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Stability analysis of discrete-time infinite-horizon optimal control with
discounted cost

Romain Postoyan, Lucian Buşoniu, Dragan Nešić, and Jamal Daafouz

Abstract—We analyse the stability of general nonlinear
discrete-time systems controlled by an optimal sequence of
inputs that minimizes an infinite-horizon discounted cost.First,
assumptions related to the controllability of the system and its
detectability with respect to the stage cost are made. Uniform
semiglobal and practical stability of the closed-loop system is
then established, where the adjustable parameter is the discount
factor. Stronger stability properties are thereupon guaranteed by
gradually strengthening the assumptions. Next, we show that the
Lyapunov function used to prove stability is continuous under
additional conditions, implying that stability has a certain amount
of nominal robustness. The presented approach is flexible and
we show that robust stability can still be guaranteed when the
sequence of inputs applied to the system is no longer optimal
but near-optimal. We also analyse stability for cost functions
in which the importance of the stage cost increases with time,
opposite to discounting. Finally, we exploit stability to derive
new relationships between the optimal value functions of the
discounted and undiscounted problems, when the latter is well-
defined.

I. I NTRODUCTION

Optimal control selects control inputs so as to minimize
a cost incurred during the system operation [22]. In this
paper, we focus on optimal control in discrete time over an
infinite horizon, with general nonlinear system dynamics as
well as general stage costs. In this setting, optimal control is a
very powerful framework [4], able to address decision-making
problems not only in control engineering, but also in artificial
intelligence, operations research, economics, medicine,etc.
We concentrate in particular ondiscountedoptimal control,
where the stage costs are weighted by an exponentially de-
creasing termγk, where γ P p0, 1q is the discount factor
and k is the time step. The discounted setting is popular
in many areas, such as in dynamic programming [3], [24],
reinforcement learning [8], [36], [37], and planning algorithms
for optimal control [23].

A core practical question is whether the discounted optimal
control law stabilizes the system. In the adaptive dynamic
programming area, the analysis is usually tailored to the
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specific cost function considered or the specific algorithm
used, see for instance [2], [7], [34]. Some results exist showing
local stability in the continuous-time case e.g., [32], [35].
Recently, global asymptotic stability guarantees have been
provided in [12] for continuous-time systems. However, to the
best of our knowledge, the stability properties in the general
discrete-time discounted case are not yet understood. Many
recent works consider discounted costs but do not provide
stability guarantees, see e.g., [1], [9], [10], [14]. The main
issue is the impact of the value ofγ on the system stability.
The study of a simple linear example will show that, even
in that case,γ needs to be sufficiently close to1 to ensure
stability.

Motivated by this insight, we develop a general stability
analysis for discounted infinite-horizon optimal control.In
contrast with the aforementioned references, we define stabil-
ity using a generic measure as in [15], which allows addressing
the classical equilibrium point stability as a particular case,
but also set stability. We first make assumptions related to
the controllability of the system and its detectability with
respect to the stage cost, which are inspired by [15] where
the undiscounted finite-horizon case was considered. Our main
result then guarantees that the system in closed-loop with an
optimal sequence of inputs is uniformly semiglobally and prac-
tically stable, where the adjustable parameter isγ. Hence, for
any (arbitrarily large) basin of attraction, the system solutions
initialized in this basin will converge to any (arbitrarilysmall)
neighborhood of the target set providedγ is sufficiently close
to 1. The analysis is Lyapunov-based and follows similar steps
as in [15]. Nevertheless, the optimization problem is different
in this paper, which leads to substantial technical differences.
Afterwards, we gradually strengthen these assumptions to en-
sure stronger stability properties, namely uniform semiglobal
asymptotic stability and uniform global exponential stability.
We also separately address the case of linear systems with
quadratic stage cost. An explicit lower bound on the discount
factor is provided for each of these stability statements. The
results are applied to two examples: a linearized model of an
inverted pendulum and a nonholonomic integrator.

To endow stability with nominal robustness, it is essential
to work with a Lyapunov function that is continuous, see
[21]. With our construction and under our assumptions, the
continuity of the Lyapunov function is equivalent to the con-
tinuity of the optimal value function. We prove that the latter
is indeed continuous under additional regularity conditions. In
contrast with the existing literature, we exploit stability for
this purpose. This is a major difference, which allows us to
derive stronger conclusions in general and to rely on weaker
assumptions compared, for example, to [11], [17] where lower
semicontinuity is ensured, or to [6] where concave stage costs
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are considered.
The results mentioned so far are valid when an optimal

sequence of inputs is applied to the system. In practice, most
algorithms generate onlynear-optimal inputs. We show that
stability and the continuity of the optimal value function can
still be guaranteed when a near-optimal sequence of inputs is
used to control the system.

We also illustrate the generality of our approach by
analysing stability for cost functions in which the stage cost
is multiplied by a term which grows with time; we call
this scenarioreverse-discountedoptimal control. The idea is
to increase the weight of the stage cost as time grows in
applications where the long-term behaviour is more important
than the short-term one. We focus on two scenarios: when the
stage cost is weighted byγk with γ ¥ 1 or by 1� γk�1 with
γ P p0, 1q. Uniform global asymptotic stability is ensured in
both cases.

Finally, we exploit stability to quantify the difference be-
tween the optimal value functions of the discounted and
undiscounted problems, when the latter is well-defined, under
appropriate conditions. This result is relevant as, in manysit-
uations, the discount factor is introduced because the optimal
control sequence is harder to compute for the undiscounted
problem. In such cases,γ is typically selected close to1,
hoping this will lead to an optimal value close to the one
for γ � 1. We prove that this is indeed the case when the
system controlled by an optimal sequence of inputs for the
discounted cost is uniformly globally exponentially stable.

Discounting may be seen as complementary to relaxed
dynamic programming [25] in the context of stabilization [16].
While the stage cost is weighted by a constantα P p0, 1s in
the relaxed dynamic programming inequality, in the discounted
case, it is the optimal value function at the next step which
is multiplied by γ P p0, 1q in the Bellman equation. As a
result, while the two problems share similarities, the anal-
ysis in the discounted case requires different and nontrivial
analytical tools to study stability, which lead to semiglobal
and practical stability in general, as opposed to global and
asymptotic stability in relaxed dynamic programming under
similar assumptions [16].

Compared to the preliminary version of this work in [29],
here we do not make any assumption on the undiscounted
problem, we relax the assumptions that ensure stability, and
we provide sufficient conditions for semiglobal asymptoticsta-
bility and global exponential stability. The continuity analysis
of the optimal value function relies on weaker assumptions (we
no longer ask the stage cost to be bounded) and uses stability.
Completely novel elements include: the stability with near-
optimal sequences of inputs, the analysis of reverse-discounted
case and the relationship between the optimal value functions
of the discounted and undiscounted problems. The case study
where the stage cost is bounded in Section VI in [29] is not
reported in this paper.

The paper is organised as follows. After introducing some
preliminaries in Section II and stating the problem in Section
III, the main stability results are provided in Section IV. The
continuity of the Lyapunov function for the discounted prob-
lem is analysed in Section V. Stability using a near-optimal

sequence of inputs is investigated in Section VI. Results
on reverse-discounted optimal control and the relationships
between the optimal value functions of the discounted and
the undiscounted problems are presented in Section VII. The
proofs are provided in Section VIII and the conclusion is given
in Section IX. Finally, technical lemmas are reported in the
appendix.

II. PRELIMINARIES

Let R :� p�8,8q, R :� R Y t�8,8u, R
¥0 :� r0,8q,

Z
¥0 :� t0, 1, 2, . . .u, and Z

¡0 :� t1, 2, . . .u. The notation
px, yq stands forrxT, yTsT, wherepx, yq P R

n�m. A function
χ : R

¥0 Ñ R
¥0 is of classK if it is continuous, zero at zero

and strictly increasing, and it is of classK
8

if, in addition, it
is unbounded. We say that a continuous functionχ : R2

¥0
ÝÑ

R
¥0 is of classKK whenχps, �q andχp�, sq are of classK, for

anys ¡ 0. A continuous functionχ : R2
¥0 ÝÑ R

¥0 is of class
KL if for eacht P R

¥0, χp�, tq is of classK, and, for eachs ¡
0, χps, �q is decreasing to zero. The Euclidean norm of a vector
x P R

n is denoted by|x| and the distance ofx P R
n to a set

A � R
n is denoted by|x|A :� inft|x�y| : y P Au. LetP be

a real, square, and symmetric matrix,λmaxpP q andλminpP q

are respectively the largest and the smallest eigenvalue ofP .
The notationI either stands for the identity function fromR

¥0

to R
¥0 or for the identity matrix depending on the context.

The definitions below can be found in [31]. A function
f : R

n
Ñ R is lower semicontinuousat x̄ P R

n if
lim inf
xÑx̄

fpxq :� lim
δ×0

r inf
xPBpx̄,δq

fpxqs � fpx̄q, whereBpx̄, δq is

the closed ball ofRn, centered at̄x of radiusδ ¥ 0. We say
that f is lower semicontinuous onX � R

n, when it is lower
semicontinuous at anȳx P X . Note that whenf is continuous,
it is also lower semicontinuous. LetS : Rn

Ñ R
m denote

a set-valued mapping. The outer and inner limits ofS
at x̄ P R

n are respectively defined aslim sup
xÑx̄

Spxq :�
!

u : Dxn Ñ

nÑ8
x̄, Dun Ñ

nÑ8
u with un P Spxnq

)

and

lim inf
xÑx̄

Spxq :�

"

u : �xn Ñ

nÑ8
x̄, DN P N

8

, un Ñ

nPNÑ8
u

with un P Spxnqu whereN
8

is the set of subsequences of
Z
¥0 containing alln ¥ n for somen P Z

¥0. The set-valued
mappingS is continuousat x̄ P R

n when lim
xÑx̄

Spxq � Spx̄q,

where lim
xÑx̄

Spxq � lim sup
xÑx̄

Spxq � lim inf
xÑx̄

Spxq, and it

is continuous onX � R
n when it is continuous at any

x̄ P X . In other words,S is continuous onX when it is
both outer semicontinuousand inner semicontinuouson X ,
see Definition 5.4 in [31]. The image of a setV under the
mappingS is defined bySpVq �

�

xPV Spxq. The mapping
S : Rn

Ñ R
m is locally boundedwhen for anyx̄ P R

n, for
some neighborhoodV of x̄, the setSpVq � R

m is bounded.

III. PROBLEM STATEMENT

Consider the system

xpk � 1q � fpxpkq, upkqq (1)

with statex P R
n and inputu P Upxq � R

m, whereUpxq is a
nonempty set of admissible inputs associated to statex (as in
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[17], [19] for instance), andn,m P Z
¡0. Let W :� tpx, uq :

x P R
n andu P Upxqu. Define an infinite-length sequence of

control inputsu � pu0, u1, . . .q, in which the control input at
time k P Z

¥0 is given byupkq � uk. We denote the solution
to (1) at thekth-step starting at statex and with the input
sequenceu as φpk, x,u|kq, whereu|k :� pu0, . . . , uk�1q is
the truncation ofu to the firstk P Z

¡0 steps, and we use the
conventionφp0, x,u|0q � x whereu|0 is the empty set. In
optimal control, the sequence of control inputs is given by the
solution to an optimization problem. In this paper, we consider
the cost function

Jγpx,uq :�

8

¸

k�0

γkℓpφpk, x,u|kq, ukq, (2)

where ℓ : W Ñ R
¥0 is the stage cost, which takes non-

negative values, andγ P p0, 1q is thediscount factor.
We assume that, for anyx P R

n, there exists (at least)
one infinite-length input sequence, which minimizes (2), as
formalized below.

