and peak displacements in grey area. Symbol +: end of Phase |. Symbol
x: end of Phase Il. Displacements obtained from the design of experiments until end of Phase Il: grey solid lines.
Contour of child HBM overlaid for reference. Experimental data used with permission of the authors.

doi:10.1371/journal.pone.0170377.9004

same model when seated directly on the seat cushion. The change of head rotation was within
the range of volunteer data for Child6YO, while the head rotation for Child10YO was greater
than volunteer data. The change of head rotation (30°) was the same for both models regardless
of restraint system.

The shoulder belt force was inside the range of volunteer data for all simulations (Fig 5). As
mentioned previously, the belt slipped off the shoulder for the models when seated on the
booster cushion. For the Child6YO model this happened at the end of Phase II (at 1.6 s), while
the belt slipped off the shoulder in the beginning of Phase II (at 0.5 s) for the Child10YO model.

Steering Event

In the steering event, as for the braking event, the child HBMs moved differently than the
child volunteers (Figs 6 and 7). At the beginning of the simulation, the head and upper torso
moved laterally (along the Y-axis) until the lower part of the torso was stopped by the belt or
the guiding loop of the booster cushion. At the same time, the head was rotating around the
Y-axis until the chin reached the chest which implied a vertical downward displacement of the
forehead. Then lateral bending of the upper torso appeared, implying a lateral and downward
displacement of the head. For all the simulations, the models slipped out of the shoulder belt.

In the YZ-plane, the lateral and vertical displacements of the forehead and upper sternum
are presented in Fig 7 and Table 3. At T2, the HBMs had a lateral displacement of the upper
sternum within the range of experimental data. However at T3, all simulations resulted in 1.7-
4.6 times greater lateral displacement than the mean values for the different groups of

Table 2. Forehead and upper sternum target displacements relative to the initial position during the braking event.

[m] FOREHEAD UPPER STERNUM
End of Phase | End of Phase Il End of Phase | End of Phase Il
X z X z X Y4 X z
Short Children BC 0.13 -0.02 0.13 -0.01 - - - -
min: 0.08 min: -0.04 min: -0.03 min: -0.07 - - - -
max: 0.21 max: -0.01 max: 0.22 max: 0.03 - - - -
Child6YO BC 0.15 -0.24 0.25 -0.35 0.07 -0.04 0.17 -0.10
Tall Children BC 0.13 0.00 0.15 0.00 - - - -
min: 0.11 min: -0.02 min: 0.08 min: -0.05 - - - -
max: 0.15 max: 0.01 max: 0.21 max: 0.03 - - - -
Child10YO BC 0.16 -0.25 0.26 -0.39 0.06 -0.03 0.18 -0.10
Tall Children SC 0.10 0.00 0.15 0.02 - - - -
min: 0.06 min: -0.01 min: 0.13 min: -0.02 - - - -
max: 0.13 max: 0.01 max: 0.19 max: 0.05 - - - -
Child10YO SC 0.17 -0.25 0.18 -0.33 0.06 -0.05 0.09 -0.08

Forehead and upper target displacement at the end of Phase | and Il during the braking event, for HBMs and child volunteers [26]. All values are expressed
in meters. Data for child volunteers are mean values. Experimental data used with permission of the authors.

doi:10.1371/journal.pone.0170377.t1002
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Fig 5. Low pass filtered shoulder belt force over time. Shoulder belt force are presented for the Child6YO
(A), the Child10YO on a booster cushion (B) and on the seat cushion (C) and compared with experimental
data extracted from the datasets presented in Stockman et al. [26] with permission of the authors. HBMs:
black solid line, child volunteers: black dotted line.

doi:10.1371/journal.pone.0170377.9005

volunteers. The lateral displacement of the Child10YO model seated on a booster cushion was
59% greater for the forehead and 105% greater for the upper sternum than for the same model
when seated on the seat cushion.

For all HBMs, the forehead and upper sternum had a downward vertical displacement of
about 0.17 m and 0.03 m at T2 respectively and up to 0.54 m and 0.24 m at T3 respectively
(Table 3), whereas a qualitative analysis of the video data from the volunteer tests showed that
child volunteers’ upper body had almost no downward displacement.

