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PERMUTATIONS AND NEGATIVE BETA-SHIFTS

characterized which permutations can be obtained by ordering consecutive elements in the trajectories of (positive) beta-transformations and beta-shifts. We prove similar results for negative bases beta.

Introduction

The complexity of a dynamical system is usually measured by its entropy. For symbolic dynamical systems, the (topological) entropy is the logarithm of the exponential growth rate of the number of distinct patterns of length n. Bandt, Keller and Pompe [START_REF] Bandt | Entropy of interval maps via permutations[END_REF] proved for piecewise monotonic maps that the entropy is also given by the number of permutatitions defined by consecutive elements in the trajectory of a point. Amigó, Elizalde and Kennel [START_REF] Amigó | Forbidden patterns and shift systems[END_REF] and Elizalde [START_REF] Elizalde | The number of permutations realized by a shift[END_REF] studied realizable permutations in full shifts in detail. Elizalde [START_REF] Elizalde | Permutations and β-shifts[END_REF] extended this study to β-shifts (with β > 1), and he determined for each permutation the infimum of those bases β where successive elements of the β-shift are ordered according to the permutation. Archer and Elizalde [START_REF] Archer | Cyclic permutations realized by signed shifts[END_REF] considered periodic patterns for full shifts with different orderings.

We are interested in β-shifts with β < -1, which are ordered naturally by the alternating lexicographical order. While several properties for positive bases have analogs for negative bases, negative β-shifts also exhibit interesting new phenomena. For example, Liao and Steiner [START_REF] Liao | Dynamical properties of the negative beta-transformation[END_REF] showed that the support of the unique absolutely continuous invariant measure of the β-transformation has more and more gaps as β → -1, and they determined the combinatorial structure of the gaps.

The β-shift is governed by the β-expansion of 1. This expansion becomes trivial as β → 1, while it is the fixed point of a primitive substitution for β → -1, which is aperiodic. Hence the only permutations that occur in all β-shifts with β > 1 are of the form j(j+1) • • • n12 • • • (j-1), while more permutations are possible for β < -1.

Similarly to [START_REF] Elizalde | Permutations and β-shifts[END_REF], we determine the set of (-β)-shifts allowing a given permutation. Our main result (Theorem 1) was obtained independently by Elizalde and Moore [START_REF] Elizalde | Patterns of negative shifts and beta-shifts[END_REF].

Definitions and main results

For an ordered space X, a map f : X → X, a positive integer n, a point x ∈ X such that f i (x) = f j (x) for all 0 ≤ i < j < n, and a permutation π ∈ S n , let Pat(x, f, n) = π if π(i) < π(j) for all 1 ≤ i, j ≤ n with f i-1 (x) < f j-1 (x).

Otherwise stated, for all 1 ≤ i ≤ n, π(i) = j if f i-1 (x) is the jth element in the ordered list x, f (x), . . . , f n-1 (x). For example, if n = 3 and f 2 (x) < x < f (x), then Pat(x, f, 3) = 231. The set of allowed patterns of f is

A(f ) = Pat(x, f, n) : x ∈ X, n ≥ 1 .
1 For β > 1, the β-transformation is T β : [0, 1) → [0, 1), x → βx -⌊βx⌋, and Elizalde [START_REF] Elizalde | Permutations and β-shifts[END_REF] gave a formula for

B + (π) = inf β > 1 : π ∈ A(T β ) .
Here, we are interested in the (-β)-transformation, which was defined by Ito and Sadahiro [START_REF] Ito | Beta-expansions with negative bases[END_REF] as x → ⌊ β β+1 -βx⌋βx on the interval [ -β β+1 , 1 β+1 ). We find it more convenient to use the map T -β : (0, 1] → (0, 1], x → ⌊βx⌋ + 1βx, which is easily seen to be topologically conjugate to Ito and Sadahiro's one, via x → 1 β+1x (which reverses the order between elements); see Figure 1. Theorem 1 below gives a formula for Instead of numbers x ∈ (0, 1], we will rather consider their (-β)-expansions

B -(π) = inf β > 1 : π ∈ A(T -β ) .
x = - ∞ k=1 d -β,k (x) + 1 (-β) k with d -β,k (x) = β T k-1 -β (x) . Set d -β (x) = d -β,1 (x)d -β,2 (x) • • • , and note that d -β (x) ∈ {0, 1, . . . , ⌊β⌋} ∞ . Then we have x < y if and only if d -β (x) < d -β (y).
Here and throughout the paper, we use the alternating lexicographical order for sequences (or infinite words):

v 1 v 2 • • • < w 1 w 2 • • • if v 1 • • • v k-1 = w 1 • • • w k-1 and v k < w k when k is odd, w k < v k when k is even,
for some k ≥ 1; we will also use it to compare finite words of same length. Note that Ito and Sadahiro used an "alternate order", which is the inverse of our alternating lexicographical order. The set of (-β)-expansions forms the (-β)-shift

Ω -β = {d -β (x) : x ∈ (0, 1]},
which is stable under the shift map Σ :

w 1 w 2 • • • → w 2 w 3 • • • . Thus, for all x ∈ (0, 1], Pat(x, T -β , n) = Pat(d -β (x), Σ, n),
with the alternating lexicographical order on the (-β)-shift.

By Theorem 10 of [START_REF] Ito | Beta-expansions with negative bases[END_REF], we have

w 1 w 2 • • • ∈ Ω -β if and only if, for all k ≥ 1, d -β (1) ≥ w [k,∞) >      0d -β,1 (1) • • • d -β,p-1 (1)(d -β,p (1)-1) if d -β (1)
is purely periodic with odd minimal period length p, 0d -β [START_REF] Amigó | Forbidden patterns and shift systems[END_REF] otherwise.

We denote by w 1 w 2 • • • w n the purely periodic sequence with period

w 1 w 2 • • • w n , w [k,∞) = w k w k+1 • • • , w [i,j) = w i w i+1 • • • w j-1 , w [i,j] = w i w i+1 • • • w j ..
Note that the ordered space Ω -β is not closed; taking the closure of Ω -β amounts to replacing the strict lower bound for w [k,∞) by a non-strict one. By Theorem 3 of [START_REF] Steiner | Digital expansions with negative real bases[END_REF], we know that whenever 1 < α < β we have d -α (1) < d -β (1), and hence

Ω -α ⊆ Ω -β and A(T -α ) ⊆ A(T -β ). A number β > 1 is an Yrrap number if d -β (1)
is eventually periodic. By Theorem 2.6 in [START_REF] Liao | Dynamical properties of the negative beta-transformation[END_REF], each Yrrap number is a Perron number, i.e., an algebraic integer β > 1 with all its Galois conjugates (except itself) less than β in absolute value. On the other hand, not every Perron number is an Yrrap number. However, each Pisot number is an Yrrap number by Theorem 5.15 in [START_REF] Frougny | Negative bases and automata[END_REF].