Standing Assumption. For anyx P R
n and γ P p0, 1q, there

exists an infinite-length input sequenceu
�

γpxq, called optimal
solution, such that

Jpx,u�γ pxqq � inf
u

Jγpx,uq �: Vγpxq, (3)

whereVγ is theoptimal value function. l

Conditions on system (1) and cost function (2) to ensure
the Standing Assumption are available in [19]. Note that the
sequenceu�γ pxq may be non-unique for a givenx P R

n.
The Standing Assumption implies that the set below is

nonempty for anyx P R
n in view of the Bellman equation

U�γ pxq :� argmin
uPUpxq

rℓpx, uq � γVγpfpx, uqqs , (4)

whereU�γ is the optimal feedback law. We can then represent
system (1) subject to an optimal sequence of inputs for the
cost function (2) as the following difference inclusion

xpk � 1q P F�γ pxpkqq :� f
�

xpkq,U�γ pxpkqq
�

(5)

wherefpx,U�γ pxqq is the settfpx, uq : u P U�γ pxqu for x P
R

n.
The main objective of this study is to infer (robust) stability

properties of system (5). We will see thatγ must, in general,
be appropriately selected to guarantee stability, as illustrated
by the following simple example.

Example 1. Consider the scalar systemxpk � 1q �

2xpkq � upkq and the discounted quadratic costJγpx,uq �
8

¸

k�0

γk
�

xpkq2 � upkq2
�

, whereγ P p0, 1q andu is an infinite-

length sequence of inputs. The optimal solution is given by
the feedback lawu � K�

γ x with K�

γ � �2
�

1 � 2
�

5γ � 1

�

a

p5γ � 1q2 � 4γ
�

�1
	

�1

, see Section 4.2 in [3]. The origin
of the closed-loop system is uniformly globally exponentially
stable if and only if2�K�

γ P p�1, 1q, which is equivalent to
γ P pγÆ, 1q whereγÆ � 1

3
. Hence,γ needs to be sufficiently

close to 1, otherwise the optimal feedback law does not
stabilize the origin of the system. l

IV. STABILITY

In this section, we first impose conditions on system (1)
and cost function (2), which are related to the controllability
of the system and its detectability with respect to the stage
cost ℓ. We then present the main stability result, which
relies on Lyapunov analysis. Afterwards, we provide sufficient
conditions to ensure stronger stability guarantees, and we
illustrate the framework by treating the case of systems with
linear dynamics and quadratic stage cost. Finally, we apply
the results to two examples.

A. Controllability and detectability assumptions

We make the following assumption on system (1) and cost
function (2), which is inspired by [15].

Assumption 1. Letσ : Rn
Ñ R

¥0 be continuous and positive
semi-definite.

(i) There existsαV P K
8

such that for anyγ P p0, 1q and
x P R

n, Vγpxq ¤ αV pσpxqq.
(ii) There exist a continuous functionW : R

n
Ñ R

¥0,
αW , χW P K

8

and αW : R
¥0 Ñ R

¥0 continuous,
nondecreasing and zero at zero, such that the following
holds for anypx, uq PW

W pxq ¤ αW pσpxqq

W pfpx, uqq �W pxq ¤ �αW pσpxqq � χW pℓpx, uqq.
(6)

l

The generic functionσ : R Ñ R
¥0 will serve as a state

measure when investigating stability (as in [15]). It can be
defined as| � | or | � |2, when studying the stability of the
origin, or | � |A or | � |2

A
with A � R

n, when studying the
stability of setA, for example. Item (i) of Assumption 1 is
related to the controllability of system (1). This propertyis for
instance verified whenℓ is uniformly globally exponentially
controllable to zero with respect toσ : Rn

Ñ R
¥0, as stated

in the next lemma.

Lemma 1. Consider system (1) and suppose thatℓ is uni-
formly globally exponentially controllable to zero with respect
to σ : Rn

Ñ R
¥0, i.e. there existM ¡ 0 andλ ¡ 0, whereλ

is called thedecrease rate, such that for anyx P R
n there

exists an admissible infinite-length control input sequence
upxq verifying ℓpφpk, x,u|kpxqq, ukpxqq ¤ Mσpxqe�λk for
any k P Z

¡0. Then, item (i) of Assumption 1 holds with
αV psq �

Ms
1�e�λ for any s ¥ 0. l

Weaker conditions that guarantee the satisfaction of item (i)
of Assumption 1 can be obtained by following similar lines
as in Section III of [15].

Item (ii) of Assumption 1 states a detectability property
of σ from ℓ (see Definition 1 in [15]), which is satisfied for
example whenσp�q � | � |

2 and ℓpx, uq � xTQx � uTGu

whereQ is a real, symmetric and positive definite matrix and
G is a real, symmetric, positive semi-definite matrix. In that
case, Assumption 1 holds withW � 0, αW � 0, χW � I and
αW � λminpQqI.



4

It is important to emphasize that the functionsαV , W , αW ,
αW andχW in Assumption 1 are independent of the discount
factor γ.

Remark 1. The Standing Assumption and Assumption 1 can
be relaxed to hold only for anyγ P pγ, 1q whereγ P p0, 1q,
instead of anyγ P p0, 1q. The forthcoming results apply in this
case by constrainingγ to be in pγ, 1q. l

B. Main result

The next theorem gives Lyapunov-based properties, from
which we then deduce a stability property for system (5) in
Theorem 2.

Theorem 1. Under Assumption 1, there existαY , αY , αY P

K
8

, Υ P KK and for anyγ P p0, 1q there existsYγ : Rn
Ñ

R
¥0 such that the following holds.

(a) For anyx P R
n, αY pσpxqq ¤ Yγpxq ¤ αY pσpxqq.

(b) For any x P R
n, υ P F�γ pxq, Yγpυq � Yγpxq ¤

�αY pσpxqq �Υpσpxq, 1�γ
γ
q.

The expressions ofαY , αY , αY , Υ and Yγ are provided in
Table I. l

FunctionYγ is either given by1 Yγ � Vγ �W or by Yγ �
ρV pVγq � ρW pW q whereVγ andW come from Assumption
1 and ρV and ρW are suitableK

8

-functions, see Table I.
Item (a) of Theorem 1 means thatYγ is positive definite and
radially unbounded with respect toσ, uniformly in γ. Item
(b) of Theorem 1 implies that, for anyγ P p0, 1q, Yγ strictly
decreases along the solutions to system (5) up to a perturbative
term Υpσpxq, 1�γ

γ
q, which can be made arbitrarily small by

selectingγ sufficiently close to1 (sinceΥ P KK). Because of
this perturbative term, only uniform semiglobal and practical
stability can be guaranteed in general, as formalized in the
following theorem.

Theorem 2. Consider system (5) and suppose Assumption 1
holds. Then, there existsβ P KL such that for anyδ,∆ ¡ 0,
there existsγÆ P p0, 1q such that for anyγ P pγÆ, 1q and
x P tz P R

n : σpzq ¤ ∆u, any solutionφp�, xq to system (5)
satisfies

σpφpk, xqq ¤ maxtβpσpxq, kq, δu �k P Z
¥0. (7)

l

This theorem means that for any set of initial conditions
of the form tz P R

n : σpzq ¤ ∆u where∆ ¡ 0 can be
arbitrarily large, and for any (arbitrarily small)δ ¡ 0, we can
selectγ sufficiently close to1 such that (7) holds. An estimate
of the lower bound onγ, i.e. γÆ, is available in the proof of
Theorem 2, namely, givenδ,∆ ¡ 0, γÆ has to be such that
Υpα�1

Y � αY p∆q,
1�γÆ

γÆ
q ¤

1

2
αY � α�1

Y pαY pδqq (see Table I).
Tailored estimates ofγÆ for specific classes of systems are
provided in the sequel.

1In principle, we can always takeYγ � ρV pVγ q � ρW pW q. We have
chosen to separately treat the situation whereχW ¤ I, which leads toYγ �

Vγ �W , because the construction of the Lyapunov function is easier in this
case, which is consistent with [15].

k
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Fig. 1. Evolution of ξ for finite-horizon problems (left) and for infinite-
horizon discounted problems (right) versus time.

Remark 2. The intuition behind Theorem 2 is the following.
The controllability and detectability conditions in Assumption
1 are used to ensure stability, which is consistent with results in
the undiscounted case for linear systems and quadratic stage
costs for instance, in which case these conditions are also
necessary. The fact thatγ   1 in (2) generates extra difficulties
as explained after Theorem 1. As a result, the value of the
discount factor needs to be adjusted according to the desired
stability property. l

Remark 3. It is interesting to note the analogy with the
results in [15] where the finite horizonN takes the place
of γ

1�γ
in the infinite-horizon discounted problem. Informally,

quantity γ
1�γ

can be thought of as an ‘effective horizon’ of
the discounted problem. Thus, while [15] shows stability for
horizonsN sufficiently large so that it is greater than some
lower boundNÆ, we show it forγ sufficiently close to1 so that
γ ¡ γÆ, and thus for effective horizons larger thanγ

Æ

1�γÆ
. To

go further with the analogy, finite-horizon costs and infinite-
horizon discounted costs can be both interpreted asinfinite-
horizoncosts of the general form

Jpx,uq :�
8

¸

k�0

ξpkqℓpφpk, x,u|kq, ukq, (8)

whereξpkq � 1 whenk ¤ N and ξpkq � 0 for k ¡ N for
finite-horizon problems, andξpkq � γk for infinite-horizon
discounted problems, see Figure 1 for an illustration. This
unifying viewpoint suggests that the methodology in [15] and
in this paper could be extended for other cost functions of
the form (8); an example is provided in Section VII-A. Note
that, although our results are inspired from [15], the stability
analysis exhibits important technical differences. The Bellman
equation leads to inequalities in the Lyapunov analysis, which
are different from those in [15] and which require new
arguments to conclude about stability. Moreover, in our case,
the continuity of the optimal value function, which is essential
for robustness reasons, turns out to be more involved and to
require different proof techniques, as we will see in Section V.
l

C. Stronger stability guarantees

We strengthen below the conditions of Theorem 2 in order
to derive stronger stability guarantees. The following result
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If χW ¤ I If Ds P R
¥0, χW psq ¡ s

Yγ Vγ �W ρV pVγ q � ρW pW q

αY αW min

!

ρV

�

χ�1

W
p

1

2
αW q

	

, ρW p

1

2
αW q

)

αY αV � αW ρV pαV q � ρW pαW q

αY p� rαW q αW qW p

1

4
αW q

1

4
αW

Υ ps1, s2q ÞÑ αV ps1qs2 ps1, s2q ÞÑ qV
�

p1� s2qαV ps1q
�

s2αV ps1q

α
pY

αV � pα� αW ρV p2αV � 2pαq � ρW pαW q

pϑ I ρW p2Iq

pΥ ps1, s2q ÞÑ
�

pαV � pαq � α�1

Y
� η

	

s2 ps1, s2q ÞÑ qV

�

p1� s2q
�

pαV � pαq � α�1

Y
ps1q � η

		

s2

�

pαV � pαq � α�1

Y
ps1q � η

	

ρV , ρW ρV : s ÞÑ
³s

0
qV ptq dt, ρW : s ÞÑ

³s

0
qW ptq dt

qV , qW qV :� 2χW p2Iq, qW :�
1

2

�

χW � αW

�

α�1

W
p2χW q

�

	

�1

TABLE I
EXPRESSIONS OF FUNCTIONS USED INSECTIONSIV AND VI.

ensures the uniform semiglobal asymptotic stability property
of system (5) with respect to a given state measureσ, i.e. that
(7) can be guaranteed withδ � 0. It requires Assumption 1 to
hold with functionsαV , αW , χW , on the one hand, andαW ,
on the other hand, which are respectively upper-bounded and
lower-bounded by linear functions in a neighbourhood of the
origin.

Corollary 1. Suppose that Assumption 1 is satisfied and
there existL ¡ 0, aW ¥ 0, aW , aV ¡ 0 such that
αV psq ¤ aV � s, αW psq ¤ aW � s, αW psq ¥ aW � s

and χW psq ¤ s for any s P r0, Ls. Then, there exists
β P KL such that for any∆ ¡ 0, γ P pγÆ, 1q with

γÆ � max

$

&

%

�

1� 1

2

a2

W

aV paV �aW q

	

�1

, 1

1�
αW p

pαV �αW q

�1
pLq
q

αV ppα
�1

W
�αY p∆qqq

,

.