Full Factorial Design of Experiments

The trajectories of the forehead and upper sternum for each simulation of the design of experi-
ments are plotted in Fig 4 for the braking event and in Fig 7 for the steering event. Results are
close to the trajectories of the six main simulations, especially during the first phase of each
event. The analysis of the design of experiments showed that parameter A was the parameter
that had the largest influence on the kinematics results for both events (Figs 8, 9, 10 and 11).
The initial child model position (parameter A) had the largest effect on forehead and upper
sternum displacements in both X and Z directions (up to 18%) for braking and in both Y and

T2

T3

Fig 6. Simulation results for the Child10YO. The Child10YO response when seated on the booster cushion
is compared with a child volunteer of corresponding age at three points in time during the steering event: initial
position, T2 (0.3 s) and T3 (0.6 s). Figures extracted from the datasets presented in Bohman et al. [27] with
permission of the authors.

doi:10.1371/journal.pone.0170377.9006
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Fig 7. Forehead and upper sternum displacements in the steering event, in the YZ-plane of the global
coordinate system. Displacements are presented for the Child6YO (A), the Child10YO on a booster cushion
(B) and on the seat cushion (C), and the experimental data [27]. HBMs: black solid lines. Symbol +: time T2.
Symbol x: time T3. Vertical lines labelled T2 and T3: volunteers’ data for the upper sternum. Displacements
obtained from the design of experiments until T3: grey solid lines. Contour of child HBMs overlaid for reference.
Experimental data used with permission of the authors.

doi:10.1371/journal.pone.0170377.9007

Z directions (up to 22%) for steering. This corresponds to a maximum variation of 4 cm for
the displacement of forehead and 1 cm for the upper sternum. The contact friction coefficient
between the child model and the booster cushion and/or seat (parameter C) had a lower effect
on the forehead and upper sternum displacements (up to 15%), that corresponded to a maxi-
mum variation of 1.3 cm for the forehead and of 0.8 cm for the upper sternum. Regarding the
other parameters (B and D), belt routing had a marginal effect on the results, and the contact
friction coefficient between the booster cushion and seat cushion had almost no effect on the
results in either braking or steering events.

Discussion

The aim of this study was to evaluate the kinematic responses of 6 and 10 year-old child
numerical models in emergency events. This was done by comparing the responses of the
Child6YO and Child10YO models available in MADYMO with child volunteer data in braking
and steering events. To the best of the authors’ knowledge, this is the first study to present the
responses of child HBM:s in low acceleration loadings.

The HBM forward and lateral displacements were within the range of volunteer data in the
beginning of the braking and steering events, up to approximately 0.3 s. Later in the events, the
HBMs had greater displacements than the volunteers in all cases where the seat belt had
slipped of the shoulder. The only case without belt slip off was the Child10YO on the seat cush-
ion in the braking event, where the model response at 2 s was only 3 cm greater than the volun-
teers mean displacement, still within the ranges. However, the downward motion of the
HBMs’ sternum and head is not representative of the kinematic response of child volunteers.

Table 3. Forehead and upper sternum displacement relative to the initial position, at T2 and T3 during the steering event.

[m] FOREHEAD
T2
Y

Short Children BC -

ChildeYO BC 0.10
Tall Children BC -

Child10YO BC 0.10
Tall children SC -

Child10YO SC 0.10

UPPER STERNUM

T3 T2 T3

Y z Y z Y Y4

- - 0.07 - 0.10 -

- - min: 0.03 - min: 0.06 -

- - max: 0.15 - max: 0.17 -
-0.17 0.28 -0.30 0.05 -0.03 0.17 -0.09

- - 0.07 - 0.08 -

- - min: 0.03 - min: 0.06 -

- - max: 0.10 - max: 0.10 -
-0.18 0.54 -0.54 0.05 -0.02 0.37 -0.24

- - 0.07 - 0.10 -

- - min: 0.04 - min: 0.06 -

- - max: 0.11 - max: 0.13 -
-0.16 0.34 -0.35 0.07 -0.04 0.18 -0.11

Forehead and upper sternum displacement relative to the initial position, at T2 and T3 during the steering event, for HBMs and child volunteers [27]. All
values are expressed in meters. Data for child volunteers are mean values. Experimental data used with permission of the authors.