For a bounded sequence w k + 1 (-x) k = 0, which exists by Corollary 1 of [START_REF] Steiner | Digital expansions with negative real bases[END_REF]. Note that b(w) ≤ max k≥1 w k + 1. If w is eventually periodic with preperiod of length q and period of length p, then b(w) is the largest positive root of the polynomial

w = w 1 w 2 • • • ∈ N ∞ ,
(-x) p+q + p+q k=1 (w k + 1) (-x) p+q-k -(-x) q + q k=1 (w k + 1) (-x) q-k . If w = w and w ≤ u, then we set b(w) = 1.
Throughout the paper, let π ∈ S n be an arbitrary but fixed permutation and

m = π -1 (n), ℓ = π -1 (π(n) -1) if π(n) = 1, r = π -1 (π(n) + 1) if π(n) = n.
The sequence of digits z [1,n) defined by

z j = #{1 ≤ i < π(j) : i = π(n) = i + 1, π(π -1 (i) + 1) < π(π -1 (i + 1) + 1), or i + 1 = π(n) = n, π(ℓ + 1) < π(r + 1)}
will play an important role. See the examples in Section 3 for an effective computation of these digits z j . Following [START_REF] Elizalde | Patterns of negative shifts and beta-shifts[END_REF], we say that

π is collapsed if π(n) / ∈ {1, n} and z [ℓ,n) = z [r,n) z [r,n) or z [r,n) = z [ℓ,n) z [ℓ,n) .
In this case, we also use the digits

z (i) j = z j + 1 if π(j) ≥ π(r + i) and i is even, or π(j) ≥ π(ℓ + i) and i is odd, 0 otherwise, for 0 ≤ i < |r -ℓ|, 1 ≤ j < n. Theorem 1. Let π ∈ S n , β > 1. We have π ∈ A(T -β ) if and only if β > b(a), with a =                  z [m,n) z [ℓ,n) if n -m is even, π(n) = 1, and π is not collapsed, z [m,n) 0 if n -m is even and π(n) = 1, min 0≤i<|r-ℓ| z (i) [m,n) z (i) [ℓ,n)
if nm is even and π is collapsed,

z [m,n) z [r,n) if n -m is odd and π is not collapsed, min 0≤i<|r-ℓ| z (i) [m,n) z (i) [r,n)
if nm is odd and π is collapsed.

In particular B -(π) = b(a), and B -(π) is either 1 or an Yrrap number.

Note that z [m,n) z [ℓ,n) = z [m,n) z [ℓ,m) if ℓ < m, z [m,n) z [ℓ,n) = z [m,ℓ) z [ℓ,n) if ℓ > m.
Theorem 2. We have B -(π) = 1 if and only if a = ϕ k (0) for some k ≥ 0.

It would be interesting to count the permutations with B -(π) = 1. From Bandt, Keller and Pompe [START_REF] Bandt | Entropy of interval maps via permutations[END_REF], we know that lim n→∞ 

N -(π) = ⌊B -(π)⌋ + 1 = max 1≤j<n z j + 1 + ǫ, with ǫ = 1 if π is collapsed or a = max 1≤j<n z j 0, ǫ = 0 otherwise. We have N -(π) ≤ n -1 for all π ∈ S n , n ≥ 3, with equality for n ≥ 4 if and only if π ∈ {12 • • • n, 12 • • • (n-2)n(n-1), n(n -1) • • • 1, n(n -1) • • • 312}.
Moreover, for n ≥ 3, we have

max π∈Sn B -(π) = b (n-2)(n-3) • • • 10 ∈ (n -2, n -1), the maximum is attained only for π = n(n-1) • • • 1 if n is even, π = n(n-1) • • • 312 if n is odd. We mention without proof that b((n-2)(n-3) • • • 10), which is the largest root of x n-1 -(n -2)x n-2 + (-1) n n-3 i=0 (-x) i
, is a Pisot number. We prove that the numbers occurring as B -(π) are exactly the Yrrap numbers. The corresponding question for B + (π) is an open problem of Elizalde [START_REF] Elizalde | Permutations and β-shifts[END_REF].

Theorem 4. Let β > 1. We have B -(π) = β for some π ∈ S n , n ≥ 1, if and only if β is an Yrrap number.

Following [START_REF] Elizalde | Permutations and β-shifts[END_REF], it is sometimes convenient to use the circular permutation

π = π(1)π(2) • • • π(n) ∈ S n , i.e., π(π(j)) = π(j + 1) for 1 ≤ j < n, π(π(n)) = π(1)
. Thanks to this notation π, we get another formulation of the digits z j :

z j = #{1 ≤ i < π(j) : i = π(n) = i + 1, π(i) < π(i + 1), or i + 1 = π(n) = n, π(i) < π(i + 2)}.
In particular, max 1≤i<n z i equals the number of ascents in π with π(1) removed.

Examples

In Table 1, we give the values of B -(π) for all permutations of length up to 4, and we compare them to the values of B + (π) obtained by [START_REF] Elizalde | Permutations and β-shifts[END_REF]. Note that more permutations satisfy B -(π) = 1 than B + (π) = 1; see also the list of open problems at the end of the paper. Some other examples are below. 1. B -(π) and B + (π) for all permutations of length up to 4.

β root of π with B -(π) = β π with B + (π) = β 1 x -
( 

) Let π = 3421. Then n = 4, π = 3142, z [1,4) = 110, m = 2, π(n) = 1, r = 3. We obtain that a = z [2,4) 0 = 100 = ϕ 2 (0), thus B -(π) = b(a) = 1. Indeed, for w = 1 100, we have Pat(w, Σ, n) = π and w = a. (2) Let π = 892364157. Then n = 9, π = 536174892, z [1,9) = 33012102, m = 2, ℓ = 5, r = 1, thus a = z [2,9) z [1,9) = 30121023, and b(a) is the root x > 1 of x 8 -4x 7 + x 6 -2x 5 + 3x 4 -2x 3 + x 2 -3x + 3 = 0. 1 
[1,7) = 200210, z

[1,7) = 211210. Since nm is even, we have Then z [1,4) = 000 and π is collapsed. We get z 

a = min i∈{0,1,2} z (i) [1,7) z (i)
(0) [1,4) = 010 and a = z (0) [2,4) z (0) [3,4) = 1 0, thus B -(π) = 1+

Permutation patterns of integer sequences

We first establish a relation between z

[1,n) and w [1,n) for sequences w ∈ N ∞ satisfying Pat(w, Σ, n) = π. Note w ∈ N ∞ realizes the permutation π ∈ S n , i.e. Pat(w, Σ, n) = π, if and only if w [π -1 (k),∞) < w [π -1 (k+1),∞) for all 1 ≤ k < n: w [π -1 (1),∞) < w [π -1 (2),∞) < . . . < w [π -1 (n),∞) . Proposition 5. Let w = w 1 w 2 • • • ∈ N ∞ and π ∈ S n . Then Pat(w, Σ, n) = π if and only if the following conditions (i)-(iii) hold. (i) w j -w i ≥ z j -z i for all 1 ≤ i, j < n with π(j) > π(i), in particular w j ≥ z j for all 1 ≤ j < n, (ii) w [n,∞) > w [ℓ,∞) if π(n) = 1, (iii) w [n,∞) < w [r,∞) if π(n) = n.
In the proof of Proposition 5, we use the following two lemmas. Lemma 6. Let 1 ≤ i, j < n. If π(i) < π(j) then z i ≤ z j , and z i = z j implies that π(i + 1) > π(j + 1).