-

,

and x P tz P R
n : σpzq ¤ ∆u, the solutionφp�, xq to system

(5) satisfiesσpφpk, xqq ¤ βpσpxq, kq for all k P Z
¥0. l

When Assumption 1 is verified with linearK
8

-functions
and linearαW , the corollary below states that the stability is
uniform, global and exponential.

Corollary 2. Suppose that Assumption 1 is verified and there
existaW ¥ 0, aW , aV ¡ 0 such thatαV psq � aV �s, αW psq �

aW � s, αW psq � aW � s and χW psq � s for any s ¥ 0. Let

γÆ ¡
aV

aV � aW
. Then, there existK,λ ¡ 0 such that for any

γ P pγÆ, 1q, for anyx P R
n, the solutionφp�, xq to system (5)

satisfiesσpφpk, xqq ¤ Kσpxqe�λk for all k P Z
¥0. l

It has to be emphasized that the value ofγÆ depends on the
assumptions and is therefore different for each stability result
that we state. In the following, we revisit Corollary 2 in the
context of linear systems with quadratic costs. Consider the
system

xpk � 1q � Axpkq �Bupkq (9)

with x P R
n, u P R

m, A, B real matrices of appropriate
dimensions such that the pairpA,Bq is stabilizable, and the
cost function is given by (2) with

ℓpx, uq � xTQx� uTRu, (10)

where R is real, symmetric, and positive definite andQ
is a real matrix such thatQ � CTC with pA,Cq de-
tectable. The sequence of optimal inputs is generated by
a unique linear feedback lawu � K�

γ x where K�

γ :�

�γpγBTPγB�Rq
�1BTPγA andPγ is the unique solution to

Pγ � AT
�

γPγ�γ
2PγBpγB

TPγB�Rq
�1BTPγ

�

A�Q, see
Section 4.2 in [3]. While the stability of the closed-loop system
can be inferred by checking whether the matrixA�BK�

γ is
Schur for a given value ofγ, it is useful to know a priori a
set of values ofγ under which stability is preserved. This set
is usually difficult to determine based on the direct analysis
of the eigenvalues ofA � BK�

γ , due to the fact thatK�

γ is
obtained by solving a Riccati equation for eachγ and is thus
nonlinear inγ. In contrast, the result below provides an easily
computable, though potentially conservative, lower boundon
γ under which stability is ensured.

Corollary 3. Consider system (9) and the cost functionJγ
in (2) with ℓ defined in (10). LetS1, S2 be real, symmetric,
positive definite matrices, and̟ , α ¡ 0 such that
�

ATS2A� S2 � S1 �̟Q ATS2B

BTS2A BTS2B �̟R

�

¤ 0.

(11)
and

αP ¤ S1, (12)

whereP is the unique solution to the (undiscounted) Riccati
equationP � Q � AT

�

P � PBpR � BTPBq�1BTP
�

A.

Let γÆ ¡

̟

̟ � α
, for any γ P pγÆ, 1q, the origin of

the system in closed-loop with the optimal feedback law
u � K�

γ x is uniformly globally exponentially stable, i.e.
there existD,µ ¡ 0 such that for any initial condition
x P R

n, the corresponding solutionφp�, xq verifies|φpk, xq| ¤
D|x|e�µk for any k P Z

¥0. Furthermore, whenQ is sym-
metric and positive definite,γÆ has to be strictly larger than
min

!

γ1 P p0, 1q : �Q�

1�γ1

γ1
P ¥ 0

)

. l

It is always possible to findS1, S2, ̟ andα such that (11)
and (12) hold, according to Lemma 4 in the appendix. The
estimate ofγÆ in Corollary 3 exclusively relies on the matrices
A, B, Q andR. To minimizeγÆ, we have to maximizeα ¡ 0
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under (11), (12), which is a convex optimization problem.
When P is positive definite, i.e. when the pairpA,Cq is
observable, the bound onγÆ simplifies as we can takeS1 � P ,
which leads toγÆ ¡

̟
̟�1

. The minimum value of̟ is
obtained by solving:min̟ such that̟ ¡ 0 and (11) holds.
That gives0.8090 in Example 1; recall that the true value is
1

3
(see Section III). The observed conservatism notably comes

from the proof of Corollary 3 (see Section VIII-F, in particular
(35)).

D. Examples

1) Linearized inverted pendulum:We discretize exactly the
model of a pendulum linearized at the upper positionpπ, 0q

with sampling periodT ¡ 0, which gives

x� � Ax�Bu, (13)

wherex � px1, x2q P R
2, x1 is the angle between the rod

and the vertical axis,x2 is the angular velocity,u is the
control input,A � exp pAcT q, B �

³T

0
exppAcpT �sqqBc ds,

Ac �

�

0 1
g
l

�

K
m

�

and Bc �

�

0

1

�

with g ¡ 0 the

acceleration due to gravity,l ¡ 0 the length of the rod,
m ¡ 0 its mass andk ¡ 0 a friction coefficient. The
stage cost is given by (10) withQ � CTC, C � r1000 0s

(the pair pA,Cq is observable) andR � 1. We apply the
results of Corollary 3 forg � 9.81, l � 1, m � 0.1,
k � 0.1 and T � 0.01, and we obtain that the origin of
system (13) is uniformly globally exponentially stable for
any γ P p0.9878, 1q. A numerical study indicates that the
critical value for the discount factor, which guarantees stability,
is approximately0.9063. The difference with the estimated
bound is of the order of8%. Interestingly, simulation results
suggest that stability still holds for anyγ ¥ 1; we will go
back to that point in Section VII-A.

2) A nonholonomic integrator:Consider the following non-
holonomic integrator as in Example 2 of [15]

x�
1

� x1 � u1

x�
2

� x2 � u2

x�
3

� x3 � x1u2 � x2u1,

(14)

wherex � px1, x2, x3q P R
3, u � pu1, u2q P Upxq � R

2.
The stage cost is defined asℓpx, uq � x2

1
�x2

2
� 10|x3| � |u|

2

for x P R
3 and u P R, which differs from the stage cost

considered in [15] because of the input-dependent term thatis
useful to prove the Standing Assumption of Section III.

We apply the results of Section V in [19] to ensure the
satisfaction of the Standing Assumption. Conditions (1)-(6)
in this reference are verified (withβk � 1 for condition
(5) thanks to the input-dependent term inℓ). We now prove
that condition (7) in Section V in [19] holds withX0 �

R
n. Let x P R

3, we build the input sequenceupxq �

pu0pxq, u1pxq, u2pxq, u3pxq, 0, . . .q with u0pxq � p�x1,�x2q,
u1pxq � p

a

|x3|, 0q, u2pxq � p

a

|x3|,�signpx3q
a

|x3|q and
u3pxq � p�2

a

|x3|, signpx3q
a

|x3|q, where signp0q � 0.
Then φpk, x,u|kpxqq � 0 for any k ¥ 4, hence condition
(7) in Section V in [19] is satisfied withX0 � R

n. As

a result, the Standing Assumption is guaranteed. Item (ii)
of Assumption 1 is ensured withW � 0, αW � 0, and
αW � χW � I. The input sequence constructed above ensures
that Vγpxq ¤ Jγpx,upxqq ¤

22

5
σpxq for any γ P p0, 1q: item

(i) of Assumption 1 holds withαV �

22

5
I. Consequently, the

uniform global exponential stability property in Corollary 2 is
verified when2 γ P p 22

25
, 1q.

V. CONTINUITY OF THE LYAPUNOV FUNCTION

The continuity of the Lyapunov functionYγ in Theorem
1 with respect to the statex would ensure that the stability
properties studied in the previous section are robust to small
perturbations, namelyσ-perturbations according to3 [21]. We
have seen in Section IV-B thatYγ is either given byVγ�W or
by ρV pVγq � ρW pW q. SinceW is assumed to be continuous
in Assumption 1 and so areρV andρW (asK

8

-functions),Yγ
is continuous with respect tox if and only if the optimal value
functionVγ is continuous with respect tox. The assumptions
made so far do not a priori allow us to assert thatVγ
is continuous. In the next theorem, we provide additional
assumptions to guarantee the continuity ofVγ , and thus of
Yγ .

Theorem 3. Suppose the following holds.
(a) Assumption 1 is verified.
(b) f and ℓ are continuous onW and U : Rn

Ñ R
m is

continuous and locally bounded onRn.
(c) For anyM ¥ 0, the settx : σpxq ¤Mu is compact.

Then, for any∆ ¡ 0, there existsγÆ P p0, 1q such that for any
γ P pγÆ, 1q the optimal value functionVγ in (3) is continuous
on tx P R

n : σpxq ¤ ∆u. l

Item (a) of Theorem 3 ensures that the uniform semiglobal
practical stability property (7) holds in view of Theorem 2,
which plays a crucial role in the proof. Item (b) of Theorem
3 states regularity conditions on system (1) and the stage cost
ℓ. The last part of item (b) of Theorem 3 holds e.g., when
Upxq � U with U compact. Finally, item (c) of Theorem 3
means that measureσ is radially unbounded, which is the case
when it is given by the Euclidean distance, or more generally
by the distance to a compact set.

The continuity ofVγ with respect tox ensured in Theorem
3 is semiglobal inγ, in the sense thatγ P pγÆ, 1q and γÆ

depends on the considered region of the state space, which
is in agreement with the stability guarantee of Theorem 2.
The constantγÆ in Theorem 3 is the same as in Theorem 2,
according to the proof of Theorem 3 in Section VIII-G. It is
possible to ensure the continuity ofVγ uniformly with respect
to γ in pγÆ, 1q, that is whenγÆ P p0, 1q is the same for all
x P R

n, provided we strengthen the conditions of Theorem 3.

2To estimate numerically the real lower bound on the discountfactor would
require to compute the optimal solutions, which is numerically hard for this
example and is out of the scope of the paper.

3To apply [21], the set-valued mappingF�γ in (5) also has to be such
that F�γ pxq is non-empty and compact for anyx P R

n, see Theorem 2.8
in [21]. Non-emptiness follows from the Standing Assumption. Compactness
of F�γ pxq proceeds from the compactness ofU�γ pxq (whenf is continuous,
which is assumed to be the case in Theorem 3), which is a consequence of
the conditions of Theorem 3 and the continuity ofVγ proved in this theorem,
according to item (a) of Theorem 1.17 in [31].
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This is the purpose of the corollary below, the proof of which
directly proceeds from the proof of Theorem 3 and is therefore
omitted in Section VIII.

Corollary 4. Suppose the following holds.

(a) The conditions of Corollary 2 are verified.
(b) Items (b)-(c) of Theorem 3 hold.

Then, for anyγ P pγÆ, 1q with γÆ ¡
aV

aV � aW
and aV and

aW as defined in Corollary 2, the optimal value functionVγ
in (3) is continuous onRn. l

VI. N EAR-OPTIMAL SEQUENCE OF INPUTS

A crucial challenge in practice is that it may be difficult
to construct an optimal sequence of inputs for the discounted
cost (2). An alternative is to apply anear-optimal sequence of
inputs to system (1) instead. Many algorithms that compute
near-optimal sequences in various settings are available [23],
[26], while the entire fields of approximate dynamic program-
ming and reinforcement learning deal with computing near-
optimal control solutions, see [3], [5], [8], [30], [33]. Inthis
section, we prove that robust stability can be ensured in this
case under appropriate conditions.

We formalize what we mean by a near-optimal sequence of
inputs in the next assumption.

Assumption 2. The following holds.

(i) There existpα : R
¥0 Ñ R

¥0 continuous, positive semi-
definite, andη ¥ 0 such that for anyx P R

n and
γ P pγ, 1q with γ P r0, 1q, there exists an infinite-
length sequence of inputspuγpxq such that pVγpxq :�

Jγpx, puγpxqq ¤ Vγpxq � pαpσpxqq � η.
(ii) For any x P R

n, pVγpxq � ℓpx, puγ,0pxqq � γ pVγppυq

where puγ,0pxq is the first element ofpuγpxq and pυ :�

fpx, puγ,0pxqq. l

Item (i) of Assumption 2 means that, for any initial state
x P R

n and γ P pγ, 1q, we know an infinite-length se-
quence of inputs such that cost function in (2) evaluated
along the corresponding solution to system (1) lower bounds
Vγpxq � pαpσpxqq � η. The term pαpσpxqq � η characterizes
the near-optimality of the strategy. Intuitively, it meansthat
larger errors may be allowed far from the set we aim to
stabilize, in addition to a constant error that is allowed
everywhere. Item (ii) of Assumption 2 is a dynamic pro-
gramming relationship, which is verified for example when
puγpxq � ppuγ,0pxq, puγpfpx, puγ,0pxqqqq, for any x P R

n, that
is whenpuγpfpx, pu0pxqqq is the tail ofpuγpxq without the first
term puγ,0pxq. This is true in the common situation where the
sequence of near-optimal inputs is defined by a state-feedback
law.

