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Universal time-dependent dispersion properties for diffusion in a one-dimensional
critically tilted potential

T. Guérin and D. S. Dean
Laboratoire Ondes et Mati`ere d’Aquitaine (LOMA), CNRS, UMR 5798/Universite´ de Bordeaux, F-33400 Talence, 

France

We consider the time-dependent dispersion properties of overdamped tracer particles diffusing in a one-
dimensional periodic potential under the influence of an additional constant tilting force F . The system is studied
in the region where the force is close to the critical value Fc at which the barriers separating neighboring potential
wells disappear. We show that, when F crosses the critical value, the shape of the mean-square displacement
(MSD) curves is strongly modified. We identify a diffusive regime at intermediate-time scales with an effective
diffusion coefficient which is much larger than the late-time diffusion coefficient for F > Fc, whereas for F < Fc

the late-time and intermediate-time diffusive regimes are indistinguishable. Explicit asymptotic regimes for the
MSD curves are identified at all time scales.

I. INTRODUCTION

In a variety of physical systems, the motion of tracer
particles can be described by Fokker-Planck equations or
their associated stochastic differential or Langevin equations
[1–3]. In such systems, the motion results from the combined
action of deterministic, the so called drift, and stochastic
forces whose amplitudes are given by a diffusivity or local
diffusion constant. In a periodic heterogeneous medium in
which the local transport coefficients are constant in time but
spatially periodic, the late-time large scale dynamics can be
characterized by a mean velocity and an effective diffusion
tensor which characterize the mean drift and the spatial
extension of a cloud of initially close tracer particles. These
effective transport coefficients can be widely different from
typical microscopic ones and are important in a number of
phenomena, such as mixing, pollutant spreading, or chemical
reactions [4–8].

The late-time effective transport coefficients have theo-
retically been characterized in a number of systems. For
example, they can be calculated in the case of tracer particles
diffusing in incompressible hydrodynamic flows [9–14] or
in porous media [15–20] using homogenization theory. In
another context, dispersion properties were derived using
methods of statistical physics for particles diffusing in periodic
potentials with uniform molecular diffusivity [21–26]. The
problem of dispersion in one-dimensional (1D) systems also
was investigated at length [27–39]. A remarkable prediction
in the case of diffusion in a one-dimensional tilted potential
is a huge increase in the effective diffusivity when the
tilting force approaches a critical value [27], a phenomenon
observed in various experiments [40–43] which was recently
used to estimate the energy barrier opposing the steps of a
rotary molecular motor [44]. More recently, analytical results
demonstrated how an external force can influence dispersion
in periodic systems in higher dimensions [45].

These results, however, characterize only the late-time
effective diffusivity, whereas dispersion can also be char-
acterized by the time-dependent mean-square displacement
(MSD) which is routinely measured for example in single
particle tracking experiments. The general theory developed
in Ref. [45] shows that, starting from steady state initial

conditions, the average drift is independent of the time whereas
the MSD actually evolves in time, eventually attaining the
late-time diffusive limit. The approach to the diffusive limit
has been calculated in equilibrium systems [46,47]. Apart from
approximate forms of the distribution of particles [48,49] in
tilted potentials, little is known about the temporal evolution
of dispersion coefficients in general nonequilibrium periodic
media.

Recently, a very general formalism was proposed to
calculate the MSD in a wide class of nonequilibrium systems
[45,50]. This formalism examines the full temporal behavior
of dispersion, and here we use it to analytically calculate
the time-dependent MSD of overdamped particles diffusing
in a 1D tilted periodic potential. We derive exact and explicit
asymptotic expressions for the dispersion at various time scales
in the case where the external force is close to its critical
value (at which the barriers between successive potential wells
disappear). In earlier studies [27,29], it has been shown that,
when the tilting force is close to its critical value, the tracer
particles spend most of their time in a very narrow window
of positions and thus the effective diffusivity takes a universal
form depending only on the properties of the potential near
these positions. Here we will see that this property carries
over to the time-dependent MSD, which admits simple and
universal forms at various time scales.