Proof. Let 1 ≤ i, j < n with π(i) < π(j). Then z i ≤ z j is clear from the definition of the digits z j . Moreover,

z i = z j implies that π(π -1 (k) + 1) > π(π -1 (k + 1) + 1) for all k / ∈ {π(n) -1, π(n)} with π(i) ≤ k < π(j), as well as π(π -1 (π(n) -1) + 1) > π(π -1 (π(n) + 1) + 1) if π(i) < π(n) < π(j). This gives that π(i + 1) > π(j + 1). Lemma 7. Assume that w [1,n) satisfies point (i) of Proposition 5, let 1 ≤ i < j < n. If π(i) < π(j), then w [i,i+n-j) ≤ w [j,n) , with (-1) n-j π(i + n -j) < (-1) n-j π(n) in case of equality. If π(i) > π(j), then w [i,i+n-j) ≥ w [j,n) , with (-1) n-j π(i + n -j) > (-1) n-j π(n) in case of equality.
Proof. If π(i) < π(j), then we have z i ≤ z j , thus w i ≤ w j , and equality implies that π(i + 1) > π(j + 1) by Lemma 6. Similarly, π(i) > π(j) implies that w i > w j or w i = w j , π(i + 1) < π(j + 1). Recursively, we get the statement of the lemma.

Proof of Proposition 5. Assume first that Pat(w, Σ, n) = π. Then (ii) and (iii) hold immediately. For 1 ≤ i, j < n with π(j) > π(i), we use the telescoping sum

z j -z i = π(i)≤k<π(j), k / ∈{π(n)-1,π(n)} z π -1 (k+1) -z π -1 (k) + z r -z ℓ if π(i) < π(n) < π(j), 0 otherwise.
This relation is also valid with z replaced by w. To prove that w j -

w i ≥ z j -z i , it is therefore sufficient to show that w r -w ℓ ≥ z r -z ℓ if π(n) / ∈ {1, n}, and (1) 
w π -1 (k+1) -w π -1 (k) ≥ z π -1 (k+1) -z π -1 (k) for all 1 ≤ k < n, with k / ∈ {π(n) -1, π(n)}. Since w [π -1 (k+1),∞) > w [π -1 (k),∞) , we have w π -1 (k+1) > w π -1 (k) or w π -1 (k+1) = w π -1 (k) , w [π -1 (k+1)+1,∞) < w [π -1 (k)+1,∞) . The latter inequality means that π(π -1 (k+1)+1) < π(π -1 (k)+1), i.e., z π -1 (k+1) = z π -1 (k) . As z π -1 (k+1) -z π -1 (k) ∈ {0, 1}, this proves (1). Similarly, if π(n) / ∈ {1, n}, then w [π -1 (π(n)+1),∞) > w [π -1 (π(n)-1),∞) implies that w r -w ℓ ≥ 1 ≥ z r -z ℓ or w r = w ℓ , w [r+1,∞) < w [ℓ+1,∞)
; in the latter case, we have π(r + 1) < π(ℓ + 1) and thus z r = z ℓ . The inequality w j ≥ z j follows by setting i = π -1 (1), as z i = 0 and thus w j ≥ z j + w i ≥ z j in this case. This proves (i).

Conversely, assume in the following that conditions (i)-(iii) hold. We claim that (2)

w [i,∞) < w [n,∞) for all i with π(i) < π(n), w [i,∞) > w [n,∞) for all i with π(i) > π(n).
Suppose that the claim is false. If

w [i,∞) ≥ w [n,∞) for some i with π(i) < π(n), then we have π(n) = 1, w [i,∞) > w [ℓ,∞) by (ii), and π(i) < π(ℓ) = π(n) -1. For i < ℓ, Lemma 7 gives that w [i,i+n-ℓ) ≤ w [ℓ,n) ≤ w [i,i+n-ℓ) , thus w [i,i+n-ℓ) = w [ℓ,n) and π(i + n -ℓ) < π(n), w [i+n-ℓ,∞) > w [n,∞) if n -ℓ is even, π(i + n -ℓ) > π(n), w [i+n-ℓ,∞) < w [n,∞) if n -ℓ is odd. Moreover, if w [i,i+k) > w [n,n+k) (≥ w [ℓ,ℓ+k) ), then k > n -ℓ, w [i+n-ℓ,i+k) > w [n,ℓ+k) if n -ℓ is even, w [i+n-ℓ,i+k) < w [n,ℓ+k) if n -ℓ is odd. For i > ℓ, we obtain in the same way that w [i,n) = w [ℓ,ℓ+n-i) and π(n) < π(ℓ + n -i), w [n,∞) > w [ℓ+n-i,∞) if n -i is even, π(n) > π(ℓ + n -i), w [n,∞) < w [ℓ+n-i,∞) if n -i is odd. Here, w [i,i+k) > w [n,n+k) (≥ w [ℓ,ℓ+k) ) implies that k > n -i, w [n,i+k) > w [ℓ+n-i,ℓ+k) if n -i is even, w [n,i+k) < w [ℓ+n-i,ℓ+k) if n -i is odd. If w [i,∞) ≤ w [n,∞)
for some i with π(i) > π(n), then we get the opposite inequalities, with ℓ replaced by r. In particular, we have some i such that

(3) w [i,∞) > w [n,∞) , π(i) < π(n), or w [i,∞) < w [n,∞) , π(i) > π(n).
Let k ≥ 1 be minimal such that there is some i with ( 4)

w [i,i+k) > w [n,n+k) , π(i) < π(n), or w [i,i+k) < w [n,n+k) , π(i) > π(n).
Then the above arguments give

(5) w [j,j+h) > w [n,n+h) , π(j) < π(n), or w [j,j+h) < w [n,n+h) , π(j) > π(n),
for some j ∈ {n-|i -ℓ|, n-|i -r|}, h ∈ {k -n+ ℓ, k -n+ i, k -n+ r}, contradicting the minimality of k. Hence (2) holds. For 1 ≤ i < j ≤ n with π(i) < π(j), we obtain that

w [i,∞) = w [i,i+n-j) w [i+n-j,∞) < w [j,n) w [n,∞) = w [j,∞) , as w [i,i+n-j) < w [j,n) or w [i,i+n-j) = w [j,n) , (-1) n-j π(i + n -j) < (-1) n-j π(n),
by Lemma 7, and the latter inequality implies

w [i+n-j,∞) < w [n,∞) if n -j is even, w [i+n-j,∞) > w [n,∞) if n -j is odd, by (2). Similarly, w [i,∞) > w [j,∞) holds for 1 ≤ i < j ≤ n with π(i) > π(j). Hence Pat(w, Σ, n) = π. Remark 8. If π(n) = 1, then w [n,∞) > w [ℓ,∞) is equivalent to w [n,∞) > w [ℓ,n) . Indeed, suppose that w [ℓ,∞) < w [n,∞) ≤ w [ℓ,n) or w [ℓ,n) < w [n,∞) ≤ w [ℓ,∞) . Then w [ℓ,n) = w [n,2n-ℓ) = w [2n-ℓ,3n-2ℓ) = • • • , hence w [ℓ,∞) = w [ℓ,n) , a contradiction. Similarly, w [n,∞) < w [r,∞) is equivalent to w [n,∞) < w [r,n) if π(n) = n. Hence we can replace w [ℓ,∞) by w [ℓ,n) in Proposition 5 (ii), w [r,∞) by w [r,n) in Proposition 5 (iii).
If π is collapsed, then we have to increase some digits of z 

