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1 Introduction

Constitutive equations constitute a key concept in mechanical engineering as it relates, for a given
material, strain and stress. The parameters of a constitutive equation are usually adjusted considering
a sufficient set of experimental data through an appropriate fitting procedure. Beyond the mere
description of the mechanical response, a constitutive equation has several purposes:

• it provides a smoothed strain-stress relation in which experimental noise has been smeared out,

• for given loading conditions, e.g. uniaxial extension, it both interpolates and extrapolates be-
tween individual measurements,

• its tensorial nature naturally extends the stress-strain relation to multiaxial loading conditions
that might be difficult to attain experimentally.

Recently, Kirchdoerfer and Ortiz [Kirchdoerfer:2016ft] introduced the concept of Data-Driven
Computational Mechanics (DDCM) for elastic materials, in which constitutive equation vanishes and
is replaced by a database of strain-stress couples (called states) which sample the mechanical response
of the material. In this approach the regularization/smoothing/interpolation of experimental data are
carried out during the computation of the numerical solution of the boundary value problem. The
results presented by the authors are encouraging and open the door to many perspectives from the
modeling point of view, since the necessity of an explicit or implicit strain-stress relation is relaxed.

Let us briefly recall the method of Kirchdoerfer and Ortiz for data-driven simulation in the partic-
ular case of truss structures. It seeks to assign to each truss element of the domain a mechanical state
and a material state: a state being a strain-stress couple. Considering both mechanical equilibrium
(involving stress) and compatibility conditions (involving strain) as non-questionable, the mechanical
state of a given element e consists of a strain-stress pair (εe, σe) which exactly satisfies the above
equations which can be considered as constraints. The second state associated to e, denoted (ε∗ie, σ

∗
ie),

is called the material state and is extracted from a collection of admissible material states for the
material: (ε∗i , σ

∗
i ), where i ∈ 1 : N∗. The index ie ∈ 1 : N∗ specifies the material state of element e.

The proposed solver seeks, for every element simultaneously, a mechanical and a material state as
close to each other as possible and such that the former satisfies mechanical equilibrium and compati-
bility conditions. This is formally expressed as:

solution = arg min
εe,σe,ie

1

2

∑
e

we||(εe − ε∗ie, σe − σ∗ie)||2C , (1)

subject to: ∑
e

weBejσe = fj , (2)

and:
εe =

∑
j

Bejuj . (3)

In the above equations, ||(ε, σ)||C is a given energetic norm, the matrix Bej encodes the connectivity
and geometry of the truss, and we denotes the volume of the truss element e. Furthermore, uj and fj
represent respectively the displacement and the force applied to truss nodes. Figure 1 illustrates the
main ideas behind the method. For the particular choice

||(εe, σe)||2C=
1

2
(Ceε

2
e +

1

Ce
σ2e) , (4)

the authors propose an efficient algorithm to solve this problem of combinatorial complexity. The
constant parameter (possibly defined element-wise) Ce is the only parameter of the method and can
be interpreted as a modulus associated to the mismatch of mechanical and material states.
Although there is no need for a constitutive equation, the database of material states is a mandatory
pre-requisite of the method before starting the simulation.
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Figure 1: The two states (εe, σe) and(ε∗ie, σ
∗
ie) associated to a truss element e. The dashed line represents

the energetic mismatch between the two states. On the left we see that the mapping ie between elements
and material states can assign the same particular material state to two different elements.

Building this database computationally, for example through micro-macro approaches such as FE2

is computationally expensive and might require efficient model order reduction and high dimensional
interpolation techniques. From an experimental point of view however it is far from trivial to be able
to, somehow, measure the strain and stress over a wide range of deformations.

Here we propose a procedure, based on some inversion of the data-driven solver, to extract strain-
stress couples characteristic of an elastic response. The method uses a collection of displacement and
(non homogeneous) strain fields acquired, for example, using Digital Image Correlation techniques. It
identifies simultaneously the stress part of the mechanical state for each loading condition and the full
material states database, which is common to all loading conditions. The proposed method is first
developed for truss structures. The convergence, the influence of measurement noise and the parameters
influence are discussed. It is then generalized to a more general small strain elastic problem. In both
cases the method is validated using manufactured data.

2 Data-driven identification for truss structures

In this section we propose a method, derived from the data-driven solver of Kirchdoerfer and Or-
tiz [Kirchdoerfer:2016ft], to build the material database by identifying strain-stress couples from
experimental measurements.