The outline of the paper is as follows. The model is briefly
introduced in Sec. II. In Sec. III, we derive a formula for
the MSD in terms of first-passage time (FPT) densities. This
formula is analyzed asymptotically in Sec. IV where we show
that the shape of the MSD curves show a remarkable change
when F crosses its critical value. Our predictions are in
excellent agreement with results obtained by simulating the
stochastic trajectories.

II. MODEL AND QUANTITIES OF INTEREST

We consider the motion of an overdamped tracer particle
of position X(t) at time t in a 1D space, moving in a periodic
potential V (x) (of period L with x as the spatial coordinate)
and subject to an additional external tilting force F at finite
temperature T [see Fig. 1(a)]. The overdamped dynamics
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FIG. 1. (a) Sketch of the problem investigated in this paper: We
calculate the dispersion properties of particles diffusing in periodic
tilted potentials. When the noise is weak and the force is close to its
critical value, the tracer particles spend most of their time in narrow
regions, termed the slow regions, of typical size l∗ much smaller than
period L. (b) Value of the stationary PDF Ps(x) inside the slow region
obtained by evaluating Eqs. (19) and (20) for ε = −5 (F below the
critical force Fc), ε = 0 (F = Fc), and ε = 5 (F > Fc). The inset:
same curves on a semilogarithmic scale.

satisfies the force balance equation, which in Langevin form
reads

ζ ∂tX(t) = −V ′(X(t)) + F + ξ (t), (1)

where ζ is the frictional drag coefficient and the ther-
mal fluctuating forces ξ (t) have zero mean white noise
Gaussian statistics characterized by the correlation function
〈ξ (t)ξ (t ′)〉 = 2kBT ζδ(t − t ′). We denote D0 = kBT /ζ as the
local molecular diffusivity of the tracer particle, and we define
the drift field,

u(x) = ζ−1[−∂xV (x) + F ]. (2)

Equivalently, the process can be described by the Fokker-
Planck equation,

∂tP = −∂x[u(x)P ] + D0∂
2
xP, (3)

where P (x,t) is the probability density function of particles at
positions x at time t .

In this paper, we aim to calculate the time-dependent
dispersion quantified by the MSD function ψ(t) defined as

ψ(t) = 〈[X(t) − X(0)]2〉 − 〈X(t) − X(0)〉2, (4)

where 〈· · ·〉 denotes ensemble averaging over realizations of
the white noise. Note that we assume here that the system
has reached a steady state at time t = 0 (in the sense that the
probability distribution over a unit cell of one period is the
stationary one).

III. GENERAL EXPRESSION OF THE MEAN-SQUARE
DISPLACEMENT

Our starting point is the following Kubo formula, derived
in Refs. [45,50]:

ψ̂(s) = 2D0

s2
− 2

s2

∫ L

0
dx

∫ L

0
dx0u(x)u∗(x0)

×
[
P̂ (x,s|x0) − Ps(x)

s

]
Ps(x0). (5)

Here, ψ̂(s) is the Laplace transform of the MSD, i.e.,
ψ̂(s) = ∫ ∞

0 ψ(t)e−st dt , whereas P (x,t |x0) is the propagator
of the process mod L (with periodic boundary conditions),
i.e., the probability density function for the tracer particle
at x (mod L) at t given an initial position x0 (also mod L),
and P̂ is its temporal Laplace transform. Moreover, Ps(x) =
limt→∞ P (x,t |x0) is the probability density function of the
position (mod L) in the steady state. Note that Ps is not the
equilibrium-Boltzmann distribution which is only applicable
for finite systems with reflecting or confining rather than peri-
odic boundary conditions. Here it describes a nonequilibrium
steady state and is characterized by a nonzero flux Js , which
has both a convective and a diffusive (Fickian) component,

Js = u(x)Ps(x) − D0∂xPs(x). (6)