[ℓ,n) < w [r,n) , hence the collapsedness implies that w [ℓ,n) = z [ℓ,n) or w [r,n) = z [r,n)
. By Proposition 5 (i), we have thus w i > z i for some 1 ≤ i < n, and

w m ≥ z m + w i -z i > z m , as m = π -1 (n) < n (because π is collapsed). If w [1,n) = z (i) [1,n) for some 0 ≤ i < |r -ℓ|, then we have w m = z (i) m = z m + 1.
Assume now that w m = z m + 1. From Proposition 5 (i), we get w j ∈ {z j , z j + 1} for all 1 ≤ j < n. We have w [ℓ,ℓ+|r-ℓ|) < w [r,r+|r-ℓ|) , as

w [ℓ,ℓ+|r-ℓ|) = w [r,r+|r-ℓ|) would imply that w [ℓ,n) = w [r,n) . Since z [ℓ,ℓ+|r-ℓ|) = z [r,r+|r-ℓ|) , we obtain that w r+i -w ℓ+i = (-1) i for some 0 ≤ i < |r -ℓ|, thus w ℓ+i = z (i)
ℓ+i and w r+i = z (i) r+i . By Proposition 5 and its proof, w m = z m + 1 implies that exactly one of the differences (w rw ℓ ) -(z rz ℓ ) and (w

π -1 (k+1) -w π -1 (k) ) -(z π -1 (k+1) -z π -1 (k) ), 1 ≤ k < n, k / ∈ {π(n) -1, π(n)}
, equals 1 and all others are 0. If i = 0, then we obtain that (w rw ℓ ) -(z rz ℓ ) = 1. This implies w j = z j = z (0) j for all 1 ≤ j < n with j = r, [1,n) . Assume in the following that 1 ≤ i < |r -ℓ|. Suppose that π(ℓ + i) and π(r + i) are not consecutive integers, i.e., π(j) is between π(ℓ + i) and π(r+i) for some j. Then Lemma 7 gives that π(j -i+|r-ℓ|) is between π(ℓ+|r-ℓ|) and π(r + |r -ℓ|), contradicting that the pair (ℓ + |r -ℓ|, r + |r -ℓ|) is either (r, n) or (n, ℓ). Therefore, we have {π(r + i), π(ℓ

thus w [1,n) = z (0)
+ i)} = {k, k + 1} for some 1 ≤ k < n, k / ∈ {π(n) -1, π(n)}. Then (w π -1 (k+1) -w π -1 (k) ) -(z π -1 (k+1) -z π -1 (k) ) = 1 for this k, w π -1 (k+1) -w π -1 (k) = z π -1 (k+1) -z π -1 (k) for all other k / ∈ {π(n) -1, π(n)},
and w rw ℓ = z rz ℓ . This implies that w

[1,n) = z (i) [1,n) .
Let us illustrate the previous proof by again considering the (collapsed) permutation π = 7325416. Recall that z 

(n) = 1, then 0z [m,n) ≤ z [r,n) . If π(n) / ∈ {1, n}, then z [ℓ,n) ≤ z [r,n) .
Proof. To prove that a = a, we show that w = w [m,∞) for all sequences w satisfying w

[1,n) = z [1,n) or w [1,n) = z (i) [1,n) for some 0 ≤ i < |r -ℓ|, if π(n) / ∈ {1, n}, w [n,∞) = w [ℓ,n) , if π(n) = 1, or w [n,∞) = w [r,n) , if π(n) = n, or w [n,∞) = 0w [m,n) , if π(n) = 1. (This means that w [n,∞) ∈ {w [ℓ,∞) , w [r,∞) , 0w [m,∞) }.) We first claim that w [i,∞) ≤ w [n,∞) for all i with π(i) < π(n), w [i,∞) ≥ w [n,∞
) for all i with π(i) > π(n). The proof is similar to that of (2). Note that condition (i) of Propositon 5 holds. Suppose that the claim is false, i.e., (3) holds for some i. Let k ≥ 1 be minimal such that (4) holds for some i. Similarly to the last paragraph of the proof of Propositon 5, we obtain for ) . This implies that a = a.

If w [n,∞) = w [ℓ,∞) , then we have w [i,i+k) > w [ℓ,ℓ+k) , π(i) < π(ℓ), or w [i,i+k) < w [ℓ,ℓ+k) , π(i) > π(ℓ),
1 ≤ i, j < n that w [i,∞) ≤ w [j,∞) if π(i) < π(j), thus w = max 1≤i<n w [i,∞) = w [m,∞) . Note that if m = n, then π(n) = n and w [m,∞) = w [ℓ,∞
For π(n) / ∈ {1, n}, we have seen above that w

[n,∞) ≤ w [r,∞) for w [1,n) = z [1,n) and w [n,∞) = z [ℓ,n) , thus w [n,∞) ≤ w [r,n) by Remark 8, i.e., z [ℓ,n) ≤ z [r,n) . In the same way, taking w [n,∞) = 0z [m,n) gives that 0z [m,n) ≤ z [r,n) for π(n) = 1.
The next lemma justifies the definition of collapsedness. Here, a finite word v is primitive if it is not the power of another word, i.e., if v = s k implies that s = v, k = 1. We say that v is almost primitive if v = s k implies that k = 1, or k = 2 and s has odd length. The length of a finite word v is denoted by |v|.

Lemma 11. Assume that w [1,n) satisfies point (i) of Propositon 5. If π(n) = 1 and n-m is even, then w [m,n) 0 is primitive. If π(n) = 1, then w [ℓ,n) is almost primitive. If π(n) = n, then w [r,n) is almost primitive. In particular, for π(n) / ∈ {1, n}, we have z [ℓ,n) = z [r,n) if and only if π is collapsed.
Proof. Let first nm be even, and suppose that w [m,n) 0 = s k for some word s and some k ≥ 2. Then |s| is odd, we have

π(m) = n > π(m + |s|) and w [m,n-|s|) = w [m+|s|,n) , thus π(n -|s|) < π(n) by Lemma 7 (as n -m -|s| is odd). If π(n) = 1, then this is impossible, hence w [m,n) 0 is primitive.
Let now π(n) = 1, and let p ≥ 1 be minimal such that p divides nℓ and w [ℓ,n) = (w [ℓ,ℓ+p) ) (n-ℓ)/p . By Lemma 7, we have, for 1 ≤ i < j ≤ (nℓ)/p,

sgn π(ℓ + jp) -π(ℓ + ip) = (-1) ip sgn π(ℓ + jp -ip) -π(ℓ) .
We distinguish the following cases:

• If p is even and π(ℓ) < π(ℓ + p), then we get that π(ℓ) < π(ℓ

+ p) < π(ℓ + 2p) < • • • < π(n). Since π(ℓ) = π(n) -1, we get n = ℓ + p. • If p is even and π(ℓ) > π(ℓ + p), then we have π(ℓ) > π(ℓ + p) > π(ℓ + 2p) > • • • > π(n), which is impossible. • If p is odd and π(ℓ) < π(ℓ + 2p) (if n -ℓ ≥ 2p), then we obtain that π(ℓ) < π(ℓ + 2p) < π(ℓ + 4p) < • • • < π(ℓ + ⌊ n-ℓ 2p ⌋2p). Therefore, n = ℓ + 2p or (n-ℓ)/p is odd. If (n-ℓ)/p is odd, then we get that π(ℓ+p) > π(ℓ+3p) > • • • > π(n), thus π(ℓ + p) > π(ℓ)
. This implies that π(n) > π(np), and we know from above that π(np) ≥ π(ℓ), hence n = ℓ + p.