2.1 Data-driven Identification

Consider a large database of measurements made on real truss structures subject to different loading
conditions; all truss elements being of the same material. For each loading condition, or data item,
indexed by X, we have access to the following quantities:

• the nodal displacements uXj ,

• the truss geometry and connectivity, encoded through the matrix BX
ej . The mechanical strains

are computed as εe =
∑

j Bejuj ,

• the applied forces fXj ,

• the prescribed nodal displacements.

Identifying the material response of the truss elements reduces to the determination of a finite number
N∗ of material states: (ε∗i , σ

∗
i ) , with i ∈ 1 : N∗, common to all the data items (thus independent of

X), and such that:

1. for each data item X the mechanical stress σXe satisfies mechanical equilibrium for X,

2. for each data item X, a material state (ε∗
ieX
, σ∗

ieX
) is assigned to each element e, such that it is

close to the mechanical state (εXe , σ
X
e ) according to a given energetic norm.
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It can formulated as follows

solution = arg min
σX
e ,ε

∗
i ,σ

∗
i ,ie

X
E(σXe , ε∗i , σ∗i , ieX), (5)

with,

E(σXe , ε∗i , σ∗i , ieX) =
1

2

∑
X

∑
e

wXe ||(εXe − ε∗ieX , σ
X
e − σ∗ieX )||

2
C , (6)

and subject to ∑
e

wXe BX
ejσ

X
e = fXj ∀X, j . (7)

Unlike the data-driven solver of Kirchdoerfer and Ortiz, the mechanical strain εXe is not an unknown
of the problem since it can be computed as εXe =

∑
j B

X
eju

X
j .

At first glance, this problem seems to be quite difficult to solve, but we will show that it can be
simplified a great deal. Let us first substitute the expression of the energetic norm in Eq. (5) and
introduce a set of Lagrange multipliers ηXj to enforce the equilibrium constraint Eq. (7). Assuming
that the material state mapping ieX is known, we obtain the following stationary problem

δ

∑
X

∑
e

wXe CXe (εXe − ε∗ieX )
2 + wXe

1

CXe
(σXe − σ∗ieX )

2 −
∑
j

(wXe BX
ejσ

X
e − fXj ) · ηXj

 = 0 (8)

Taking all possible variations yields the following set of equations

δε∗i ⇒
∑
X

∑
ie=i

wXe C
X
e (εXe − ε∗ieX ) = 0 ∀i , (9)

δσ∗i ⇒
∑
X

∑
ie=i

wXe
1

CXe
(σXe − σ∗ieX ) = 0 ∀i , (10)

δσXe ⇒ wXe
1

CXe
(σXe − σ∗ieX )−

∑
j

wXe BX
ejη

X
j = 0 ∀e,X , (11)

δηXj ⇒
∑
e

(wXe BX
ejσ

X
e − fXj ) = 0 ∀j,X . (12)

In the above equations,
∑

ie=i stands for the sum over all elements e assigned to the material state i
i.e. ie = i. Eq. (9) simply states that each material strain ε∗i is a weighted average of the mechanical
strains in elements assigned to this specific material strain. Similarly Eq. (10) states that each material
stress σ∗i is a weighted average of the mechanical stresses in elements assigned to this specific material
stress. The above equations can be simplified and re-interpreted through some simple manipulations.
The combination of Eqs. (11) and (12) yields∑

k

∑
e

wXe C
X
e BX

ejB
X
ekη

X
k +

∑
e

wXe BX
ejσ
∗
ieX = fXj ∀j,X. (13)

This equation simply states that for any data item X, the mechanical imbalance between applied
forces fXj and material stresses σ∗

ieX
is balanced by virtual nodal displacements ηXj considering the

pseudo-stiffness CXe for the truss elements. Finally combination of Eqs. (10) and (11) yields:∑
ie=i

∑
X

∑
j

wXe BX
ejη

X
j = 0 ∀i, (14)

which merely states that the strains originating from all the virtual displacements ηXj and associated
to a particular material state ihave a zero wXe -weighted mean. The combination of Eqs. (13) and (14)
is a symmetric linear system.
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2.2 Solution procedure

To solve the previous set of equations Eqs. (9,11,13,14) and the material state mapping, similarly than
in Kirchdoerfer and Ortiz, we consider the following decoupled algorithm:

1. randomly initialize ie,

2. compute ε∗i from Eq. (9),

3. simultaneously compute σ∗i and ηXj from Eqs. (13) and (14),

4. update the value of σXe using Eq. (11),

5. compute a new state mapping ieX with:

ieX = argmin
ieX

∑
X

∑
e

wXe ||(εXe − ε∗ieX , σ
X
e − σ∗ieX )||

2
C , (15)

6. iterate steps 2, 3, 4 and 5 until convergence of ieX .