Note that Js must be constant in a 1D problem. Finally, in
Eq. (5), u∗(x) represents the drift of the time-reversed
stochastic process [50],

u∗(x) = u(x) − 2Js/Ps(x). (7)

The first step of the present analysis consists of expressing
the MSD in terms of FPT densities rather than propagators;
this will greatly simplify the asymptotic analysis in the next
sections. Consider f (x,t |x0) as the probability density of
reaching position x (mod L) for the first time at t , starting
from the initial position x0. The propagators and the FPT
densities can be linked by the following, well known, renewal
equation [1]:

P (x,t |x0) =
∫ t

0
dt ′f (x,t ′|x0)P (x,t − t ′|x). (8)

Physically, the above equation states that, if a particle reaches
x at t , it also means that x was reached for the first time at some
earlier instant t ′ and that the particle subsequently reached x

again in a time t − t ′. The Laplace transform of Eq. (8) is as
follows:

P̂ (x,s|x0) = f̂ (x,s|x0)P̂ (x,s|x). (9)
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We also consider the FPT density averaged over initial
conditions,

fs(x,t) ≡
∫ L

0
dx0f (x,t |x0)Ps(x0), (10)

and we remark that averaging (9) over the stationary distribu-
tion for x0 gives

Ps(x)

s
= f̂s(x,s)P̂ (x,s|x). (11)

Using the above expressions, Eq. (5) for the MSD becomes

ψ̂(s) = 2D0

s2
− 2

s3

∫ L

0
dx

∫ L

0
dx0u(x)u∗(x0)Ps(x0)Ps(x)

×
[

f̂ (x,s|x0)

f̂s(x,s)
− 1

]
. (12)

This expression for the MSD is well adapted for the asymptotic
analysis of dispersion presented in the next section.

IV. DISPERSION IN A CRITICAL TILTED POTENTIAL
AT DIFFERENT TIME SCALES

A. Regions of fast and slow motion

We now focus on the case where the external force is very
close to the critical tilt force Fc = max[V ′(x)] [Fig. 1(a)].
When F 	 Fc, the late-time effective diffusivity varies as D

1/3
0

[27,29] and can therefore be much larger than the molecular
diffusivity D0 when the latter is small. Our goal here is to
predict the approach to this diffusive limit, which is universal
in the sense that it does not depend on the detailed shape of
the potential. Following the notations of Refs. [27,29], we
introduce the parameter μ defined as

μ = −V ′′′(0)/6, (13)

where we chose the origin of coordinates such that V ′(x) is
maximum at x = 0. Note that we assume here that the potential
admits a third derivative; more general cases could be treated
with our approach but are not considered here for simplicity.
We also introduce a parameter ε to measure the distance to the
critical force,

ε = F − Fc

μ1/3(kBT )2/3
. (14)

The limit considered here is that of weak noise kBT → 0
while keeping the parameter ε constant. In this limit, since
D0 ∝ kBT , the convective terms dominate over the diffusive
terms in Eq. (3) almost everywhere except in a narrow region
of characteristic size l∗ located around x = 0. In this region,
the convective flux is Jc = uPs 	 ζ−1μx2Ps whereas the
diffusive flux is on the order of Jd = D0∇Ps 	 D0Ps/l∗. The
fluxes Jc and Jd are on the same order of magnitude when
x ∼ l∗ if we set the characteristic size l∗ to

l∗ = (kBT /μ)1/3. (15)

The characteristic time in the inner region is

τ ∗ = (l∗)2

D0
= ζ

μ2/3(kBT )1/3
. (16)

The time τ ∗ diverges in the small temperature limit, and we
therefore refer to the region around x = 0 as a slow region as
opposed to the outer region called the fast region.