• If p is odd and π(ℓ) > π(ℓ + 2p) (if n -ℓ ≥ 2p), then π(ℓ) > π(ℓ + 2p) > π(ℓ+4p) > • • • > π(ℓ+⌊ n-ℓ 2p ⌋2p), thus (n-ℓ)/p is odd. Now, π(ℓ+p) < π(ℓ) is impossible since this would imply that π(n) < π(n-p) ≤ π(ℓ). Therefore, we have π(ℓ) < π(ℓ + p) < π(ℓ + 3p) < • • • < π(n), thus n = ℓ + p. The proof for w [r,n) is symmetric. If ℓ < r and z [ℓ,n) = z [r,n) , then the almost primitivity of z [ℓ,n) gives z [ℓ,n) = z [r,n) z [r,n) , with |n -r| odd. Similarly, ℓ > r and z [ℓ,n) = z [r,n) imply that z [r,n) = z [ℓ,n) z [ℓ,n) , with |n -ℓ| odd. Thus π is collapsed if and only if z [ℓ,n) = z [r,n) .

Characterization of (-β)-shifts

We determine for a given sequence to which (-β)-shifts it belongs. In the following proposition, which is proved at the end of the section, we use the notation

v ′ = v 1 v 2 • • • v j-1 (v j -1)0 if v j = 0, v 1 v 2 • • • v j-2 (v j-1 +1) if v j = 0, for v = v 1 v 2 • • • v j ∈ N + \ {0}
, where N + denotes the set of non-empty finite words of non-negative integers. Then we have

v < v ′ if |v| is even, v > v ′ if |v| is odd.
Proposition 12. Let w ∈ N ∞ be a bounded sequence. Then we have w ∈ Ω -β for all β > b( w) and w / ∈ Ω -β for all 1 < β < b( w). If b( w) > 1, then we have w ∈ Ω -b( w) if and only if w does not end with 0 w, and w = d -b( w) [START_REF] Amigó | Forbidden patterns and shift systems[END_REF] 

or w = v ′ , d -b( w) (1) = v with |v| odd, v primitive. For β > 1, let W -β be the set of sequences w ∈ N ∞ such that w = w, (6) 
-

∞ j=1 w j + 1 (-β) j = 1 and - ∞ j=1 w k+j + 1 (-β) j ∈ [0, 1] for all k ≥ 1.
By Corollary 1 of [START_REF] Steiner | Digital expansions with negative real bases[END_REF], for each w ∈ N ∞ with w = w > u, there is a unique β > 1 such that w ∈ W -β . Let W -1 be the set of sequences w ∈ N ∞ such that w = w ≤ u.

Lemma 13. For 1 ≤ α < β, we have

W -α ∩W -β = ∅. If w ∈ W -1 , then w = ϕ k (0) for some k ≥ 0 or w = u. If w ∈ W -β , β > 1, then w > u.
Proof. By Theorem 1 of [START_REF] Ndong | On the Lyndon dynamical system[END_REF], w ∈ W -1 implies that w = ϕ k (0) for some k ≥ 0 or w = u. (Note that φ(1) should be φ ∞ (1) in Nguema Ndong's theorem.) For

w = ϕ k (0), k ≥ 1, we have - ∞ j=1 wj +1
(-β) j = 1 for all β > 1 by Lemma 3.4 of [START_REF] Liao | Dynamical properties of the negative beta-transformation[END_REF]. By Proposition 3.5 of [START_REF] Liao | Dynamical properties of the negative beta-transformation[END_REF], we have u / ∈ W -β for all β > 1. This implies that W -1 ∩ W -β = ∅ for all β > 1, in particular w > u for all w ∈ W -β , β > 1. Hence, we have W -α ∩ W -β = ∅ for distinct α, β > 1 by Corollary 1 of [START_REF] Steiner | Digital expansions with negative real bases[END_REF].

The set W -β is related to d -β (1) in the following way. Here, {v, v ′ } ∞ dentoes the set of all infinite concatenations of copies of v and v ′ . We use the polynomials

P v1v2•••vj (x) = (-x) j + j k=1 (v k + 1)(-x) j-k . Lemma 14. We have d -β (1) ∈ W -β for all β > 1. If d -β (1) is not purely periodic, then W -β = {d -β (1)}. If d -β (1) = v, v primitive, then w ∈ W -β is equivalent to w ∈ {v, v ′ } ∞ and w = w. Moreover, v does not end with 0, v ′ is primitive, and v ′ ∈ W -β if |v| is odd. Proof. Let β > 1. From d -β (1) ∈ Ω -β , we obtain that d -β (1) ∈ W -β . For w ∈ N ∞ , note that - ∞ j=1 wj +1 (-β) j = 1 implies that - ∞ j=1 w k+j +1 (-β) j = P w [1,k] (β) for all k ≥ 1. We also have P d -β,1 (1)•••d -β,k (1) (β) = T k -β (1) ∈ (0, 1] for all k ≥ 1. If d -β (1) is not purely periodic, then T k -β (1) = 1 for all k ≥ 1, thus (6) holds if and only if w = d -β (1). If d -β (1) = v, then P v (β) = 1, thus v does not end with 0, we have P v [1,|v|-1] (v |v| -1) (β) = 0 and P v ′ (β) = 1. For w ∈ {v, v ′ } ∞ , we obtain that P w [1,k] (β) ∈ [0, 1] for all k ≥ 1, thus 1 + ∞ j=1 w j + 1 (-β) j = lim k→∞ 1 + k j=1 w j + 1 (-β) j = lim k→∞ P w [1,k] (-β) k = 0,
and [START_REF] Elizalde | Patterns of negative shifts and beta-shifts[END_REF] holds by the first paragraph of the proof. If v is primitive, then we have T k -β (1) = 1 for all 1 ≤ k < |v|, hence w ∈ W -β implies that w ∈ {v, v ′ } ∞ . Suppose that v ′ = s k for some k ≥ 2. As v > u, we have s = 0 and thus v = s k-1 s ′ , contradicting Theorem 2 of [START_REF] Steiner | Digital expansions with negative real bases[END_REF]. If |v| is odd, then we have v ′ = lim x→1 d -β (x) by Lemma 6 of [START_REF] Ito | Beta-expansions with negative bases[END_REF], thus v ′ = v ′ and v ′ ∈ W -β .

We also have v ′ ∈ W -β if |v| is even in Lemma 14. Indeed, it can be shown, for any almost primitive word v ∈ N + \ {0} with v = v, that v ′ = v ′ and v ′ is almost primitive. The condition w ∈ {v, v ′ } ∞ in Lemma 14 can be replaced by inequalities.