Remarks

• Since all the mechanical strains εXe are known, a very good initialization of ε∗i and ie can be com-
puted a priori from Eq. (9) through some kmeans-like algorithm [Lloyd:1982jj, MacQueen:1967uv]

• In this algorithm, Step 3 entails the solution of a large linear system for which all the diagonal
blocks of the left hand side are constant pseudo-stiffness matrices as they do not depend on ie.
Off-Diagonal blocks need to be recomputed at each iteration. This specificity opens the door to
efficient resolution schemes that would re-use the initial Cholesky factorization of the diagonal
blocks.

• Step 4 is computationally inexpensive as it reduces to a matrix vector product.

• Step 5 is expensive as it requires, for each mechanical state, to determine its closest (with respect
to ||·||C ) neighbor in the set of material states.

• Similarly to the data driven solver, the Data Driven Identification proposed here entails only few
parameters: the number N∗ of material states to be identified and the pseudo-stiffness CXe . It
should be noted that CXe is not necessarily the same for all truss elements and data items and
can therefore depend both on e and X. This provides some additional flexibility in the method
and is a tool to weight the data according to some a priori confidence level.

• Even for non-linear material behaviors, the identification procedure only requires the solution of
linear systems and simple database searches.

• The success of the proposed method relies on several ingredients. First, the richness of the
experimental data over all data items X, i.e. the extent of uXj and fXj ensures the identification
of the material behavior over a wide range of strains ε∗i . Second the richness of the individual
data items, i.e. the range of εXi for a given X, which couples different material and mechanical
states through mechanical equilibrium.

2.3 Numerical results

In this section, the DDI method is applied to the identification of the mechanical behavior of truss
elements exhibiting a non linear strain-stress relation. We use a synthetic data set generated by
applying different loading conditions to the 2D truss structure depicted in Figure 2. This structure
is made of 249 nodes and 657 bar elements with a nonlinear strain-stress behavior of the form: σ =
K(ε + ε3). NX = 50 different loading scenarios involving traction, compression and shear have been
simulated. Some representative deformed configurations are depicted in Figure 3. The single parameter
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Figure 2: Undeformed truss structure used for the generation of manufactured data. The structure
comprises 249 nodes and 657 nonlinear bar elements.

Figure 3: Three deformed configurations representative of the learning data-set: traction, shear and
compression.
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Ce is set to 10 as we do not assume any noise on the mechanical strains εXe and therefore wish to put
more weight on the strain part of the energetic norm (cf. Eq. (4)).

In Figure 4 we show, for N∗ = 41 the computed material and mechanical states together with the
"true" constitutive relation used to generate the input data. Both states closely match the constitutive
relation and that the density of material states is higher for small strains as there are more data points.
The quantization of the material states can be observed through the clustering of the mechanical states
around their corresponding material state, for example at high strains.
Figure 5 shows, for two different initializations of the state mapping ie, the convergence of the iterative
process with respect to the minimized quantity E(σXe , ε∗i , σ∗i , ieX). The initialization of ieX and σ∗i with
a simple kmeans algorithm is so good that the first iteration already outperforms the converged result
for a random initialization. All subsequent results are therefore computed with this more efficient
initialization.

Figure 4: Material states (left) and mechanical states (right) computed for N∗ = 41. The dotted
ellipsoid and the arrows illustrates the clustering of the mechanical states around a particular material
state.

Figure 5: Comparison of the convergence for two different initialization of ie for N∗ = 41.

Next, we investigate the influence of noisy input data. Considering that the manufactured data
was gathered through digital image correlation with a 1000 by 1000 pixels grid, we add to the displace-
ment fields uXj a zero-mean uniform noise δuXj with a one pixel amplitude (hence corresponding to a
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standard deviation of 1
2
√
3
≈ 0.29 pixel). This noise model leads to a greater relative influence on small

displacements and mechanical strains. It is expected that the addition of noise will have the following
influence:

• If the noise does not perturb the state mapping ieX , it will only influence the determination of
the material strains ε∗i because Eq. (9) becomes:∑

X

∑
ie=i

wXe C
X
e (εXe + δεXe − ε∗ieX ) = 0 ∀i.