Let us briefly derive the stationary probability density and
steady state flux; although these quantities are known in the
literature, we show below that they play an important role in
the dispersion properties. Since each particle spends most of
its time in one of the slow regions, the steady state stationary
density Ps(x) of positions (mod L) is localized in these regions
where it satisfies

−ζ−1∂x[(3μx2 + F − Fc)Ps] + D0∂
2
xPs = 0, (17)

where we have used a Taylor expansion of the potential V (x)
at next to leading order around x = 0. We introduce the
dimensionless position y = x/l∗, probability density P̃s(y) =
Psl

∗, and flux J̃s = τ ∗Js . Using these notations, integrating
Eq. (17) and comparing with Eq. (6) leads to

−[(3y2 + ε)P̃s] + ∂yP̃s = −J̃s . (18)

Assuming that P̃s(y) vanishes for y → ∞ (that is, for x � l∗),
the solution of this equation is

P̃s(y) = J̃s

∫ ∞

y

du e−u3−εu+y3+εy . (19)

The normalization imposes that 1 = ∫ L/2
−L/2 dx Ps(x) 	∫ ∞

−∞ dy P̃s(y) and thus leads to the identification of the
dimensionless current,

J̃−1
s =

∫ ∞

−∞
dy

∫ ∞

0
du e−(u+y)3−εu+y3

. (20)

The rescaled stationary PDF in the slow region is represented
in Fig. 1(b) where one observes the transition from narrow
distributions shifted in the region x < 0 when ε < 0 (that is,
for forces F < Fc) to broader and more centered distributions
when F > Fc. The dimensionless flux is represented in
Fig. 2(a), it almost vanishes for F < Fc, and then significantly
increases when F > Fc.

In the outer region |x| � l∗, the convective term takes over
the diffusive term in Eq. (6), and we simply obtain

Ps(x) 	 Js/u(x), (21)

physically this means that, in the regions where drift dom-
inates, the probability of presence is inversely proportional
to the speed. We note that the expressions in the outer and
the inner regions [Eqs. (19) and (21)] can be matched in
the region l∗  |x|  L where both approximations give
Ps(x) 	 Jsζ/(3μx2 + F − Fc).

B. MSD at intermediate-time scales: ballistic and diffusive
regimes

We now investigate the properties of the MSD ψ(t) at
different time scales. First, at very short times, t → 0 (or
s → ∞), we have ψ(t) = 2D0t where the effective diffusivity
is exactly equal to the molecular diffusivity. We do not discuss
this regime any further and consider now longer times with the
additional condition that t  τ ∗ (or equivalently sτ ∗ � 1). At
this time scale, one can consider that the events of crossing the
slow region or escaping from it take an infinite time.
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FIG. 2. (a) Value of the dimensionless flux J̃s = Jsτ
∗ for near

critical forces, which is also proportional to the effective diffusion
coefficient in the intermediate-time regime [see Eq. (33)]. (b)
Rescaled late-time effective diffusivity D∞, deduced from Eq. (A9).
(c) Ratio of the late-time effective diffusivity over the intermediate-
time effective diffusivity.

In this regime, when x,x0 are in the fast region with
0 < x0 < x < L, we can approximate the FPT to x from x0 by

the duration of the deterministic trajectory that links x0 and x,

f (x,t |x0) 	 δ

(
t −

∫ x

x0

dy

u(y)

)
. (22)

In the opposite direction where x0 > x, reaching x from x0

requires crossing the slow region, which takes a time infinite
compared to the time scale considered here. Hence f (x,t |x0)
is simply approximated by 0 in this case. Taking all this into
account, the FPT density in Laplace space reads

f̂ (x,s|x0) 	
{

exp
[−s

∫ x

x0

dy

u(y)

]
, if 0 < x0 < x < L,

0, if 0 < x < x0 < L.