Lemma 15. Let v ∈ N + \ {0}, w ∈ N ∞ with w = w. Then w ∈ {v, v ′ } ∞ if and only if v ≤ w ≤ v ′ v when |v| is even, v ′ ≤ w ≤ v v ′ when |v| is odd.
Proof. If |v| is even (resp. odd), then v has a prefix that is smaller (resp. larger) than a prefix of v ′ of same length. Therefore, andw [i,∞) starts again with v or v ′ . Hence, we obtain that w ∈ {v, v ′ } ∞ . For odd |v|, it suffices to exchange v and v ′ in these arguments.

w ∈ {v, v ′ } ∞ implies that v ≤ w ≤ v ′ v when |v| is even, i.e., |v ′ | is odd, v ′ ≤ w ≤ v v ′ when |v| is odd, i.e., |v ′ | is even. Assume now that v ≤ w ≤ v ′ v, |v| even, or v ′ ≤ w ≤ v v ′ , |v| odd. Then w starts with v or v ′ . If |v| is even, then w = w implies that w [i,∞) ≤ w ≤ v ′ v for all i ≥ 1. If w [1,i) = v k for some k ≥ 0, then we also have w [i,∞) ≥ v, thus w [i,∞) starts with v or v ′ . If w [1,i) = w [1,j) v ′ v k for some k ≥ 0, j ≥ 1, then w [j,∞) ≤ v ′ v implies that w [i,∞) ≥ v,
Lemma 16. Let 1 ≤ α < β, s ∈ W -α and w ∈ W -β . Then we have s < w.

In particular, we have s < d -β (1), and

s < v ′ if d -β (1) = v, v primitive, thus s ∈ Ω -β .
Proof. We have already seen in Lemma 13 that W -α ∩ W -β = ∅. If α = 1, then we have s ≤ u < w. If α > 1, then we have d -α (1) < d -β (1) by Theorem 3 in [START_REF] Steiner | Digital expansions with negative real bases[END_REF]. As d -α (1) ∈ W -α , d -β (1) ∈ W -β , and the elements of W -α and W -β respectively are contiguous by Lemmas 14 and 15, we obtain that s < w. We also obtain that

s < v ′ if d -β (1) = v, v primitive, hence the lexicographic characterization of Ω -β gives that s ∈ Ω -β .
The following lemma is due to Elizalde and Moore [START_REF] Elizalde | Patterns of negative shifts and beta-shifts[END_REF], cf. Proposition 3 of [START_REF] Ndong | On the Lyndon dynamical system[END_REF]. 

v ′ ≤ w ≤ v implies that w = v ′ or w = v. Therefore, w ∈ Ω -b( w) implies that w ∈ {v ′ , v}. Recall that w ∈ Ω -b( w) means that 0v ′ < w [k,∞) ≤ v for all k ≥ 1, in particular w does not end with 0v ′ or 0v (as 0v < 0v ′ ). Let now w ∈ {v, v ′ }. If, for some i ≥ 1, w [i,∞) starts with v, then w ≤ v gives that w [i,∞) = v. Therefore, w [k,∞) ≤ 0v ′ means that w [k,∞) = 0v ′ (hence w = v ′ ) or w [k,∞) = 0(v ′ ) j v for some j ≥ 0 (hence w = v).
As v ′ ends with 0, this yields that w ends with 0 w if w /

∈ Ω -b( w) .

Note that, if d -b( w) (1) = v, w = v ′ and w does not end with 0v ′ , then the supremum in the definition of w is not attained. For example, if w = 1101(10) 2 1(10) 3 [1,m) for i as in the defnition of a if π is collapsed. As w = a by Lemma 10 and its proof, we have w ∈ Ω -β by Proposition 12. Let x ∈ (0, 1] be such that d -β (x) = w. Then (7) holds. If π(n) = 1, then we have w [ℓ,∞) ≤ w [n,∞) by the proof of Lemma 10 and thus T

d -β,j (x) -d -β,i (x) ≥ z j -z i for all 1 ≤ i, j < n with π(j) > π(i), (7) 
T n-1 -β (x) > T ℓ-1 -β (x) if π(n) = 1, and T n-1 -β (x) < T r-1 -β (x) if π(n) = n. (8) Let w = w 1 w 2 • • • with w [m,∞) = a, w [1,m) = z [1,m) if π is not collapsed, w [1,m) = z (i)
ℓ-1 -β (x) ≤ T n-1 -β (x). For π(n) = n, we have w [n,∞) ≤ w [r,∞) and thus T n-1 -β (x) ≤ T r-1 -β (x). As β > b(a)
, we know that a = d -β (1) by Lemmas 13 and 17. Then T k-1 -β (x) = 1 for all k ≥ 1, and the following results hold for all sufficiently small ε > 0. We have For m = n -3, we have π(n -3) > π(n -1), and a = c0 with c ≥ 1 implies that r = n -2, thus π(n -2) > π(n); this gives that z n-3 > z n-1 , contradicting that a = c0. For m = n-2, a = c0 with c ≥ 1 is not possible. For m = n-1, a = c0 with c ≥ 1 implies that r = n -2 and z r = 0; if π(n) ∈ {1, 2}, then π with π(1) removed has at most n -4 ascents; if π(n) ≥ 3, then z i = 0 for at least 3 indices i, thus c ≤ n -4. By similar arguments, we cannot have m = n and a = (n-3)0.

d -β,k (x ± ε) = d -β,k (x) for all 1 ≤ k < n, thus (7) holds for x ± ε and T k -β (x ± ε) = T k -β (x) ± (-β) k ε for all 0 ≤ k < n. If π(n) = 1, then we obtain that T n-1 -β (x -(-1) n ε) = T n-1 -β (x) + β n-1 ε > T ℓ-1 -β (x) + β ℓ-1 ε ≥ T ℓ-1 -β (x -(-1) n ε).
For n = 3, Table 1 gives that max π∈Sn B -(π) = b(10) = 1+

2 Figure 1 .

 21 Figure 1. (-β)-transformation T -β (left), Ito and Sadahiro's version (middle) and β-transformation (right), β ≈ 2.618.

  where N denotes the set of nonnegative integers, let w = sup k≥1 w [k,∞) . Let ϕ be the substitution defined by ϕ(0) = 1, ϕ(1) = 100, with the unique fixed point u = ϕ(u), i.e., u = 100111001001001110011 • • • . If w = w and w > u, then let b(w) > 1 be the largest positive solution x of 1 + ∞ k=1

1 nTheorem 3 .

 13 log #{π ∈ S n : B -(π) < β} = log β (which is the entropy of the (-β)-transformation) for β > 1, but we do not know whether c n = #{π ∈ S n : B -(π) = 1} grows polynomially; we have c 2 = 2, c 3 = 5, c 4 = 12, c 5 = 19, c 6 = 34, c 7 = 57, c 8 = 82, c 9 = 115, . . . Recall that #{π ∈ S n : B + (π) = 1} = n. It would also be interesting to give more precise asymptotics for the number of permutations with B -(π) < N or B -(π) ≤ N for some integer N ≥ 2. The following theorem characterizes B -(π) < N . Let π ∈ S n , n ≥ 2. The minimal number of distinct elements of a sequence w satisfying Pat(w, Σ, n) = π, w.r.t. the alternating lexicographical order, is

  We get B -(π) ≈ 3.831, and for w = 330121023 301210220, we have Pat(w, Σ, n) = π, w = 301210220 and b( w) = b(a). (3) Let π = 453261. Then n = 6, π = 462531, z [1,6) = 11001, m = 5, π(n) = 1, r = 4, thus a = z 5 z 4 z 5 = 10, b(a) = 2. For w = 110010 2, we have Pat(w, Σ, n) = π, w = 2 and b( w) = b(a).