As δεXe = BX
ejδu

X
j has zero mean, it does not introduce any systematic bias in the value of ε∗i .

Furthermore, the effect of noisy data is mitigated for large databases of experimental measure-
ments.

• If the amount of noise if sufficient to perturb the state mapping, it will also affect the computed
values of material stress σ∗i and mechanical stress σXe , thereby reducing the quality of the results.

In order to mitigate the influence of noisy mechanical strains on the state mapping, we see from Eqs.
(4) and (15) that a simple possibility is to reduce the value of Ce. In Figure 6 some material states
computed for Ce = 10 and Ce = 0.1 are shown. As expected large strain values are less perturbed by
noise, and reducing the value of Ce improves results quality.

Figure 6: Influence of Ce with noisy data.

3 Data-Driven Identification for elastic materials

In this section we extend the method developed in Section 2 to the more general case of linear elasticity,
in the limit of small strain. The major change is that the phase space of material and mechanical states
is of much higher dimensionality: a state (mechanical or material) now consists in a linear strain tensor
ε and a Cauchy stress tensor σ, each belonging in a 6-dimensional space (after accounting for their
symmetry).

3.1 Data-Driven Identification

Again, we assume the existence of a large database of measurements, obtained by Digital Image
Correlation or any related technique. Furthermore we consider a linearized kinematics discretized by a
finite element mesh in which each quadrature point e admits an integration weight we. For each data
item X (or snapshot), the following quantities are available:
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• the nodal displacements uXj ,

• the finite element geometry and connectivity, encoded through a matrix BX
ej , which can compute

the mechanical strain εXe =
∑

j B
X
ej · uXj ,

• the applied nodal forces fXj ,

• the prescribed nodal displacements.

The aim of the DDI technique is to compute a number N∗ of material states (ε∗i ,σ
∗
i ) such that:

• for each snapshot X and quadrature point e, we can compute the mechanical state σXe which
satisfies mechanical equilibrium,

• for each snapshot, we can assign a material state (ε∗ie,σ
∗
ie) to each quadrature point e which is

the closest to the mechanical state according to a given energetic norm ||·||2Ce
.

Following Kirchdoerfer and Ortiz , we consider

||(εe,σe)||2Ce
=

1

2
(εe : Ce : εe + σe : Ce−1 : σe) , (16)

where Ce is a (symmetric positive definite) fourth order stiffness tensor. Like in the truss case, we
formulate the global minimization problem as:

solution = arg min
σX

e ,ε
∗
i ,σ

∗
i ,ie

X
E(σXe , ε∗i ,σ∗i , ieX), (17)

with,
E(σXe , ε∗i ,σ∗i , ieX) =

∑
X

∑
e

wXe ||(εXe − ε∗ieX ,σ
X
e − σ∗ieX )||

2
Ce
, (18)

and subject to the global equilibrium equations:∑
e

wXe BX
ej
T · σXe = fXj ∀X, j . (19)

All unknowns are continuous excepted the state mapping ieX which is discrete. For an arbitrary state
mapping, the equilibrium constraints Eq. (19) are enforced by means of Lagrange multipliers ηXj ,
leading to the following problem:

(20)

δ

∑
X

∑
e

wXe (εXe − ε∗ieX ) : Ce
X : (εXe − ε∗ieX ) +wXe (σXe −σ∗ieX ) : Ce

X−1 : (σXe −σ∗ieX )−

∑
j

(wXe BX
ej
T · σXe − fXj ) · ηXj

 = 0 .

Taking all possible variations yields the following set of equations:

δε∗i ⇒
∑
X

∑
ie=i

wXe CeX : (εXe − ε∗ieX ) = 0 ∀i (21)

δσ∗i ⇒
∑
X

∑
ie=i

wXe CeX
−1

: (σXe − σ∗ieX ) = 0 ∀i (22)

δσXe ⇒ wXe CeX
−1

: (σXe − σ∗ieX )−
∑
j

wXe BX
ej · ηXj = 0 ∀e,X (23)

δηXj ⇒
∑
e

(wXe BX
ej
T · σXe − fXj ) = 0 ∀j,X (24)
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The interpretation of these equations is the same as in Section 2. Combining Eqs (22), (23) and (24)
yields the following system that is solved to simultaneously determine σ∗i and σXe (through ηXj ):∑

k

∑
e

wXe BX
ej
T
: CeX : BX

ekη
X
k +

∑
e

wXe BX
ej
T
σ∗ieX = fXj ∀j,X , (25)

and ∑
ie=i

∑
X

∑
j

wXe BX
ejη

X
j = 0 ∀i . (26)

We suggest the following algorithm for computing ε∗i ,σ
∗
i ,σ

X
e and ie:

1. simultaneously initialize ε∗i and ie by a kmeans algorithm on εXe .