(23)

We now calculate f̂s(s,x), the average FPT density to x, with
stationary initial conditions,

f̂s(s,x) 	
∫ x

x−
dx0Ps(x0)f̂ (s,x|x0). (24)

Here the upper integration limit has been set to x because if
x0 > x the FPT from x0 to x is infinite at this time scale. In
turn, the lower integration limit has been set to x−, which is
a position such that l∗  x−  L (its precise value will not
change the result, see below). The reason for this is that, if x0 ∼
l∗ is in the slow region, its escape time is ∼τ ∗ and therefore
almost no trajectory can bring it to x at the considered time
scale. For x0 � l∗, we can approximate Ps(x0) 	 Js/u(x0)
[see Eq. (21)] and therefore,

f̂s(s,x) 	
∫ x

x−
dx0

Js

u(x0)
exp

[
−s

∫ x

x0

dy

u(y)

]
. (25)

The integration over x0 is now straightforward,

f̂s(s,x) 	 Js

s
, (26)

and the result does not depend on the lower bound of the
integral x− as soon as x−  L.

Furthermore, when x,x0 are in the fast regions, the
approximation u(x)Ps(x) = Js = −u∗(x0)Ps(x0) holds [cf.
Eq. (21)]. Hence, inserting (23) and (26) into Eq. (12) and
keeping only the dominant contribution to the MSD (coming
from the x,x0 in the fast region), the expression of ψ near
criticality is considerably simplified,

ψ̂(s) 	 2J 2
s

s3

∫ L

0
dx

∫ x

0
dx0

[
s exp

[−s
∫ x

x0

dy

u(y)

]
Js

− 1

]
.

(27)

Here we investigate the regime t  τ ∗ or equivalently
sτ ∗ � 1. Since Js ∼ 1/τ ∗, we obtain s/Js � 1 and

ψ̂(s) 	 2Js

s2

∫ L

0
dx

∫ x

0
dx0 exp

[
−s

∫ x

x0

dy

u(y)

]
. (28)

The above equation describes the MSD at time scales smaller
than τ ∗. Let us consider its asymptotics. First, for s → ∞,
the terms x 	 x0 essentially contribute in the integral, and
therefore

ψ̂(s) 	 2Js

s2

∫ L

0
dx

∫ x

0
dx0 exp

[−s(x − x0)

u(x)

]
. (29)
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Performing the integral, we obtain

ψ̂(s) 	 2Js

s3

∫ L

0
dx u(x) = 2JsFcL

ζs3
. (30)

If we invert the Laplace transform, we obtain

ψ(t) = JsFcL

ζ
t2, (31)

and thus the regime identified here is a ballistic regime with
a MSD ψ(t) 	 αt2. The nontrivial coefficient α identified in
Eq. (31) is the product of two velocities; the first velocity
is the average velocity JsL, whereras the second velocity
is the characteristic velocity in the fast region Fc/ζ . Note
the nontrivial temperature dependence [as (kBT )1/3] of the
coefficient of the MSD in this ballistic regime.

Now, let us take the small s limit of Eq. (28), for which

ψ̂(s) = 2Js

s2

∫ L

0
dx x 	 L2Js

s2
. (32)

Inverting the Laplace transform leads to ψ(t) = 2Dintt with
Dint as an effective diffusion coefficient at intermediate times,

Dint = L2Js/2. (33)

Thus, the analysis reveals the existence of a diffusive regime
at intermediate-time scales. The effective diffusivity Dint is
proportional to the flux of particles and therefore increases
significantly when the force becomes larger than the critical
force [that is, for increasing ε, see Fig. 2(a)].

When t � τ ∗, the motion becomes effectively diffusive
with an effective diffusion coefficient D∞ = (L2/τ ∗)G(ε),
where G is the same dimensionless function identified in Refs.
[27,29]. It is represented in Fig. 2(b) and shows a maximum for
ε 	 0, leading to the giant enhancement of diffusivity at the
critical force. For completeness we provide in Appendix A a
derivation of D∞ within our formalism, which is an alternative
to the approach of Refs. [27,29].

The ratio of the late-time over the intermediate-time
diffusivity D∞/Dint is shown in Fig. 2(c). It is almost equal to
1 for forces below the critical force (ε < 0) but then vanishes
for larger values of ε. This means that, when the critical force is
reached, the shape of the MSD curves changes drastically. For
F < Fc, one observes a direct transition between a ballistic and
the long-time ballistic regime. When F > Fc, one observes the
intermediate diffusive regime with a diffusivity larger than the
effective diffusivity, which translates by an overshoot of the
MSD and an apparent regime of subdiffusion.