( 4 )

 4 Let π = 7325416. Then n = 7, π = 6521473, z [1,7) = 100100, m = r = 1, ℓ = 4. Hence π is collapsed, and z

[ 4 , 7 )

 47 = min{200 100, 200 210, 211 210} = 211 210. Therefore, B -(π) ≈ 2.343 is the largest positive root of the polynomial x 6 -3x 5 + 2x 4x 3 -1. We have Pat(211(210) 2k 2, Σ, n) = π for all k ≥ 1 and lim k→∞ b(211(210) 2k 2) = b(a). (5) Let π = 4312. Then it can come from one of the following four permutations π: 1423, 3142, 2314, 4231. When underlying π(1) in π, one actually differentiates the four possible cases, which we study in detail hereafter. • Let π = 1423. Hence π = 4312. We find m = r = 2 and ℓ = 3.

√ 5 2 . 2 .

 22 We have Pat(010 2k+1 1, Σ, n) = π for all k ≥ 0 and lim k→∞ b(10 2k+1 1) = b(a). • Let π = 3142. Hence π = 4312. We find m = 3, r = 1 and ℓ = 2. Then z [1,4) = 001. We get a = z [3,4) z [1,4) = 100 = ϕ 2 (0). Thus B -(π) = 1. For w = 00 10011, we have Pat(w, Σ, n) = π and b( w) = b(10011) = 1. • Let π = 2314. Hence π = 4312. We find m = 4, r is not defined and ℓ = 2. Then z [1,4) = 000. We get a = z [4,4) z [2,4) = 0. Thus B -(π) = 1. We have Pat(000 1, Σ, n) = π and b(1) = 1. • Let π = 4231. Hence π = 4312. We find m = 1, r = 2 and ℓ is not defined. Then z [1,4) = 100. We get a = z [1,4) z [2,4) = 1 0, B -(π) = 1+ √ 5 We have Pat(10 2k+1 1, Σ, n) = π for k ≥ 1, lim k→∞ b(10 2k+1 1) = b(a).

Lemma 9 .

 9 [1,n) to obtain a sequencew ∈ N ∞ with Pat(w, Σ, n) = π. Let π ∈ S n be collapsed, w = w 1 w 2 • • • ∈ N ∞ such that Pat(w, Σ, n) = π.Then w m ≥ z m +1, with equality if and only if w [1,n) = z (i)[1,n) for some 0 ≤ i < |r-ℓ|. Proof. By Proposition 5 (ii)-(iii) and Remark 8, we have w

[ 1 , 7 ) 7 )

 177 = 100100, m = r = 1, ℓ = 4. Choose w ∈ N ∞ with Pat(w, Σ, 7) = π. In order to satisfy w m = z m + 1 = 2, we get from Proposition 5 (i) that the prefix w [1,7) must be one of the following six sequences: 200100, 200200, 200210, 210210, 211210, 211211. But from Proposition 5 (ii)-(iii) and Remark 8, the prefixes 200200, 210210 and 211211 are not possible, only z = 211210 are possible.The following lemma shows that b(a) is well defined.Lemma 10. We have a = a. If π

  thus Lemma 7 gives that (5) holds for j = n-|i-ℓ|, h = k-n+ℓ or h = k-n+i, contradicting the minimality of k. For w [n,∞) = w [r,∞) , the same arguments apply, with ℓ replaced by r. If w [n,∞) = 0w [m,∞) and π(n) = 1, then we have w [i,i+k) < 0w [m,m+k-1) , thus w [i+1,i+k) > w [m,m+k-1) , with π(i + 1) < n = π(m). Now, (5) holds for j = n -|i + 1 -m|, h = kn + m or h = kn + i, contradicting again the minimality of k. This proves the claim.

Lemma 17 .

 17 Let w ∈ N ∞ with w = w. Then we have w ∈ W -b(w) . Proof. If w ≤ u, then b(w) = 1 and w ∈ W -1 . Now suppose w > u. By Corollary 1 of [11], we have w ∈ W -β for some β > 1. We have b(w) ≥ β. If b(w) > β, then Lemma 16 gives that w ∈ Ω -b(w) , hence w = d -b(w) (1), contradicting that w < d -b(w) (1) by Lemma 16. Therefore, we have b(w) = β. Proof of Proposition 12. If β > b( w), then Lemmas 16 and 17 give that w < d -β (1) and w < v ′ if d -β (1) = v, v primitive, thus w ∈ Ω -β . If 1 < β < b( w), then we have w > d -β (1) by Lemmas 16 and 17, thus w / ∈ Ω -β . Suppose in the following that b( w) > 1. If d -b( w) (1) is not purely periodic, then w = d -b( w) (1) by Lemmas 14 and 17, and we have w ∈ Ω -b( w) if and only if w does not end with 0 w. Let now d -b( w) (1) = v, with v primitive. Then w ∈ Ω -b( w) implies that w ≤ v. If |v| is even, then we have w ≥ v by Lemmas 14, 15 and 17, thus w ∈ Ω -b( w) if and only if w = v and w does not end with 0v. Let |v| be odd in the following. Then we have w ≥ v ′ by Lemmas 14, 15 and 17. Note that

6 .

 6 1 • • • , then w = 10, thus b( w) = 2, d -2 (1) = 2, and w ∈ Ω -2 . Proofs of the main results Proof of Theorem 1. By Lemma 10, b(a) is well defined. Suppose first β > b(a). Recall that Pat(x, T -β , n) = Pat(d -β (x), Σ, n) for all x ∈ (0, 1]. By Proposition 5, we have Pat(d -β (x), Σ, n) = π if and only if