2. simultaneously compute σ∗i and ηXj from Eqs. (25) and (26),

3. update the value of σXe using Eq. (23),

4. compute a new state mapping ieX with:

ieX = argmin
ieX

∑
X

∑
e

wXe ||(εXe − ε∗ieX ,σ
X
e − σ∗ieX )||

2
Ce

, (27)

5. update ε∗i from Eq. (21),

6. iterate steps 2, 3, 4 and 5 until convergence of ieX .

Remarks

•

3.2 Results and discussion

Manufactured data, the method proposed in the previous section. The problem consists in the iden-
tification of the mechanical behavior of a non-linear incompressible material with the plane stress
assumption. We consider a 2D finite element mesh with 1340 nodes and 2416 triangular elements,
depicted in Figure 9, and subjected to NX = 40 different loading conditions. Representative deformed
configurations are similar to the ones in Figure 3 in which the bars are now the edges of triangular
elements. The constitutive equation used in the FE simulations is of the form:

σ = G(ε+ αε3)− pI , (28)
p = −(εxx + εyy)− α(εxx + εyy)

3 . (29)

where G and α are the material parameters chosen as G = 5 and α = 5. We consider a tensor Ce
corresponding to the above equation with α = 0 and G = 1. In this case, the kmeans initialization of
ieX is so efficient that only a few iterations are necessary to converge for N∗ = 500.
Since the "true" constitutive law used to generate the data is isotropic, we first investigate the isotropy
of the identified material states. To this end we compute, for each material state (ε∗i ,σ

∗
i ), the angle

θi between the dominant eigenvectors of the strain and stress tensors respectively. The distribution
of these misalignment angles is shown in Figure 7. We observe that for most of the states, the
misalignment angle is less than 1◦. As the identified behavior can be considered isotropic, in Figure 8
we present the first eigenvalue of the material stress tensor (σ∗I ) as a function of the eigenvalues of the
corresponding material strain (ε∗I , ε

∗
II). All points fall very close to the surface that can be built from

the constitutive equation used to generate the input data:

σI
G

= εI + α ∗ ε3I + (εI + εII) + α ∗ (εI + εII)
3 . (30)

The computed material states provide a discrete description of the "true" material response in the range
of strains found in the input data. We now turn to the analysis of the mechanical stress distributions

10



Figure 7: Distribution of misalignment angle θ between ε∗ and σ∗.

Figure 8: Largest eigenvalue of the material stress tensor as a function of the eigenvalues of the material
strain tensor. The symbols are computed from the identified material states (ε∗,σ∗) and the surface
from Eq. (28).
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predicted for all input snapshots. Figure 9 (left & middle) presents the predicted Von Mises stress for
one of the snapshots, and with the relative error on it. The prediction is accurate to less than 10% in
most of the computational domain and reaches 50% in only a few of the 2416 elements, confirming the
accuracy of the DDI method. Figure 9 (right) depicts the distribution of the relative error on the Von
Mises stress for all elements of the 40 snapshots. The observed narrow distribution, with a mean of
8.5% and a median of 5.3% further highlights that the computed mechanical stresses are close to the
actual ones.

Figure 9: Left: predicted Von Mises stress field of a particular snapshot computed from the identified
mechanical stress. Middle: relative error on the Von Mises stress with respect to the true underlying
model. Right: distribution of the relative error of the Von Mises stress for all elements across all
snapshots.

4 Summary and concluding remarks

In this paper, we demonstrate that it is possible to build a Data Driven Identification (DDI) method
that computes admissible strain-stress couples from a set of experimental data, based on the Data-
Driven Computational Mechanics (DDCM) framework recently proposed by Kirchdoerfer & Ortiz.
The method only requires kinematics and applied forces, which are both accessible using Digital Image
Correlation and reasonable assumptions. The computed strain-stress couples can then be used either
as constitutive law surrogate in DDCM, or to fit a classical constitutive model. Stress fields of the
experimental data are also obtained as a byproduct of the algorithm.

The proposed method is for now applicable to elastic behaviors only, where stress is uniquely
determined by strain. Future developments will focus on more complex material responses such as
viscoelasticity, plasticity and damage which involve strain history.
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