Because the sequencepuγpxq in Assumption 2 may not be
unique, forx P R

n, consistently with Section III, we denote
the set of inputs at the start of near-optimal sequences of inputs
atx as pUγpxq. We write system (1) in closed-loop with a near-
optimal sequence of inputs as

xpk � 1q P f
�

xpkq, pUγpxpkqq
�

�: pFγpxpkqq. (15)

The theorem below shows that stability is guaranteed for
system (15) when Assumptions 1 and 2 hold.

Theorem 4. Consider system (15) and suppose Assumptions
1 and 2 hold. Then, there existsβ P KL and ϑ P K

8

such
that for anyδ,∆ ¡ 0, there existsγÆ P pγ, 1q such that for
any γ P pγÆ, 1q and x P tz P R

n : σpzq ¤ ∆u, any solution
φp�, xq to system (15) satisfies

σpφpk, xqq ¤ maxtβpσpxq, kq, δ, ϑpηqu �k P Z
¥0.

(16)
l

According to Theorem 4, the uniform semiglobal practical
stability property ensured in Theorem 2 is preserved when
the sequence of inputs is no longer optimal but only near-
optimal in the sense of Assumption 2. The only difference
with Theorem 2 is the termϑpηq in (16), which is inherited
from the near-optimality bound in item (i) of Assumption 2.
This term vanishes whenη � 0. In the proof of Theorem
4 (see Section VIII-H), the constantγÆ is selected such that
pΥpα

pY
p∆q, 1�γÆ

γÆ
q ¤

1

2
rαW � α�1

pY
p

1

2
αY pδqq for given δ,∆ ¡ 0

(andη ¥ 0 in item (i) of Assumption 2), see Table I for the
expressions of these functions. It is possible to derive similar
results as in Corollaries 1 and 2 for system (15) and thus
tailored estimates ofγÆ; we do not do it for the sake of brevity.

The continuity of pVγ with respect tox is studied in the
proposition below. Its proof follows the same lines as the proof
of Theorem 3 and is therefore omitted in Section VIII.

Proposition 1. Consider system (15) and suppose the follow-
ing holds.

(a) Assumption 1 and 2 are verified.
(b) f and ℓ are continuous onW andU is continuous and

locally bounded onRn.
(c) For anyM ¥ 0, the settx : σpxq ¤Mu is compact.

Then, for any∆ ¡ 0, there existsγÆ P pγ, 1q such that for
any γ P pγÆ, 1q, pVγ is continuous ontx P R

n : σpxq ¤ ∆u.
l

As above, a similar result as in Corollary 4 can be derived.

VII. A DDITIONAL RESULTS

In this section, we present two additional results. First,
we show that the approach can be used to analyse stability
for time-varying cost functions for which the stage costℓ is
multiplied by a term that, contrary to the discounted case,
increases with time; we call this scenarioreverse-discounted
optimal control. Second, we provide a relationship betweenthe
optimal value functions of the discounted and the undiscounted
problems (when the latter exists) using stability under the
conditions of Corollary 2.

A. Reverse-discounted cost

The results presented so far concentrate on the case where
γ P p0, 1q in (2). In that way, the discount factorγk in (2)
penalizes the stage costℓ as time grows. We could think of
the opposite situation where the importance of the stage cost
increases with time, that is to takeγ ¡ 1 in (2). The stability
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results of Section IV can be easily adapted to this case. We first
suppose that the Standing Assumption holds whenγ P r1, γq
for someγ P r1,8s (the conditions in [19] may still be used
in this context to verify the validity of this assumption). We
can then write the system subject to an optimal sequence of
inputs for the cost function (2) withγ P r1, γq as system (5).
The next result ensures stability under the same assumptions
as in Theorem 2.

Theorem 5. Consider system (5) and suppose that Assumption
1 holds for anyγ P r1, γq. Then, there existsβ P KL such
that for anyγ P r1, γq and x P R

n, any solutionφp�, xq to
system (5) satisfiesσpφpk, xqq ¤ βpσpxq, kq for anyk P Z

¥0.
l

Regarding the conditions of Theorem 5, we first note that
item (ii) of Assumption 1 is independent ofγ. When ℓ is
uniformly globally exponentially controllable for system(1)
with respect toσ with decrease rateλ ¡ 0 (see Lemma
1), item (i) of Assumption 1 is verified for anyγ P r1, γq
with γ � eλ. This result directly follows from the proof
of Lemma 1 in Section VIII-A. Furthermore, whenℓ is4

uniformly dead-beat stabilizable with respect toσ for system
(1), item (i) of Assumption 1 holds for anyγ ¥ 1. This is the
case for controllable linear systems, more generally for linear
systems when dead-beat stable uncontrollable part, when the
stage cost is given by (10). Conditions for uniform dead-beat
controllability of a class of nonlinear systems can be foundin
[27], for instance.

Contrary to the case whereγ   1 (see Theorem 2), the
stability property in Theorem 5 is global and asymptotic,
and not semiglobal and practical. This comes from the fact
that the perturbative termΥ in the Lyapunov analysis (see
Theorem 1) is negative whenγ ¥ 1. On the other hand,
stability does not require extra conditions onγ. The latter only
needs to be inr1, γq, which is imposed by the assumptions.
Theorem 5 justifies the observations made for the linearized
inverted pendulum example at the end of Section IV-D1, which
suggested that stability always hold for anyγ ¥ 1: this is
indeed the case as the considered linear system is controllable
and the stage cost is of the form of (10).

Another way to increase the stage cost as time proceeds is
to multiply it by 1 � γk�1, whereγ P p0, 1q, which leads to
the cost function

qJγpx,uq :�

8

¸

k�0

p1� γk�1
qℓpφpk, x,u|kq, ukq. (17)

Contrary to the case whereγ ¡ 1 in (2), the time-varying
weight is bounded here. We assume that there exists an optimal
sequence of inputs for this cost, for anyx P R

n andγ P p0, 1q.
Hence, we can write system (1) subject to an optimal sequence
of inputs for cost (17) as

xpk � 1q P

qF�γ pxpkqq :� f
�

xpkq, qU�γ pxpkqq
�

, (18)

4We say thatℓ is uniformly dead-beat stabilizable with respect toσ for
system (1) if there existK P Z

¡0 and ̺ P K
8

, such that for any
x P R

n there exists an admissible infinite-length control input sequence
upxq such thatℓpφpk, x,u|kpxqq, ukpxqq ¤ ̺pσpxqq for any k P Z

¡0 and
ℓpφpk, x,u|kpxqq, ukpxqq � 0 for any k ¥ K. This property implies that
item (i) of Assumption 1 holds withαV � KγK̺ P K

8

for any1 ¤ γ ¤ γ.

where qU�γ pxq is the set of optimal inputs atx for cost (17).
The theorem below shows that the stability results derived

in Section IV can also be easily adapted to this problem.

Theorem 6. Consider system (18) and suppose Assumption 1
holds for anyγ P p0, 1q. Then, for anyqγ P p0, 1q, there exists
β P KL such that for anyγ P p0, qγq, x P R

n, any solution
φp�, xq to system (18) satisfiesσpφpk, xqq ¤ βpσpxq, kq for
any k P Z

¥0. l

As in Theorem 5, the stability property of Theorem 6 is
global and asymptotic, which comes from the fact that there
is always a minimum weight of1� qγ in (17). Hence,γ has
to be sufficiently small to ensure stability, and not sufficiently
close to 1 as before. On the other hand, we note that we
are free to select the valueqγ in Theorem 6 as we wish, and
that the value ofqγ has an impact onβ and therefore on the
convergence ofσ along the solutions to the system.

Remark 4. The analysis of the continuity of the optimal value
functions for the two reverse-discounted costs consideredin
this section is outside the scope of the paper and is therefore
left for future work. l

B. Relationship between the discounted and the undiscounted
optimal value functions

Often, the discount factor is introduced in the cost function
because the undiscounted problem is too hard to solve. In
this case,γ is typically selected close to1 in the hope of
obtaining an optimal value functionVγ close to the one we
would have obtained in the undiscounted case, assuming it
exists. The next proposition proves that this is indeed the
case under appropriate conditions and an explicit relationship
between these two functions is provided.

Proposition 2. Suppose the following holds.
(a) The conditions of Corollary 2 are verified.
(b) For any x P R

n, there exists an infinite-length input
sequenceu�pxq such thatV pxq :� Jpx,u�pxqq, where
J corresponds to cost (2) withγ � 1. In addition,
V pxq ¤ aV σpxq for any x P R

n, whereaV is defined
in Corollary 2.

Let γÆ ¡
aV

aV � aW
, then for anyγ P pγÆ, 1q and anyx P

R
n, Vγpxq ¤ V pxq ¤ Vγpxq � p1 � γqθpγqpVγpxq �W pxqq

where θpγq :�
γpaW � aW q � aV

γaW � aV pγ � 1q
, W pxq comes from the

satisfaction of item (ii) of Assumption 1 andaV , aW , andaW
are defined in Corollary 2. l

Item (b) of Proposition 2 means that there exists an optimal
solution to the undiscounted problem and, again, conditions
to ensure this property can be found in [19]. The inequalities
in Proposition 2 state that, for anyx P R

n, the undiscounted
optimal value functionV pxq is betweenVγpxq andVγpxq �
p1 � γqθpγqpVγpxq �W pxqq, where the latter term vanishes
asγ approaches1. Hence, forγ close to1, Vγpxq andV pxq
take close values.

Remark 5. The proof of Proposition 2 strongly relies on
the exponential stability ensured by Corollary 2. It should
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be possible to relax these conditions to allow for semiglobal
exponential stability instead. l

The next result provides a tailored relationship for linear
system (9) with quadratic stage cost (10).

Corollary 5. Consider system (9) and the cost functionJγ in
(2) with ℓ defined in (10). Letγ P p0, 1q be such that (11) holds
andS1 ¡ ̟ 1�γ

γ
Pγ whereS1, ̟ andPγ are defined in Corol-

lary 3 and in Section IV-C, respectively. Then, for anyx P R
n,

Vγpxq ¤ V pxq ¤ Vγpxq � p1 � γq
1�ςpγq

ςpγq
pVγpxq � xTS2xq

whereςpγq ¡ 0 is such that1
̟
S1�

1�γ
γ
Pγ ¥ ςpγqp 1

̟
S2�Pγq

with S2 defined in Corollary 3. WhenQ is positive definite,
γ P p0, 1q has to be such that�Q �

1�γ
γ
Pγ ¡ 0 holds. In

this case,Vγpxq ¤ V pxq ¤
�

1� p1� γq
1�ςpγq

ςpγq

	

Vγpxq where

ςpγq is such thatQ�

1�γ
γ
Pγ ¥ ςpγqPγ , for x P R

n. l

The required conditions onγ in Corollary 5 are satisfied
only for γ P pγÆ, 1q, with γÆ defined as in Corollary 3. We
can note the difference between the upper-bound onV in
Proposition 2 and Corollary 5.