If we summarize all the results, we obtain

ψ(t) 	

⎧⎪⎪⎨
⎪⎪⎩

2D0t, if t  t2,

JsvLt2 if t2  t  L/v,

2Dintt, if L/v  t  τ ∗,
2D∞t, if τ ∗  t,

(34)

with v = Fc/ζ as the velocity in the fast region and t2 =
kBT /(FcLJs). In order to check these predictions, we per-
formed stochastic simulations of the Langevin equation (1) in
the case of a sine potential (see Appendix B for details on the
simulation algorithm). The results presented in Fig. 3 confirm
the validity of the asymptotic regimes described by Eq. (34)

FIG. 3. MSD curves for the diffusion in a sine potential V (x) =
V0 sin(2πx/L) for (a) a tilting force below the critical force (ε = −2),
(b) at the critical force (ε = 0), and (c) above the critical force (ε = 2).
Different values of the noise amplitude are indicated in the legend.
Symbols: results of the simulations of the Langevin equation (1) (see
Appendix B for details). Lines: results of the numerical evaluation
of the Kubo formula (5). Bold lines: asymptotic results of Eq. (34)
(with no free parameters). Note that the regime ψ = 2D0t is not
represented but is present at short times. Units of length and times
are L and ζL2/V0, respectively.

 5



for tilting forces that are below, above, or equal to the critical
force.

V. CONCLUSION

In this paper we have studied the time-dependent dispersion
properties of particles diffusing in a near critically tilted
one-dimensional periodic potential. We have derived explicit
asymptotic expressions for the MSD at different time scales
[Eq. (34)]. The approach to the late-time diffusive limit
depends only on a small number of parameters which charac-
terize the potential in particular regions where the dynamics is
slow. The approach to the diffusive limit is therefore universal
in the sense that it does not depend on the details of the potential
shape.

It has been proposed that the giant increase in the late-time
diffusivity that occurs at the critical force [27] can be used
to estimate barriers of potential energy [40,44]. Here we
have shown that the time-dependent dispersion properties are
strongly modified when the force becomes larger than Fc, in
particular, we have found the presence of a second diffusive
regime at intermediate-time scales. The strong difference
between these two diffusion coefficients could be used as
another signature of the effect of the crossing of the critical
force.

In this paper, we have quantified the transition between
the short-time regime of molecular diffusion and the late-time
effective diffusion. The mean-square displacement between
these regimes can be regarded as “anomalous” in the sense that
it is a nonlinear function of time. Anomalous diffusion can have
a variety of origins in different physical systems and may occur
in the late-time regime for example for particles undergoing
jumps whose sizes or durations follow large distributions [51]
when the distribution of energy barriers leads to diverging
mean occupation times in the local energy minima or when
the convective velocity field has long range correlations [52].
Anomalous diffusion also arises in fractal media [53] when
considering time-dependent microscopic diffusivities [54] or
when the tracer trajectory results from a collective dynamics,
such as in polymer systems [55,56] or complex fluids [57,58].
This paper where we study out-of-equilibrium tracer particles
in periodic media is an example where one can entirely charac-
terize the anomalous time-dependent dispersion properties at
all intermediate-time scales between the molecular diffusion
regime and the final late-time regime, which is however one
of normal diffusion.

APPENDIX A: LATE-TIME EFFECTIVE DIFFUSIVITY

In this appendix we briefly derive an expression for the
late-time effective diffusivity D∞. If we expand the temporal
Laplace transform of the FPT densities for s → 0 we obtain

f̂ (x,s|x0) 	 1 − τ (x|x0)s + · · · , (A1)

f̂s(x,s) 	 1 − τs(x)s + · · · , (A2)

where τ (x|x0) = ∫ ∞
0 dt f (x,t |x0)t is the mean first-passage

time (MFPT) to reach the position x mod L starting from
x0, whereas τs(x) is the MFPT to x with x0 averaged over
stationary initial conditions. Using Eq. (12), we then find that