doi:10.1371/journal.pone.0170377.t003
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Braking — Forehead displacement at the end of phase |
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Fig 8. Effect of the parameters on the forehead displacements in the X and Z directions in meters and percentage for each child model at the
end of phase | during the braking event. On each graph from left to right: Parameter A: Child initial posture, Parameter B: Belt routing, Parameter C:
Contact friction coefficient between child model and booster and/or seat cushion. Parameter D: Contact friction coefficient between booster cushion

and seat cushion.

doi:10.1371/journal.pone.0170377.9008

This results highlights the high flexibility of the models’ spine, which is an interesting charac-

teristic. Indeed, since these child HBMs were developed for crash scenarios, they were

expected to have a stiffer kinematic response, and thus a stiffer spine than child volunteers.

Peak belt forces occurred before belt slip-off in all braking simulations and were relatively

close to the mean experimental peak values of volunteer data. However because of the head
and upper torso kinematics, the belt was sliding more on the HBMs’ shoulders than on the
child volunteers. Since shoulder belt performance is a function of the position of the belt on

the shoulder, improvements of the HBMs’ kinematic response are desirable to obtain a
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Fig 9. Effect of the parameters on the upper sternum displacements in the X and Z directions in meters and percentage for each child model

at the end of phase | during the braking event. On each graph from left to right: Parameter A: Child initial posture, Parameter B: Belt routing,

Parameter C: Contact friction coefficient between child model and booster and/or seat cushion. Parameter D: Contact friction coefficient between
booster cushion and seat cushion.

doi:10.1371/journal.pone.0170377.g009

numerical tool suitable to study the loading of restraint systems, and thereby to evaluate and

optimize restraint performance.

As mentioned, the HBMs slipped out of the shoulder belt during the steering event before
0.3 s, while the child volunteers, especially the tall ones, tended to move the shoulder up and
forward in order to maintain the shoulder belt on the shoulder [27]. For short volunteers the
belt had slipped off before 0.3 s in 7 out of 16 trials and before 0.6 s in 10 out of 16 trials. Based
on visual inspection of the volunteer video data, it seems that they tried to maintain their head
in an upright position and attempted to return to their initial seated posture. However, the
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Steering — Forehead displacement at T2
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Fig 10. Effect of the parameters on the forehead displacements in the Y and Z directions in meters and percentage for each child model at
T2 during the steering event. On each graph from left to right: Parameter A: Child initial posture, Parameter B: Belt routing, Parameter C: Contact
friction coefficient between child model and booster and/or seat cushion. Parameter D: Contact friction coefficient between booster cushion and seat

cushion.

doi:10.1371/journal.pone.0170377.g010

HBMs’ heads had a downward motion coupled with head rotation and the models continued
to move laterally and forward throughout the events. The volunteer kinematics and the inter-
action with the shoulder belt were influenced by muscle activity, which is not present in the
HBMs and can explain some of the differences seen.
The change of head rotation in braking events was expected to be greater for the HBMs
than for the volunteers due to the lack of muscle activity, and due to spine flexibility. This was
true for the Child10YO model, but the response of the Child6YO model was within the range
of the volunteers in the braking. The children were not given specific instructions regarding
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Steering — Upper stemum displacement at T2
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Fig 11. Effect of the parameters on the upper sternum displacements in the Y and Z directions in meters and percentage for each child

model at T2 during the steering event. On each graph from left to right: Parameter A: Child initial posture, Parameter B: Belt routing, Parameter C:
Contact friction coefficient between child model and booster and/or seat cushion. Parameter D: Contact friction coefficient between booster cushion

and seat cushion.

doi:10.1371/journal.pone.0170377.9011

how to sit and behave in the vehicle, resulting in differences in the initial seated posture and
head position among the test subjects. As a result, small differences in the position of the target
point on the forehead at the start of the event could be seen. Therefore only normalised head
rotations were calculated. This spread in the initial head rotation in the volunteer study [26]

resulted in great variations among the volunteers, especially the short group, which is impor-
tant to take into account when comparing the models with the volunteer data. It is worth not-
ing that the change of head rotation was similar for all the HBMs and that the maximum head
rotation was reached earlier than for the child volunteers. This result suggests that due to the
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absence of muscle activity, the HBMs” head fell because of gravity loading rather than braking
acceleration. This result was confirmed with a static simulation with only gravity loading.