Corollary 5 can be applied as follows in the general case.
We first use Corollary 3 to determineγÆ. We then select
γ P pγÆ, 1q and we maximize̟ ¡ 0 such that (11) and
S1 ¡ ̟ 1�γ

γ
Pγ holds (we takeS1 � Pγ when Pγ is

positive definite, i.e. whenpA,Cq is observable). Afterwards,
we maximizeςpγq ¡ 0 under the constraint1

̟
S1 �

1�γ
γ
Pγ ¥

ςpγqp 1

̟
S2 � Pγq. In the case whereQ is positive definite,

we selectγ P pγÆ, 1q as in Corollary 3 and we maximize
ςpγq ¡ 0 under the constraintQ �

1�γ
γ
Pγ ¥ ςpγqPγ . We

obtain in Example 1, forγ � 0.9, Vγpxq � 4.156 � x2 ¤

V pxq � 4.236 � x2 ¤ 1.672 � Vγpxq � 6.950 � x2 with x P R

(ςpγq � 0.129). For the example in Section IV-D1, we obtain,
for γ � 0.988 andx � p1, 1q, Vγpxq � 3.681 � 104 ¤ V pxq �

4.158 � 104 ¤ 2.861 � 106 (ςpγq � 1.904 � 10�4). The observed
conservatism is inherited from Corollary 3 on which Corollary
5 relies.

VIII. P ROOFS

A. Proof of Lemma 1.

Let γ P p0, 1q, x P R
n and take the sequenceupxq that

satisfies the condition of Lemma 1. It then holds that, for any
N P Z

¡0, asγ P p0, 1q,
Ņ

k�0

γkℓpφpk, x,u|kpxqq, ukpxqq ¤

Ņ

k�0

ℓpφpk, x,u|kpxqq, ukpxqq

¤

Ņ

k�0

Mσpxqe�λk

¤

Mσpxq

1� e�λ
.

(19)
The inequalities above hold for anyN P Z

¡0 and the
sequenceN ÞÑ

°N
k�0

γkℓpφpk, x,u|kpxqq, ukpxqq is non-
decreasing, therefore the limit of the latter asN Ñ 8 exists
andJpx,upxqq ¤ Mσpxq

1�e�λ . As a result,Vγpxq ¤ Jpx,upxqq ¤
Mσpxq

1�e�λ (recall thatVγpxq is well-defined in view of the Stand-
ing Assumption in Section III). This implies the satisfaction
of item (i) of Assumption 1 withαV �

M
1�e�λ I.

B. Proof of Theorem 1.

Let γ P p0, 1q, x P R
n, υ � fpx, u�γ,0pxqq whereu�γ,0pxq P

U�γ pxq is the first element of the optimal sequenceu�γpxq,
which exists according to the Standing Assumption. Sinceℓ

is nonnegative and in view of item (i) of Assumption 1,

ℓpx, u�γ,0pxqq ¤ Vγpxq ¤ αV pσpxqq, (20)

these inequalities will be useful in the following. On the other
hand, according to the Bellman equation,

Vγpxq � ℓpx, u�γ,0pxqq � γVγpυq, (21)

therefore

Vγpυq � Vγpxq � �ℓpx, u�γ,0pxqq � p1� γqVγpυq.
(22)

In view of (21) and sinceℓpx, u�γ,0pxqq ¥ 0, γVγpυq ¤ Vγpxq.
As a result

Vγpυq � Vγpxq ¤ �ℓpx, u�γ,0pxqq � p1� γqγ�1Vγpxq,
(23)

which gives, using (20),

Vγpυq � Vγpxq ¤ �ℓpx, u�γ,0pxqq �
1�γ
γ
αV pσpxqq.

(24)
We now distinguish two cases like in the proof of Theorem
1 in [15].

Case 1:χW ¤ I.
We define Yγ :� Vγ � W . In view of Assumption 1,
Yγpxq ¤ αY pσpxqq with αY � αV � αW P K

8

. From
the second inequality in (6) and the fact thatχW ¤ I,
W pxq ¥ αW pσpxqq � ℓpx, u�γ,0pxqq �W pυq ¥ αW pσpxqq �

ℓpx, u�γ,0pxqq. Consequently, using (20),Yγpxq ¥ αW pσpxqq�

ℓpx, u�γ,0pxqq � ℓpx, u�γ,0pxqq � αW pσpxqq and item (a) of
Theorem 1 holds withαY � αW P K

8

.
In view of (6), (24) and the fact thatχW ¤ I,

Yγpυq � Yγpxq ¤ �ℓpx, u�γ,0pxqq �
1�γ
γ
αV pσpxqq

�αW pσpxqq � ℓpx, u�γ,0pxqq

� �αW pσpxqq � 1�γ
γ
αV pσpxqq.

(25)
Item (b) of Theorem 1 is therefore verified with
αY � αW P K

8

andΥ : ps1, s2q ÞÑ αV ps1qs2 P KK.

Case 2: There existss P R
¥0 such thatχW psq ¡ s.

This case requires to modify the functionsV and W . Let
qV psq :� 2χW p2sq andρV psq :�

³s

0
qV ptq dt for s ¥ 0. We

note thatqV and ρV are of classK
8

. We apply Lemma 2
in the appendix withhpxq � ℓpx, u�γ,0pxqq, α1 � αV and
α2 �

1�γ
γ
αV to obtain

ρV pVγpυqq � ρV pVγpxqq ¤�χW pℓpx, u�γ,0pxqqqℓpx, u
�

γ,0pxqqq

�qV
�

αV pσpxqq �
1�γ
γ
αV pσpxqq

�

1�γ
γ
αV pσpxqq

��χW pℓpx, u�γ,0pxqqqℓpx, u
�

γ,0pxqqq

�qV
�

1

γ
αV pσpxqq

�

1�γ
γ
αV pσpxqq.

(26)
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Let qW :� 1

2

�

χW � αW

�

α�1

W p2χW q

�

	

�1

and ρW psq :�
³s

0
qW ptq dt for any s ¥ 0. Both qW and ρW are of class-

K
8

. We identify α1 � αW , α2 � χW and α3 � αW in
Lemma 3 in the appendix, from which we derive

ρW pW pυqq � ρW pW pxqq ¤

2qW

�

χW pℓpx, u�γ,0pxqqq � αW

�

α�1

W p2χW pℓpx, u�γ,0pxqqqq
�

	

�χW pℓpx, u�γ,0pxqqq � qW p

1

4
αW pσpxqqq 1

4
αW pσpxqq

� ℓpx, u�γ,0pxqqχW pℓpx, u�γ,0pxqqq � rαW pσpxqq
(27)

where rαW � qW p

1

4
αW q

1

4
αW P K

8

. We defineYγ :�

ρV pVγq � ρW pW q. By (26) and (27),

Yγpυq � Yγpxq ¤�χW pℓpx, u�γ,0pxqqqℓpx, u
�

γ,0pxqqq

�qV
�

1

γ
αV pσpxqq

�

1�γ
γ
αV pσpxqq

�ℓpx, u�γ,0pxqqχW pℓpx, u�γ,0pxqqq � rαW pσpxqq

¤�rαW pσpxqq

�qV
�

1

γ
αV pσpxqq

�

1�γ
γ
αV pσpxqq

(28)

with rαW P K
8

. We have shown that item (b) of Theorem 1
holds with αY � rαW P K

8

and Υ : ps1, s2q ÞÑ qV
�

p1 �

s2qαV ps1q
�

s2αV ps1q P KK.
We now show the satisfaction of item (a) of

Theorem 1. In view of (20) and the second
inequality in (6), Yγpxq ¥ ρV pℓpx, u

�

γ,0pxqqq �

ρW
�

max
 

αW pσpxqq � χW pℓpx, u�γ,0pxqqq, 0
(�

.
When 1

2
αW pσpxqq ¤ χW pℓpx, u�γ,0pxqqq, Yγpxq ¥

ρV
�

χ�1

W p

1

2
αW pσpxqqq

�

. When 1

2
αW pσpxqq ¥

χW pℓpx, u�γ,0pxqqq, Yγpxq ¥ ρW p

1

2
αW pσpxqqq.

Hence Yγpxq ¥ αY pσpxqq with αY �

min
 

ρV
�

χ�1

W p

1

2
αW q

�

, ρW p

1

2
αW q

(

P K
8

. On
the other hand, Yγpσpxqq ¤ αY pσpxqq with
αY � ρV pαV q � ρW pαW q P K

8

in view of Assumption 1.
We have proved that item (a) of Theorem 1 holds.

C. Proof of Theorem 2.

Let ∆, δ ¡ 0, γ P pγÆ, 1q where γÆ is specified in the
following, x P R

n such thatσpxq ¤ ∆, andυ � fpx, u�γ,0pxqq

whereu�γ,0pxq P U�γ pxq is the first element of the optimal se-
quenceu�γ pxq. Define r∆ :� αY p∆q ¡ 0 andrδ :� αY pδq ¡ 0

whereαY andαY come from Theorem 1. In view of Theorem
1,

Yγpυq � Yγpxq ¤ �rαY pYγpxqq � rΥ
pYγpxq,

1�γ
γ
q

(29)
with rαY :� αY � α�1

Y and rΥp�, �q :� Υpα�1

Y p�q, �q. We select
γÆ sufficiently close to1 such thatrΥpr∆, 1�γÆ

γÆ
q ¤

1

2
rαY p

rδq,

which is always possible sincerΥ P KK andγ ÞÑ 1�γ
γ

strictly

decreases to0 as γ tends to1. Consequently, asrΥ and rαY

are increasing, for alls P rrδ, r∆s

rΥps, 1�γ
γ
q¤

rΥps, 1�γÆ

γÆ
q¤

rΥpr∆, 1�γÆ

γÆ
q¤

1

2
rαY p

rδq¤ 1

2
rαY psq.

(30)
Sinceσpxq ¤ ∆, Yγpxq ¤ r∆ in view of item (a) of Theorem
1 and the definition ofr∆ above. Therefore, ifYγpxq ¥ rδ,

rΥpYγpxq,
1�γ
γ
q ¤

1

2
rαY pYγpxqq according to (30), and we

derive from (29),

Yγpυq � Yγpxq ¤ �

1

2
rαY pYγpxqq. (31)

By proceeding by iteration and using Theorem 8 in [28], we
deduce that there existsrβ P KL such that for any solutionφ
to (5) initialized atx and anyk P Z

¥0,

Yγpφpk, xqq ¤ max
!

rβpYγpxq, kq, rδ
)

. (32)

Using item (a) of Theorem 1 and the definition ofrδ, we obtain
that (7) holds withβps, kq � α�1

Y

�

rβpαY psq, kq
	

for any
s, k ¥ 0.

D. Proof of Corollary 1.

Let ∆ ¡ 0, γ P pγÆ, 1q where γÆ is specified in the
following, and definer∆ :� αY p∆q as in the proof of Theorem
2. First consider the case wherer∆   L, with L defined in
Corollary 1. SinceχW ¤ I according to Corollary 1, item (b)
of Theorem 1 holds withΥps1, s2q � αV ps1qs2 andαY psq �

αW psq for s1, s2, s ¥ 0 according to Case 1 in the proof of
Theorem 1. The definitions ofrΥ and rαY in Section VIII-C
are therefore in this caserΥps1, s2q � αV pα

�1

Y ps1qqs2 �

αV ppα
�1

W ps1qqs2 and rαY psq � αW

�

pαV � αW q

�1
psq

�

for
s1, s2, s ¥ 0. Let s P r0, Ls, rΥps, 1�γ

γ
q ¤

aV

aW
s 1�γ

γ
.

Similarly, we deduce thatrαY psq ¥
aW

aV �aW
s. Consequently,

if aV

aW
s 1�γ

γ
¤

1

2

aW

aV �aW
s, then rΥps, 1�γ

γ
q ¤

1

2
rαY psq. For

the first inequality to be true, it suffices to selectγÆ ¥

�

1� 1

2

a2

W

aV paV �aW q

	

�1

. In this case, for anyγ P pγÆ, 1q and

any s P r0, r∆s � r0, Ls, rΥps, 1�γ
γ
q ¤

1

2
rαY psq and we follow

the proof of Theorem 2 to obtain the desired result.

When r∆ ¡ L, we selectγÆ P

�

�

1� 1

2

a2

W

aV paV �aW q

	

�1

, 1




such that rΥpr∆, 1�γÆ

γÆ
q ¤ rαY pLq. The fact that γÆ ¥

�

1� 1

2

a2

W

aV paV �aW q

	

�1

ensures thatrΥps, 1�γ
γ
q ¤

1

2
rαY psq for

any s P r0, Ls and γ P pγÆ, 1q. The fact thatrΥpr∆, 1�γÆ

γÆ
q ¤

rαY pLq guarantees thatrΥps, 1�γ
γ
q ¤

1

2
rαY psq for s P rL, r∆s.