ψ̂ 	 2D∞/s2 where the effective diffusivity D∞ reads

D∞ = D0 +
∫ L

0
dx

∫ L

0
dx0u(x)Ps(x)u∗(x0)Ps(x0)

× [τ (x|x0) − τs(x)]. (A3)

For forces close to the critical force, this expression can be
simplified considerably. The dominant contribution to this
integral comes from the values of x,x0 that are outside the
slow region in which the diffusive component of the flux
is negligible, and thus u(x)Ps(x) = Js = −u∗(x0)Ps(x0) [cf.
Eq. (21)]. Furthermore, taking x and x0 in [0,L], we realize
that τ (x|x0) is negligible when x0 < x (because the convection
brings the particle to x almost immediately), whereas for
x < x0 this time is equal to the time to cross the slow region,
which is exactly the inverse of the flux Js .

We define τe as the time to escape the slow region starting
from stationary initial conditions, and we note that τs(x)
	 τe is independent of x. Following these considerations, and
neglecting the term D0 in Eq. (A3), we obtain

D∞ 	 J 2
s L2

[
1

2Js

− τe

]
. (A4)

Now let us consider τ∞(x0), the mean time to escape the slow
region, starting from x0 from which τe = 〈τ∞(x0)〉 can be
deduced. We pose y0 = x0/l∗ and τ∞(x0) = τ ∗τ̃∞. Then, the
dimensionless MFPT satisfies the backward equation [1,3],(

3y2
0 + ε

)
∂y0 τ̃∞ + ∂2

y0
τ̃∞ = −1. (A5)

Noting that

∂y0 [ey3
0 +εy0∂y0 τ̃∞] = −ey3

0 +εy0 , (A6)

the differential equation (A5) can be integrated twice, leading
to

τ̃∞(y0) =
∫ ∞

y0

dz

∫ ∞

0
du e−z3+(z−u)3−εu, (A7)

where we took into account the condition that τ̃∞(y0) vanishes
at infinity. Now, the average escape time from the slow region
can be calculated by averaging over Ps given in Eq. (19),
leading to

τ̃e = J̃s

∫ ∞

−∞
dy

∫ ∞

0
dv

∫ ∞

0
dw

∫ ∞

0
du e−(v+y)3−εv+y3

× e−(y+w)3+(y+w−u)3−εu. (A8)

Taking y0 → −∞ in (A7) we can check that the average time
to cross the slow region is also 1/Js . Therefore, we obtain at
the end,

D∞ 	 L2

τ ∗ J̃ 2
s

[
1

2J̃s

− τ̃e

]
= L2

τ ∗ G(ε), (A9)

where the dimensionless function G(ε) is deduced from
Eqs. (20) and (A8), is represented in Fig. 2, and is in excellent
agreement with the results of Refs. [27,29].

APPENDIX B: DETAILS ON SIMULATIONS

We performed numerical simulations of the Langevin
equation (1) by using the algorithm xi+1 = xi + u(xi)� +√

2 �D0wi with wi as a Gaussian random variable of zero
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mean and variance 1, � as the time step, and xi as the position
at time t = i�. Each trajectory was simulated during a time
tm, the position of the particle at the end of a trajectory being
used as the initial position for the next trajectory. The MSD
was then computed with Eq. (4) by averaging over distinct
trajectories. For each parameter, � was chosen small enough
so that we could observe the regime ψ(t) 	 2D0t for small
times (not shown in Fig. 3) and we carefully controlled that

MSD curves, obtained with different �’s, overlapped. In order
to ensure that different runs are independent, the time tm was
chosen large enough to be located in the late-time diffusive
regime. The number of runs was always larger than 8000 for
each parameter set. In the late-time regime, where X(t) − X(0)
is Gaussian distributed, the 95% confidence intervals can be
evaluated to (1 ± √

8/Nrun)ψ so that the precision on ψ is
approximately ±3%.
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