  For π(n) = n, this implies that Pat(x -(-1) n ε, T -β , n) = π. If π(n) = n, then T n-1 -β (x + (-1) n ε) = T n-1 -β (x)β n-1 ε < T r-1 -β (x)β r-1 ε ≤ T r-1 -β (x + (-1) n ε). This implies that Pat(x + (-1) n ε, T -β , n) = π in case π(n) = 1. If π(n) / ∈ {1, n}, then we have w [ℓ,n) < w [r,n) , by the definition of z (i) [1,n) if π is collapsed, by Lemmas 10 and 11 otherwise. For even n-m, we have w [n,∞) = w [ℓ,n) < w [r,n) and thus w [n,∞) < w [r,∞) by Remark 8, hence T n-1 -β (x ± ε) < T r-1 -β (x ± ε), which implies that Pat(x -(-1) n ε, T -β , n) = π. For odd nm, we have w [ℓ,∞) < w [n,∞) = w [r,∞) , thus T ℓ-1 -β (x ± ε) < T n-1 -β (x ± ε) and Pat(x + (-1) n ε, T -β , n) = π. We have shown that π ∈ A(T -β ) for all β > b(a).Let now w ∈ N ∞ with Pat(w, Σ, n) = π. We show that w ≥ a, thus π / ∈ A(T -β ) for all β < b(a) by Proposition 12. If π is not collapsed and w[1,n) = z [1,n) , then Propositon 5 gives that max 1≤k<n w k > max 1≤k<n z k = a 1 . If π is collapsed and w [1,n) = z (i) [1,n) for all 0 ≤ i < |r -ℓ|, then we have w m > z m = a 1 by Lemma 9. For w [1,n) = z [1,n) and w [1,n) = z (i) [1,n) respectively, we have w [m,∞) > w [m,n) w [ℓ,n) if nm is even and π(n) = 1, w [m,n) w [r,n) if nm is odd,by Propositon 5 and Remark 8, thus w [m,∞) > a in these cases. If nm is even and π(n) = 1, then we cannot have w < a because this would imply thatz [m,n) 0 > w ≥ w [m,∞) ≥ z [m,n) 0 w > z [m,n) 0,a contradiction. This proves that B -(π) = b(a). Suppose now that π ∈ A(T -b(a) ), with b(a) > 1, i.e., Pat(w, Σ, n) = π for some w ∈ Ω -b(a) . For nm even and π(n) = 1, the previous paragraph and w ∈ Ω -b(a) give the contradiction d -b(a) (1) ≥ w ≥ a = z [m,n) 0 > d -b(a) (1); the last inequality is a consequence of a ∈ W -b(a) (by Lemmas 10 and 17) and Lemma 14, since a = d -b(a) (1) as d -b(a) (1) is not periodic with a period ending in 0, and a = v ′ for d -b(a) (1) = v, v primitive, |v| odd, as z [m,n) 0 and v ′ are primitive by Lemmas 11 and 14 and have different parity. For odd nm or π(n) = 1, we obtain that a < w [m,∞) ≤ d -b(a) (1). Now, we can only have a = v ′ with d -b(a) (1) = v, |v| odd, v primitive, and w [m,∞) = (v ′ ) k v for some k ≥ 0. As w does not end with 0v (since w ∈ Ω -b(a) ), we have k = 0. Then w [m,∞) = w [m+|v|,∞) , thus |v| > nm by the definition of Pat(w, Σ, n), and a = v ′ (with v ′ primitive by Lemma 14) implies that nℓ ≥ |v ′ | > nm, hence ℓ < m if nm is even, nr ≥ |v ′ | > nm of a.

r < m if nm is odd. As v ′ ends with 0, we have z m-1 = 0 if π is not collapsed, z (i) m-1 = 0 if π is collapsed, where i gives the minimum in the definition of a. However, w ∈ Ω -b(a) implies that w m-1 > 0. Then, by Proposition 5, we have max 1≤k<n w k > a 1 or w m = z m + 1, π collapsed. In the latter case, w [1,n) = z (j) [1,n) for some j = i by Lemma 9. If max 1≤k<n w k > a 1 , then w ≤ d -b(a) [START_REF] Amigó | Forbidden patterns and shift systems[END_REF] implies that v ′ = a 1 0, v = (a 1 +1), hence m = n (as |v| > nm) and w [ℓ,∞) = (a 1 +1) (as max 1≤k<n w k = w ℓ and w ≤ d -b(a) [START_REF] Amigó | Forbidden patterns and shift systems[END_REF]); this gives w [ℓ,∞) = w [m,∞) , contradicting that Pat(w, Σ, n) = π. If π is collapsed and w [1,n) = z (j) [1,n) for some j = i, then we 

In the following four cases, we have

We have c ≤ n -2, and the only permutations

contains all digits 0, 1, . . . , c), and π = 12

2 , and the maximum is attained only for π = 312. In the following, let n ≥ 4. We have just seen that B -(π) < n -2 for all but 4 permutations π ∈ S n . Moreover, we have

, and the maximum is attained only for π = n(n-1)

Proof of Theorem 4. By Theorem 1, B -(π) is an Yrrap number for all π ∈ S n with B -(π) > 1. Let now β > 1 be an Yrrap number, w = d -β (1), and p, q ≥ 1 minimal such that w [p+q,∞) = w [q,∞) , i.e., d -β (1) = w [1,q) w [q,p+q) . Define ̺ ∈ S p+q by

• ̺(p + q) = ̺(q) -(-1) p+q . We now define π by increasing the differences in ̺ and putting the missing elements at the beginning, ordered by growth. More precisely, define integers y j recursively for j = ̺ -1 (p + q), . . . , ̺ -1 (3), ̺ -1 (2), 1 ≤ i ≤ p + q such that ̺(i) = ̺(j) -1, by

, and y k ≥ 1 for some ̺(j) < ̺(k) ≤ ̺(j + 1), w jw i -1 if w j ≥ w i + 3, ̺(i + 1) < ̺(j) and y k = 0 for all ̺(j) < ̺(k) ≤ ̺(j + 1), with ̺(p + q + 1) = ̺(q + 1). For ̺(j) = 1, set

Set c = p+q j=1 y j , n = c + p + q, and define π ∈ S n by

With the notation of Theorem 1, we show that a = w for this choice of π,

To prove that z c+i = w i for all 1 ≤ i ≤ p + q, with z n = z c+q , compare z c+jz c+i to w jw i for ̺(i) = ̺(j) -1 = 0. Let h = 1≤k≤p+q: ̺(k)≤̺(j) y k . Then we have

We obtain that z

For y j ≥ 1, we have

Indeed, for j = p + q, we have π(c + j + 1) > π(h + 1) if and only if y k ≥ 1 for some 1 ≤ k ≤ p + q with ̺(j) < ̺(k) ≤ ̺(j + 1). For j = p + q odd, we have i = q, thus w j = w i and y j = 0. For j = p + q even, we have z c+j = z c+q , and y k ≥ 1 for some ̺(p + q) < ̺(k) ≤ ̺(p + q + 1) is equivalent to y k ≥ 1 for some ̺(q) < ̺(k) ≤ ̺(q + 1) (as ̺(p + q + 1) = ̺(q + 1), ̺(q) = ̺(p + q) + 1 and y q = 0). For y j ≥ 2, we have

Here, π(hy j + 2) > π(c + i + 1) is equivalent to ̺(i + 1) < ̺(j) for i = p + q; for i = p + q, we have z c+i = z c+q and ̺(p + q + 1) = ̺(q + 1). If y j = 1, then z h = z c+i + 1 if y k = 0 for all 1 ≤ k ≤ p + q with ̺(j) < ̺(k) ≤ ̺(i + 1), 0 otherwise.

Finally, if y j = 0, then z c+j = z c+i + 1 if ̺(i + 1) > ̺(j + 1), z c+j = z c+i otherwise. Summing up these differences shows that z c+jz c+i = w jw i for ̺(i) = ̺(j) -1 = 0. For ̺(j) = 1, we have z k = k -1 for all k ≤ h = y j and z c+jz h is given above, thus z c+j = w j . Therefore, we have z [c+1,n) = w [1,n) . The minimality of p and q gives that π is not collapsed, hence a = w [1,q) w [q,p+q) = d -β (1).