The desired result is then derived by following the proof of
Theorem 2.

E. Proof of Corollary 2.

Let x P R
n, υ P F�γ pxq andγ P pγÆ, 1q. SinceχW � I, we

can use the developments of Case 1 in the proof of Theorem
1. In particular, in view of (25),

Yγpυq � Yγpxq ¤ �αW pσpxqq � 1�γ
γ
αV pσpxqq. (33)

whereYγ � Vγ �W . Using the conditions of Corollary 2

Yγpυq � Yγpxq ¤ p�aW �

1�γ
γ
aV qσpxq. (34)

SinceγÆ ¡
aV

aV � aW
andγ P pγÆ, 1q, there existsε P p0, aY q,

whereaY :� aW � aV , such that�aW �

1�γÆ

γÆ
aV   �ε.

As Yγpxq ¤ aY σpxq in view of item (a) of Theorem
1 and the assumptions in Corollary 2,Yγpυq � Yγpxq ¤
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�εσpxq ¤ �εa�1

Y Yγpxq and thusYγpυq ¤ p1 � εa�1

Y qYγpxq

with 1 � εa�1

Y P p0, 1q. Let x P R
n and denoteφpk, xq be

a corresponding solution to (5) at timek P Z
¥0, it holds

that Yγpφpk, xqq ¤ p1 � εa�1

Y q

kYγpxq. Using the fact that
Yγpxq ¥ αW pσpxqq � aWσpxq (in view of Case 1 in the
proof of Theorem 1), we derive that Corollary 2 holds with
K �

aY

aW
�

aW�aV

aW
andλ � � lnp1� εa�1

Y q.

F. Proof of Corollary 3.

The existence of an optimal sequence of inputs is ensured
in view of Section 4.2 in [3], hence the Standing Assumption
holds. Letγ P pγÆ, 1q andx P R

n. The optimal value function
at x for the discounted problem, namelyVγpxq, is less than or
equal the optimal value function for theundiscounted problem,
which corresponds toxTPx, asγ P p0, 1q and the quadratic
stage cost is non-negative. As a result, in view of (23),

Vγpυq � Vγpxq ¤ �ℓpx, u�γ,0pxqq � p1� γqγ�1Vγpxq

¤ �ℓpx,K�

γ xq � p1� γqγ�1xTPx.
(35)

On the other hand, letW pxq :� 1

̟
xTS2x. In view of (11),

W pυq �W pxq ¤ �

1

̟
xTS1x� ℓpx,K�

γ xq, (36)

whereυ � pA�BK�

γ qx. Let Yγ � Vγ �W . We derive from

(35) and (36) thatYγpυq � Yγpxq ¤ �xT
�

1

̟
S1 �

1�γ
γ
P
	

x.

Sinceγ ¡ γÆ, 1

̟
S1�

1�γ
γ
P ¡

1

̟
S1�

1�γÆ

γÆ
P . As γÆ ¡ ̟

̟�α
,

1

̟
S1�

1�γÆ

γÆ
P ¡

1

̟
S1�

α
̟
P . In view of (12), 1

̟
S1�

α
̟
P ¥ 0,

consequently 1

̟
S1 �

1�γÆ

γÆ
P ¡ 0. We deduce that there

exists ε ¡ 0 such thatYγpυq � Yγpxq ¤ �ε|x|2. Since
λminpS2q

̟
|x|2 ¤ Yγpxq ¤ λmaxpP �

1

̟
S2q|x|

2 and 0  

λminpS2q

̟
  λmaxpP �

1

̟
S2q, we conclude that the origin is

uniformly globally exponentially stable.
WhenQ is positive definite, the pairpA,Cq is observable,

henceP is positive definite. Then, the desired result follows
by using (35) and the definition ofγÆ in this case in Corollary
3.

G. Proof of Theorem 3

The proof follows the same steps as the part on conti-
nuity in Section 5.2 in [20]. There are several differences
though, which prevent us to directly apply the results of
[20]. Indeed, the stage cost we consider in (2) is different
as it involves the inputu (and not only the state) and it is
discounted. Furthermore, we investigate stability with respect
to σ, which is not necessarily the distance to a compact set as
in [20]. Finally, the ‘optimal’ closed-loop system (5) satisfies
a (uniform) semiglobal practical asymptotic stability property
according to Theorem 2 (which applies in view of item (a)
of Theorem 3), while the results in [20] rely on a (uniform)
global asymptotic stability property. We show in the following
that we can still apply similar arguments as in [20] to prove the
desired property. We do it in detail for lower semicontinuity;
the proof of upper semicontinuity similarly follows in viewof

[20], we therefore omit it5. The desired continuity property is
a consequence of these two properties.

System (1) can be written as
#

xpk � 1q � fpxpkq, upkqq

upk � 1q P Upxpk � 1qq � U
�

fpxpkq, upkqq
�

.
(37)

We thus obtain an extended autonomous system, which we
rewrite as

χpk � 1q P Gpχpkqq, (38)

whereχ :� px, uq andGpχq :� pfpx, uq,Upfpx, uqqq. Since
f andU are continuous according to item (b) of Theorem 3,
so isG. We similarly write the system in closed-loop with an
optimal sequence of inputs as

χpk � 1q P G�γpχpkqq, (39)

whereG�γ pχq :� pfpx, uq,U�γ pfpx, uqqq for χ � px, uq and
γ P p0, 1q. The set of solutions to (39) is included in the set
of solutions to (38) asU�γ pxq � Upxq for any x P R

n and
γ P p0, 1q. In the following, we respectively denote solutions
to (38) and (39) at timek initialized at χ as ψpk, χq �

pφpk, χq, upk, χqq andψ�pk, χq � pφ�pk, χq, u�pk, χqq. The
notation we use in this proof forφ is slightly different
compared to the rest of the paper, as it depends on the initial
conditionχ and not only onx as before.

Let ∆ ¡ 0 and6 δ P p0, 1q, x P tz : σpzq ¤ ∆u, and
consider an arbitrary sequencexn, n P Z

¥0, such thatxn Ñ x

asn Ñ 8. Let un, n P Z
¥0, be a converging sequence such

thatun Ñ u asnÑ8 andun P Upxnq for anyn P Z
¥0. By

(outer semi)continuity7 of U , u P Upxq (see Section II). Let
χ � px, uq andχn � pxn, unq for anyn P Z

¥0.
Let ε ¡ 0, andγÆ P p0, 1q be such that (7) holds for the

set of initial conditionstz : σpzq ¤ ∆u where∆ ¡ ∆. Let
γ P pγÆ, 1q, andj P Z

¥0 be sufficiently big such that

pγÆqjαV p2max tβpσpxq � 1, jq, δuq ¤

ε

4
, (40)

whereβ comes (7). Sincexn Ñ x as n Ñ 8 and σpxq ¤
∆   ∆, σpxnq ¤ ∆ for n sufficiently big (recall thatσ is
continuous). Consequently, we apply Theorem 2 for the set
of initial conditionstz : σpzq ¤ ∆u, noting that the required
conditions hold according to item (a) of Theorem 3, to obtain,
for n sufficiently big,

σpφ�pk, χnqq ¤ max tβpσpxnq, kq, δu �k P Z
¥0,

(41)
thereforeσpφ�pk, χnqq ¤ max tβpσpxnq, 0q, δu for any k P

Z
¥0. Forn P Z

¥0 sufficiently big, by continuity ofσ, σpxnq ¤
σpxq � 1, hence

σpφ�pk, χnqq ¤ max tβpσpxq � 1, 0q, δu �k P Z
¥0.

(42)

5We can apply Lemma 18 in [20] as done in [20] since our definition of
continuity is equivalent to the one in Definition 3 in [20] as we also assume
U to be locally bounded, see Lemma 5.15 in [13] and page 193 in [31]; the
fact that the distance to a set (and not a generic continuousσ) is considered
in Lemma 18 in [20] is not an issue.

6Since the satisfaction of item (b) of Theorem 3 forδ P p0, 1q implies
its satisfaction for anyδ ¥ 1, there is no loss of generality in assuming
δ P p0, 1q.

7SinceU is assumed to be continuous, it is outer semicontinuous, which
allows us to write thatu P Upxq.
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Let Mpxq � βpσpxq � 1, 0q � 2 and Mpxq :�

tz : σpzq ¤Mpxqu. The setMpxq is compact according
to item (c) of Theorem 3. Consequently,UpMpxqq is also
compact by continuity and local boundedness ofU ; closeness
follows from the fact thatU is outer semicontinuous (see
Theorem 5.25 in [31]) and boundedness proceeds from the
fact thatU is locally bounded (see Proposition 5.15 in [31]).

For
ε

2j
, on the compact setMpxq � UpMpxqq, by (uni-

form8) continuity ofℓ (see item (b) of Theorem 3), there exists
δ1 ¡ 0 such that for anyχ1, χ2 PMpxq � UpMpxqq,

|χ1 � χ2| ¤ δ1 ñ |ℓpχ1q � ℓpχ2q| ¤

ε

2j
. (43)

On the other hand, letε2 � min
 

1

2
α�1

V p

ε
4
q, 1

(

(whereαV

comes from item (i) of Assumption 1), by (uniform) continuity
of σ, there existsδ2 ¡ 0 such that for anypx1, x2q PMpxq�

pMpxq � δ1Bq,

|x1 � x2| ¤ δ2 ñ |σpx1q � σpx2q| ¤ ε2. (44)

For the triple pj,mintδ1, δ2u, χq, Proposition 6.14 in [13]
ensures9 that there existsδ3 ¡ 0 such that for any solution
ψ�p�, χnq to (39) withn sufficiently big so that|χ�χn|   δ3,
there exists a solution to (38) initialized atχ and denoted
pψn � p

pφn, punq such that
�

�

�

ψ�pk, χnq �
pψnpk, χq

�

�

�

¤ mintδ1, δ2u �k P t0, . . . , ju.

(45)
In the following, we considern P Z

¥0 sufficiently big such
that the properties obtained above hold. For anyk P t0, . . . , ju,
ψ�pk, χnq PMpxq (in view of (42)) andpψnpk, χq PMpxq �

δ1B (from (42) and (45)), we thus derive from (44) and (45)
that, for anyk P t0, . . . , ju,

�

�

�

σpφ�pk, χnqq � σppφnpk, χqq
�

�

�

¤ ε2. (46)

We deduce from the inequality above and (42), fork P

t0, . . . , ju,

σppφnpk, χqq ¤ σpφ�pk, χnqq � ε2

¤ max tβpσpxq � 1, 0q, δu � ε2

¤ βpσpxq � 1, 0q � δ � ε2.

(47)

Sinceε2 ¤ 1 and δ   1, in view of the definition ofMpxq,
σppφnpk, χqq ¤ Mpxq and pψnpk, χq P Mpxq � UpMpxqq for
anyk P t0, . . . , ju. We derive from (43) and (45) that, for any
k P t0, . . . , ju,

�

�

�

ℓpψ�pk, χnqq � ℓp pψnpk, χqq
�

�

�

¤

ε

2j
. (48)

We now consider the optimal value functionVγ in (3) at xn

Vγpxnq �

8

¸

k�0

γkℓpψ�pk, χnqq ¥

j�1
¸

k�0

γkℓpψ�pk, χnqq,

(49)

8Since we work on the compact setMpxq � UpMpxqq, the continuity of
ℓ is uniform on that set by Heine-Cantor theorem.