The design of experiments highlighted that the kinematic responses of child HBMs were
affected by the child model initial posture and the contact definitions between the child model
and the booster cushion and/or seat cushion. However, this did not impose a major change to
the global kinematics of the different HBMs. Therefore, it seems relevant to use the kinematic
results obtained from the six main simulations to assess the HBMs performance. Nevertheless,
in future work, these two parameters should be considered and measured to simulate child vol-
unteer data. Regarding the other parameters, the belt routing had only a small effect on kine-
matic data and the contact friction coefficient between the booster cushion and seat had
almost no effect on the results. This last result was in accordance with the work by Andersson
et al. [29] who also evaluated this parameter but for a 3-year-old multibody model in crash
events.

The discussion this far has highlighted that the HBMs behaved differently than the volun-
teers during the entire braking and steering events. To increase the biofidelity of these models,
changes in their mechanical properties can be made. It is possible to increase the spine stiffness
in both frontal and lateral bending. This could for instance increase the difference in change of
head rotation between the Child6YO model and Child10YO model; and also compensate for
the lack of muscle tension. Nevertheless, in order to reproduce the whole event, changing the
spinal mechanical properties would not be enough as it would not prevent the model from fall-
ing due to gravity later in the events. At this point, the volunteers are most likely actively con-
tracting their muscles in order to try to return to the initial seated posture. Increasing model
stiffness alone will not be sufficient to achieve biofidelic kinematics throughout the duration of
the events. Moreover, as mentioned previously, the child volunteers seemed to activate their
muscles during these emergency events, especially the tall children. In the braking event, tall
children managed to keep an upright posture by tensing their muscles, while it seemed more
difficult for short children. During the steering events, tall children tended to rotate their
upper body and lift their outboard shoulder in order to maintain contact with the shoulder
belt, while short children were sliding inboard and tried to compensate by bracing themselves
with their arms on the seat cushion or guiding loops of the booster cushion [27]. In these
cases, passive HBMs would not be suitable to model the kinematic response of the children
and the differences between short and tall children. Postural control is required to reproduce
these behaviours with HBMs, and differences in muscle maturity must be taken into account.

Different approaches have previously been used to model active muscle response in adult
HBMs and body segments. One approach is to include active muscles elements in the existing
models, as done in neck models [32-35] with muscles activation defined as a function of time.
Another approach is to include muscle elements with activation defined using closed loop con-
trol to maintain the body posture. This has for instance been done for the whole upper body
[8] or for the lower body [36,37]. A similar approach has been implemented in the MADYMO
50t percentile adult male HBM, but instead of controlling active muscles elements, torques
were applied in the joints of the spine with closed loop control. This so called active spine has
the ability to provide the model with postural stability to enable that it can return back toward
its initial position [7,38]. It is suggested that implementation of such active response should be
further investigated in order to design a biofidelic numerical tool relevant for modelling the
response of 6 and 10 year-old forward-facing children during pre-crash events.

Recently, we took the first steps towards active child HBMs by implementing postural con-
trol in the Child6YO model at the spine level [39]. Torque actuators, sensors and controllers
were implemented at each vertebral level for the three rotational degrees of freedom. The tor-
que needed to stabilize the spine in each direction (flexion-extension, lateral bending, and
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axial rotation) was divided into two components: a static torque to compensate for gravity
loadings, and a dynamic torque so that the model would strive to come back to its initial posi-
tion if a disturbance was applied. A first set of control parameters were adapted from the litera-
ture on adults [8,38], reduced by half to represent a child response, and subsequently tuned so
that the active child HBM kinematic response was within the range for child volunteers in the
braking and steering events presented previously in this paper [26,27]. Finally, the model was
validated with another set of steering event data and applied to study the influence of steering
pulse shape on the inboard movement of children, which directly affect the shoulder belt per-
formance in case of a crash.