9The conditions of Proposition 6.14 in [13] are verified as we can embed
system (38) as a hybrid system with empty flow set, which is nominally well-
posed sinceG is continuous, the jump set isRn�m and pre-forward complete
- see Definition 6.12 in [13]. We apply it withε � mintδ1, δ2u, τ � j and
K � tχu.

from (48)

Vγpxnq ¥

j�1
¸

k�0

γkℓp pψnpk, χqq �
ε

2
. (50)

Adding and subtracting
8

¸

k�j

γkℓpψ�pk � j, pψnpj, χqqq (which

is finite) above gives, using the definition ofVγpxq,

Vγpxnq ¥

j�1
¸

k�0

γkℓp pψnpk, χqq �

8

¸

k�j

γkℓpψ�pk � j, pψnpj, χqqq

�

ε

2
�

8

¸

k�j

γkℓpψ�pk � j, pψnpj, χqqq

¥ Vγpxq �
ε

2
�

8

¸

k�j

γkℓpψ�pk � j, pψnpj, χqqq.

(51)
The last term in the right hand-side of the inequality above
verifies

8

¸

k�j

γkℓpψ�pk � j, pψnpj, χqqq � γjVγppφnpj, χqq. (52)

On the other hand, from item (i) of Assumption 1 and (46)

Vγppφnpj, χqq ¤ αV pσppφnpj, χqqq ¤ αV pσpφ
�

pj, χnqq � ε2q,
(53)

since αV P K
8

, αV pa � bq ¤ αV p2aq � αV p2bq for any
a, b ¥ 0, hence

Vγppφnpj, χqq ¤ αV p2σpφ
�

pj, χnqqq � αV p2ε2q. (54)

From (41) and the definition ofε2,

Vγppφnpj, χqq ¤ αV p2max tβpσpxnq, jq, δuq �
ε

4
.

(55)
Sincen is sufficiently large such thatσpxnq ¤ σpxq � 1,

Vγppφnpj, χqq ¤
αV p2max tβpσpxq � 1, jq, δuq �

ε

4
(56)

using (40) and the fact thatγ P pγÆ, 1q,

γjVγppφnpj, χqq ¤ γj
�

αV p2max tβpσpxq � 1, jq, δuq �
ε

4

	

¤

ε

4
� γj

ε

4
¤

ε

2
.

(57)
Combining (51) with the inequality above and (52) leads to

Vγpxnq ¥ Vγpxq � ε. (58)

We have proved thatVγ is lower semicontinuous atx. Since
x has been taken arbitrarily intz : σpzq ¤ ∆u, for any
γ P pγÆ, 1q, Vγ is lower semicontinuous ontz : σpzq ¤ ∆u.

H. Proof of Theorem 4

Let x P R
n, γ P pγ, 1q whereγ comes from item (i) of

Assumption 2,pυ � fpx, puγ,0pxqq where puγ,0pxq is the first
element of the sequencepuγpxq given by Assumption 2. In
view of item (ii) of Assumption 2,

pVγppυq � pVγpxq � �ℓpx, puγ,0pxqq � p1� γqpVγppυq.
(59)
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Moreover, item (ii) of Assumption 2 implies thatγ pVγppυq ¤
pVγpxq sinceℓpx, puγ,0pxqq ¥ 0. As a result

pVγppυq � pVγpxq ¤ �ℓpx, puγ,0pxqq � p1� γqγ�1
pVγpxq.

(60)
Using item (i) of Assumption 2,

pVγppυq � pVγpxq ¤�ℓpx, puγ,0pxqq � p1� γqγ�1

�pVγpxq � pαpσpxqq � ηq ,
(61)

and item (i) of Assumption 1,

pVγppυq � pVγpxq ¤�ℓpx, puγ,0pxqq � p1� γqγ�1

�pαV pσpxqq � pαpσpxqq � ηq .
(62)

On the other hand, we also have from item (i) of Assumption
2 that

ℓpx, puγ,0pxqq ¤

pVγpxq ¤ αV pσpxqq � pαpσpxqq � η,
(63)

which will be useful in the following.
Like in the proof of Theorem 1, we need to distinguish two

cases depending onχW in Assumption 1. We only treat the
case where there existss ¥ 0 such thatχW psq ¥ s; the case
whereχW ¤ I similarly follows. LetpYγ :� ρV ppVγq�ρW pW q,
where ρV , ρW P K

8

are provided in Table I. We apply
Lemma 2 to (62) and (63) by identifyinghpxq � ℓpx, puγ,0pxqq,
α1pσpxqq � αV pxq � pαpσpxqq � η, and α2pσpxqq � p1 �
γqγ�1

pαV pσpxqq � pαpσpxqq � ηq. In that way, we obtain

ρV ppVγppυqq � ρV ppVγpxqq¤�qV
�

1

2
ℓpx, puγ,0pxqq

�

�

1

2
ℓpx, puγ,0pxqq

�qV

�

1

γ
pαV pσpxqq � pαpσpxqq � ηq

	

�p1� γqγ�1
pαV pσpxqq � pαpσpxqq � ηq

��χW pℓpx, puγ,0pxqqqℓpx, puγ,0pxqq

�qV

�

1

γ
pαV pσpxqq � pαpσpxqq � ηq

	

�p1� γqγ�1
pαV pσpxqq � pαpσpxqq � ηq

(64)
whereqV is given in Table I. We derive from the inequality
above and (27) that

pYγppυq � pYγpxq ¤ �rαW pσpxqq

�qV

�

1

γ
pαV pσpxqq � pαpσpxqq � ηq

	

�p1� γqγ�1
pαV pσpxqq � pαpσpxqq � ηq .

(65)
Using thatpYγpxq ¥ Yγpxq ¥ αY pσpxqq whereαY P K

8

, see
Table I,

pYγppυq � pYγpxq ¤ �rαW pσpxqq � pΥ
p

pYγpxq,
1�γ
γ
q,

(66)
with pΥps1, s2q � qV

�

p1� s2q
�

pαV � pαq � α�1

Y ps1q � η
��

s2

�

�

pαV � pαq � α�1

Y ps1q � η
�

for s1, s2 ¥ 0, note thatpΥ is
strictly increasing in its first argument and of classK in its
second argument. On the other hand,pYγpxq ¤ ρV pαV pσpxqq�

pαpσpxqq � ηq � ρW pαW pσpxqqq in view of (63) and item
(ii) of Assumption 1. From which we derive thatpYγpxq ¤
α
pY
pσpxqq � pϑpηq whereα

pY
:� ρV p2αV � 2pαq � ρW pαW q P

K
8

and pϑ :� ρW p2Iq P K
8

. Consequently, whenpϑpηq ¤
1

2
pYγpxq, 1

2
pYγpxq ¤ α

pY
pσpxqq. In this case, in view of (66),

pYγppυq � pYγpxq ¤�rαW � α�1

pY
p

1

2
pYγpxqq

�

pΥ
�

pYγpxq,
1�γ
γ

�

.
(67)

Let ∆, δ ¡ 0 and supposeσpxq ¤ ∆. We now takeγ P pγÆ, 1q
where γÆ P pγ, 1q is specified in the following. Letp∆ �

α
pY
p∆q� pϑpηq andpδ � αY pδq. We selectγÆ sufficiently close

to 1 such thatpΥpp∆, 1�γÆ

γÆ
q ¤

1

2
rαW �α�1

pY
p

1

2
pδq, which is always

possible in view of the definition ofpΥ. By following the same
lines as in the proof of Theorem 2, there existspβ P KL,
which is independent ofγ, such that for any solutionφ to
(15) initialized atx and anyk P Z

¥0,

pYγpφpk, xqq ¤ max
!

pβpYγpxq, kq, pδ, 2pϑpηq
)

. (68)

Since αY pσpxqq ¤ Yγpxq, σpφpk, xqq ¤

max
!

α�1

Y

�

pβpYγpxq, kq
	

, δ, α�1

Y p2pϑpηqq
)

. Furthermore,
pYγpxq ¤ α

pY
pσpxqq � pϑpηq ¤ 2maxtα

pY
pσpxqq, pϑpηqu.

Consequently, for any solution φ to (15) ini-
tialized at x and any k P Z

¥0, σpφpk, xqq ¤

max
!

α�1

Y

�

pβp2α
pY
pσpxqq, kq

	

, α�1

Y

�

pβp2pϑpηq, 0q
	

, δ,

α�1

Y p2pϑpηqq
)

. Property (16) thus holds

with βp�q � α�1

Y

�

pβp2α
pY
p�q, �q

�

, ϑp�q �

max
 

α�1

Y

�

pβp2pϑp�q, 0q
	

,α�1

Y p2pϑp�qq
(

.

I. Sketch of Proof of Theorem 5 5.

Let γ P r1, γq, x P R
n, υ � fpx, u�γ,0pxqq where

u�γ,0pxq P U�γ pxq is the first element of the optimal sequence
u
�

γpxq, which exists by assumption. According to the Bellman
equation,Vγpxq � ℓpx, u�γ,0pxqq � γVγpυq. Hence, since
γ ¥ 1, Vγpυq � Vγpxq � �ℓpx, u�γ,0pxqq � p1� γqVγpυq

¤ �ℓpx, u�γ,0pxqq. We then follow similar lines as the proof of
Theorems 1 and 2 in Sections VIII-B and VIII-C, respectively,
to obtain the desired result.

J. Proof of Theorem 6.

Let qγ P p0, 1q, γ P p0, qγq, x P R
n and υ � fpx, qu�γ,0pxqq

where qu�γ,0pxq is the first element of the optimal sequence
of inputs qu�γ pxq, which exists by assumption. LetqVγpxq :�

inf
u

qJγpx,uq. Sinceℓ is non-negative and1� γk�1
¥ 1� γ ¥

1� qγ for any k P Z
¥0,

p1� qγqℓpx, qu�γ,0pxqq ¤ p1� γqℓpx, qu�γ,0pxqq

¤ inf
u

8

¸

k�0

p1� γk�1
qℓpφpk, x,u|kq, ukq

�

qVγpxq.
(69)

On the other hand,qVγpxq ¤ V pxq ¤ αV pσpxqq in view of
item (i) of Assumption 1 and since1� γ ¤ 1.

We now study the relationship betweenqVγpxq and qVγpυq.
By definition

qVγpυq � inf
u

8

¸

k�0

p1� γk�1
qℓpφpk, υ,u|kq, ukq. (70)
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The sequencequ�γ pxq is optimal when starting fromx, but if we
remove its first element and apply the corresponding truncated
sequence (i.e.qu1

�

γ pxq � pqu�γ,1pxq, qu
�

γ,2pxq, . . .q) starting from
the initial stateυ, it may no longer be optimal, therefore

qVγpυq ¤

8

¸

k�0

p1� γk�1
qℓpφpk, υ, qu1

�

γ |kpxqq, qu
�

γ,k�1
pxqq

(71)
as1� γk�1

¤ 1� γk�2 for any k P Z
¥0,

qVγpυq ¤

8

¸

k�0

p1� γk�2
qℓpφpk, υ, qu1

�

γ |kpxqq, qu
�

γ,k�1
pxqq

�

qVγpxq � p1� γqℓpx, qu�γ,0pxqq,
(72)

we note that the infinite sums above are well-defined. Conse-
quently,

qVγpυq � qVγpxq ¤ �p1� γqℓpx, qu�γ,0pxqq. (73)

We now distinguish two cases depending onχW in Assump-
tion 1, as in the proof of Theorem 1.
Case 1:χW ¤ I.
Let qYγ :� qVγ � p1 � γqW . From (73) and item (ii) of
Assumption 1,

qYγpυq � qYγpxq ¤ �p1� γqℓpx, qu�γ,0pxqq

�p1� γqαW pσpxqq

�p1� γqχW pℓpx, qu�γ,0pxqqq,

(74)

sinceχW ¤ I and1� γ ¥ 1� qγ,

qYγpυq � qYγpxq ¤�p1� γqαW pσpxq ¤ �p1� qγqαW pσpxqq.
(75)

On the other hand,qYγpxq ¤ αV pσpxqq � p1 � γqαW pσpxqq,
in view of the inequalities after (69) and item (ii) of As-
sumption 1. Consequently,qYγpxq ¤ αV pσpxqq�αW pσpxqq �

αY pσpxqq with αY P K
8

as in Case 1 in the proof of Theorem
1. We also have, from item (ii) of Assumption 1 and (69),
that qYγpxq ¥ p1 � γqℓpx, qu�γ,0pxqq � p1 � γqαW pσpxqq �

p1 � γqℓpx, qu�γ,0pxqq (see Case 1 in the proof of Theorem
1 for more detail). ThereforeqYγpxq ¥ p1 � γqαW pσpxqq ¥

p1� qγqαW pσpxqq �: α
qY
pσpxqq with α

qY
P K

8

. We conclude
that item (b) of Theorem 6 holds like in Case 1 in the proof
of Theorem 1.
Case 2: There existss P R

¥0 such thatχW psq ¡ s.
This case follows the same lines as Case 2 in the proof of
Theorem 1 by takingqYγ :� ρV pqV q � ρW pp1 � γqW q. The
fact thatγ appears inρW pp1 � γqW q is not an issue as we
use the inequality1� qγ ¤ 1� γ ¤ 1 to render the obtained
inequalities independent ofγ as done in Case 1 above.

K. Proof of Proposition 2.

Let γ P pγÆ, 1q and x P R
n. Since γ P p0, 1q and ℓ

takes non-negative values,Vγpxq ¤ V pxq. We prove the other
inequality of Proposition 2 in the following.

Consider the sequence of inputspu�γ,0pxq,u
�

pυqq where
u�γ,0pxq is the first element of a sequence of optimal inputs
for the discountedcost (2), i.e.u�γ,0pxq P U�pxq, andu�pυq
is the sequence of optimal inputs for theundiscountedcostJ

starting atυ � fpx, u�γ,0pxqq. The sequencepu�γ,0pxq,u
�

pυqq

may not be optimal for the undiscounted cost. Therefore, by
definition ofV pxq,

V pxq ¤ ℓpx, u�γ,0pxqq � V pυq, (76)

adding and subtractingγVγpυq to the right-hand side leads to
V pxq ¤ ℓpx, u�γ,0pxqq � γVγpυq � γVγpυq �V pυq. According
to the Bellman equationVγpxq � ℓpx, u�γ,0pxqq�γVγpυq, thus

V pxq ¤ Vγpxq � γVγpυq � V pυq. (77)

We add and subtractVγpυq to the right-hand side above and
we obtain

V pxq ¤ Vγpxq � p1� γqVγpυq � V pυq � Vγpυq, (78)

which we rewrite as

V pxq � Vγpxq ¤ V pυq � Vγpυq � p1� γqVγpυq. (79)

Let υ1 � υ and υ2 � fpυ1, u
�

γ,0pυ1qq where u�γ,0pυ1q is
the first element of the optimal sequence of inputs for the
discounted cost (2) starting atυ1. By following the same
reasoning as above, we obtainV pυ1q � Vγpυ1q ¤ V pυ2q �

Vγpυ2q � p1� γqVγpυ2q. Hence, in view of (79),

V pxq � Vγpxq ¤ V pυ2q � Vγpυ2q

�p1� γq pVγpυ1q � Vγpυ2qq .
(80)

We proceed by iteration. Denoteυk�1 � fpυk, u
�

γ,0pυkqq for
k P Z

¡0zt1u whereu�γ,0pυkq is the first element of the optimal
sequence of inputs for the discounted cost (2) starting atυk,
i.e. u�γ,0pυkq P U�γ pυkq. From (80), we deduce that for any
k P Z

¡0

V pxq � Vγpxq ¤ V pυkq � Vγpυkq � p1� γq

ķ

j�1

Vγpυjq.

(81)
Let Yγ :� Vγ �W . In view of the proof of Corollary 2, we
derive thatYγpυkq Ñ 0 ask Ñ8. Therefore, sinceYγpυkq ¥
aWσpυkq ¥ 0 (still in view of the proof of Corollary 2), we
deduce thatσpυkq Ñ 0 ask Ñ 8. Recall that0 ¤ Vγpxq ¤

V pxq ¤ aV σpxq in view of item (i) of Assumption 1 and item
(b) of Proposition 2. Consequently,

Vγpυkq Ñ 0 and V pυkq Ñ 0 as k Ñ8. (82)

On the other hand, according to the proof of
Corollary 2 (see (34)), Vγpυkq ¤ Yγpυkq ¤

�

1� p�aW �

1�γ
γ
aV qa

�1

Y

	k

Yγpxq where aY �

aV � aW ¡ 0 for k P Z
¡0. As a consequence,

Vγpυkq ¤

�

1� p�aW �

1�γ
γ
aV qa

�1

Y

	k

Yγpxq. Thus,

since
�

1� p�aW �

1�γ
γ
aV qa

�1

Y

	

P p0, 1q (as γ P pγÆ, 1q

andγÆ ¡ aV

aV �aW
), we obtain after some calculations,

ķ

j�1

Vγpυjq ¤

ķ

j�1

�

1� p�aW �

1� γ

γ
aV qa

�1

Y


j

Yγpxq

� θpγqYγpxq,
(83)
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whereθpγq is defined in Proposition 2. In view of (82) and
(83), by taking the limit ask Ñ 8 in (81), V pxq � Vγpxq ¤

p1� γqθpγqYγpxq, which corresponds to the desired bound.

L. Sketch of Proof of Corollary 5.

Let γ P p0, 1q satisfy the conditions of Corollary 5 and
x P R

n. We use the notation of Section VIII-F. In view of (35)

and (36),Yγpυq � Yγpxq ¤ �xT
�

1

̟
S1 �

1�γ
γ
Pγ

	

x. By def-

inition of ςpγq, Yγpυq � Yγpxq ¤ �ςpγqxT
�

1

̟
S2 � Pγ

�

x �

�ςpγqYγpxq. We then follow the same lines as in the proof

of Proposition 2. Instead of (83), we derive
ķ

j�1

Vγpυjq ¤

ķ

j�1

Yγpυjq ¤

ķ

j�1

p1 � ςpγqqjYγpxq ¤
1� ςpγq

ςpγq
Yγpxq, from

which we derive the desired result. The case whereQ is
positive definite similarly follows.

IX. CONCLUSIONS

We have analysed the stability of general nonlinear discrete-
time systems controlled by a sequence of inputs that min-
imizes an infinite-horizon discounted cost. In general, only
uniform semiglobal practical stability is ensured, but we have
also derived stronger properties under additional assumptions.
Then, we have exploited stability to derive new results on
the continuity of the optimal value function and thus of the
Lyapunov function used to prove stability. This is fundamental
to guarantee some nominal robustness for the closed-loop
system. Afterwards, we have shown that the stability and the
continuity results still apply when an appropriatenear-optimal
sequence of inputs is applied to the system. The approach
has been shown to be general enough to address cases where
the time-varying term multiplying the stage cost no longer
exponentially decreases to zero but increases as time proceeds.
Finally, we have investigated the relationships between the
optimal value functions of the discounted and undiscounted
problems, when the latter is well-defined.

APPENDIX

A. Technical lemmas

We report two lemmas, which are used several times in
Section VIII. These results respectively correspond to Lem-
mas 3 and 4 in [15] but stated under slightly more general
assumptions, as we explain below.

Lemma 2. Let f : R
n
Ñ R

n, V : R
n
Ñ R

¥0, σ :
R

n
Ñ R

¥0, h : R
n
Ñ R

¥0 and α1, α2 : R
¥0 Ñ R

¥0

such that hpxq ¤ V pxq ¤ α1pσpxqq and V pfpxqq �

V pxq ¤ α2pσpxqq � hpxq for all x P R
n. Let ρV P K

8

be such thatqV psq :� dρV

ds
psq is well-defined, continu-

ous, and nondecreasing. ThenρV pV pfpxqqq � ρV pV pxqq ¤

qV pα1pσpxqq � α2pσpxqqq α2pσpxqq � qV
�

1

2
hpxq

�

1

2
hpxq for

all x P R
n. l

In Lemma 2,α1 andα2 are not required to be of classK
8

as in Lemma 3 in [15]. Still, the proof is the same as the latter
property is not exploited in [15].

Lemma 3. Let f : R
n�m

Ñ R
n, W : R

n
Ñ R

¥0,
σ : R

n
Ñ R

¥0, ℓ : R
n�m

Ñ R
¥0, α1 : R

¥0 Ñ R
¥0,

and α2, α3 P K
8

such that W pxq ¤ α1pσpxqq

and W pfpx, uqq � W pxq ¤ α2pℓpx, uqq � α3pσpxqq

for all x P R
n. Let ρW P K

8

be such that
qW psq �

dρW

ds
psq is well-defined, continuous, and

nondecreasing. ThenρW pW pfpx, uqqq � ρW pW pxqq ¤

2qW
�

α2pℓpx, uqq � α1

�

α�1

3
p2α2pℓpx, uqqq

��

α2pℓpx, uqq �

qW
�

1

4
α3pσpxqq

�

1

4
α3pσpxqq for all px, uq P R

n�m. l

Compared to Lemma 4 in [15],α1 is not required to be of
classK

8

in Lemma 3, but the proof remains the same as this
property is not used in [15].

B. Satisfaction of (11)

The next result ensures the satisfaction of (11) and (12) in
Corollary 3.

Lemma 4. The linear matrix inequalities (11) and (12) hold
whenR is symmetric, positive definite andQ � CTC with
pA,Cq is detectable. l

Proof. SincepA,Cq is detectable, there exists a matrixL such
thatA � LC is Schur. In view of item 4 in Theorem 8.4 in
[18], given ǫ ¡ 0 and S1 real, symmetric, positive definite,
there existsS2, real, symmetric and positive definite, such
that pA � LCqTS2pA � LCq � S2 � S1 � ATA � �ǫI. Let
M1 :� ATS2A�S2�S1�̟Q. It holds thatM1 � pA�LC�

LCqTS2pA� LC � LCq � S2 � S1 �̟Q sinceQ � CTC.
Using that2ATS2LC ¤ ATA � CTLTS2

2LC, we deduce
thatM1 ¤ �ǫI�CT

�

̟I� LTS2L� LTS2

2
L
�

C. By taking
̟ big enough,M1 ¤ �ǫI. DenotingM the matrix in (11),

we have thatM ¤

�

�ǫI ATS2B

BTS2A BTS2B �̟R

�

�: M.

By taking ̟ sufficiently big, sinceR is positive definite,
M is negative definite, in view of Schur complement. As a
consequence, (11) holds.

The satisfaction of (12) is ensured by takingα ¡ 0

sufficiently small asP is positive semi-definite andS1 is
positive definite. �
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Dragan Něsić is a Professor in the Department
of Electrical and Electronic Engineering (DEEE) at
The University of Melbourne, Australia. He received
his BE degree in Mechanical Engineering from The
University of Belgrade, Yugoslavia in 1990, and
his Ph.D. degree from Systems Engineering, RSISE,
Australian National University, Canberra, Australia
in 1997. Since February 1999 he has been with
The University of Melbourne. His research interests
include networked control systems, discrete-time,
sampled-data and continuous-time nonlinear control

systems, input-to-state stability, extremum seeking control, applications of
symbolic computation in control theory, hybrid control systems, and so on.
He was awarded a Humboldt Research Fellowship (2003) by the Alexander
von Humboldt Foundation, an Australian Professorial Fellowship (2004-2009)
and Future Fellowship (2010-2014) by the Australian Research Council. He
is a Fellow of IEEE and a Fellow of IEAust. He is currently a Distinguished
Lecturer of CSS, IEEE (2008-). He served as an Associate Editor for the
journals Automatica, IEEE Transactions on Automatic Control, Systems and
Control Letters and European Journal of Control.

Jamal Daafouz received the Ph.D. degree in auto-
matic control from the INSA Toulouse, in 1997. In
1998, he joined the Institut National Polytechnique
de Lorraine (INPL) as an assistant professor and
the Research Centre of Automatic Control (CRAN
UMR 7039 CNRS). In 2005, he got the French
Habilitation degree from INPL and he was engaged
as a professor of automatic control at Université
de Lorraine in Nancy, France. From 2010 to 2015,
he was an IUF (Institut Universitaire de France)
junior member. He serves as an Associate Editor

at the Conference Editorial Board of the IEEE Control Systems Society
and for the journals: Automatica, IEEE Transactions on Automatic Control
and European Journal of Control. His research interests include hybrid and
switched systems, networked control systems, robust control and applications
in secure communications, metallurgy and energy management.