To go further, the same set of controllers will be implemented in the Child10YO model.
However, based on the results obtained with the passive models, we can assume that control
parameters will be different than from the active Child6YO model. Indeed, both passive mod-
els had a similar kinematic response while short and tall volunteers behaved differently: tall
volunteers showed a better postural control than short volunteers, especially during the brak-
ing events where they maintained an upright posture. Therefore, we expect control parameters
for the active Child10YO model to be higher than for the active Child6YO model. Moreover,
the Child10YO model was evaluated when seated on the booster cushion, and when seated
directly on the seat which changed its interaction with the seat belt, and thus affected its pas-
sive response. Interaction with the seat belt may therefore also affect control parameters values,
making it difficult to find one set of postural parameters usable for reproducing both sitting
postures. An optimization method will be needed to address this issue. Finally, postural control
in the Child10YO model may not be enough to reproduce tall volunteers’ kinematics. Several
child volunteers in the tall group tried to raise their outboard shoulder to maintain contact
with the seat belt, and thus inducing a torso rotation. Implementation of active muscle ele-
ments, like previously introduced may be useful to reproduce this behaviour.

As a conclusion, studying the passive response of these child HBMs gave us important
insight in order to improve the Child6YO and Child10YO models and thus make them more
biofidelic. Results with the active Child6YO model also illustrate the potential of active child
HBM’s: to analyse child kinematics and the interaction with restraint systems, to study the risk
of interior impacts considering the full sequence of the crash, and to study how the restraint
design can influence the child’s posture and thereby the efficiency of the restraint system.
Indeed, it has been highlighted in the literature that initial posture significantly affected the
child kinematics in a crash [19].

There are several limitations with this study. The emergency events were simulated with
multi body dynamic models of the child, the rear seat, and the booster cushion. The entire vehi-
cle was not modelled and therefore, the pitch, roll and suspension effects were not taken into
account and the pulse that was applied to the seat model was limited to the experimentally mea-
sured longitudinal or lateral vehicle acceleration, depending on the reproduced event. Another
experimental study [40] concluded that vehicle pitch was low during braking events and had
minor influence on the volunteer kinematics. Therefore, as a first approach, it appeared reason-
able to focus only on the main loading experienced by the children: the longitudinal accelera-
tion for braking, and lateral acceleration for steering.

The rear seat was simplified by two rigid surfaces, with any seat deformation caused by the
child mass captured only by the contact stiffness, which might have had an effect on the global
kinematics. Nevertheless, using rigid planes to model a car seat has been previously done
[41,42]. Moreover, Johansson et al. [43] found marginal effects of the seat stiffness on the
global head kinematics of a three-year old child model compared with the effect of the seat
inclination, which in this study was the actual geometry of the test vehicle’s rear seat. Indenta-
tion test of front row seats by Osth et al. [8] give that a force of 355 N (Child10YO) produced
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less than 2 cm deformation of the softest part of the cushion. Since the mass of the child is dis-
tributed by the booster on a larger area the seat indentation for the child volunteers will be
even smaller and it is not expected to influence the response. In the model, the seat back and
seat cushion were considered flat with only one angle of inclination; these parts are slightly
curved which can affect the spine curvature, and lead to differences between the volunteers
and the models. However, the spine curvature for the HBMs was chosen in accordance with
the recommendations provided by MADYMO.

The booster cushion model in the simulations was similar to the booster cushion used dur-
ing the experiments, albeit slightly smaller. Compared with the experimental booster cushion,
the guiding loops were approximately 7 cm closer to the back of the booster, the inclination
was about 4° less, and the length and width were approximately 3 cm shorter. These differ-
ences might affect the belt position, although the global kinematics of the models was expected
to remain the same. It is tempting to investigate the influence of these differences with several
different models of booster cushions in a future study, this was not the purpose of the present
study.

Conclusions

The numerical kinematic response of two child HBM:s representing 6 and 10 year-old children
was less stiff compared with child volunteers in braking and steering events, especially in the
later stages of the events. The models fell to the side in the steering event, while child volun-
teers tended to come back to their initial position. The belt slipped off the shoulder for almost
all simulations, while it did not slip off the shoulder for all the child volunteers. However,
before the shoulder belt slipped off, the forward and lateral displacements were within the vol-
unteer ranges (greater than the mean value). As a conclusion, the strength of these child HBMs
is that they are not too stiff as could have been expected of models developed for crash. Never-
theless, further developments are desirable to obtain child HBMs suitable for reproducing
emergency events. Indeed, implementing postural control will give positive results for global
kinematics of the models and their interactions with the belt.
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