
HAL Id: hal-01452277
https://hal.science/hal-01452277

Submitted on 5 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Mapping of CDFG onto Coarse-Grained
Reconfigurable Array Architectures

Satyajit Das, Kevin Martin, Philippe Coussy, Davide Rossi, Luca Benini

To cite this version:
Satyajit Das, Kevin Martin, Philippe Coussy, Davide Rossi, Luca Benini. Efficient Mapping of CDFG
onto Coarse-Grained Reconfigurable Array Architectures. ASP-DAC, Jan 2017, Tokyo, Japan. �hal-
01452277�

https://hal.science/hal-01452277
https://hal.archives-ouvertes.fr

Efficient Mapping of CDFG onto Coarse-Grained Reconfigurable Array
Architectures

Satyajit Das∗ †, Kevin J. M. Martin∗, Philippe Coussy∗, Davide Rossi†, and Luca Benini† ‡

∗Univ. Bretagne-Sud, UMR 6285, Lab-STICC, F-56100 Lorient, France,
[firstname].[lastname]@univ-ubs.fr

†Department of Electrical, Electronic and Information Engineering, University of Bologna, Italy,
[firstname].[lastname]@unibo.it

‡Integrated Systems Laboratory, ETH Zurich, Switzerland, [first-initial][last name]@iis.ee.ethz.ch

Abstract— In the approaching era of IoT, flexible and low
power accelerators have become essential to meet aggressive en-
ergy efficiency targets. During the last few decades, Coarse Grain
Reconfigurable Arrays (CGRA) have demonstrated high energy
efficiency as accelerators, especially for high-performance stream-
ing applications. While existing CGRAs mostly rely on partial
and full predication techniques to support conditional branches,
inefficient architecture and mapping support for handling con-
trol flow limits the use of CGRAs in accelerating either only in-
ner loop bodies, or transformed loops specifically adapted to the
target CGRA. This paper proposes a novel CGRA architecture
with support for jump and conditional jump instructions and
a lightweight global synchronization mechanism to enable com-
plete Control Data Flow Graph (CDFG) mapping in an ultra-low-
power environment. The architecture is coupled with a complete
design flow that efficiently maps applications with heavy control
flow starting from a generic C language description. The proposed
mapping approach reduces the impact of wasteful instruction is-
sues in the conventional approaches of predication providing an
average energy improvement of 1.44x and 1.6x when compared to
the state of the art partial and full predication techniques. More-
over, the proposed method achieves an average speed-up up to 21x
and an energy improvement up to 50.42x while executing applica-
tions with heavy control flow with respect to sequential execution
on a low-power embedded CPU, demonstrating its suitability for
next generation IoT applications.

I. INTRODUCTION

During the last few decades, CGRA architectures have
been mainly proposed for accelerating high-performance com-
pute intensive and applications providing significant energy
efficiency boost with respect to general-purpose processors.
CGRAs are indeed an interesting trade-off between Field Pro-
grammable Gate Arrays (FPGAs) and many-core architectures
thanks to their capability to exploit spatial computation typi-
cal of hardwired accelerators while maintaining high-level pro-
grammability typical of general-purpose processors [18]. How-
ever, in most state of the art models, CGRAs are coupled to
a general purpose processor, where the processor executes the
control parts and delegates data-flow parts to the CGRA [2, 17],
precisely inner loop part. Hence, the success of such a par-
titioning is limited to applications where the execution time in

the CGRA plus the communication overhead is less than the ex-
ecution time on the processor only. This approach has demon-
strated effectiveness in high performance environments, but it
is much more challenging for deeply embedded applications
where relatively small datasets do not allow CGRAs to fully ex-
ploit their streaming capabilities. Moreover, existing CGRAs
mostly rely on partial and full predication techniques to support
conditional branches [6] [7]. Although these techniques have
be proven to be extremely effective for high-performance appli-
cations, as they can efficiently expose parallelism hence lead-
ing to faster execution, they also lead to a waste of resources
and redundant instruction fetches, not suitable for a low- power
environment where the primarily target is energy efficiency.

This paper proposes a framework to execute full control flow
on CGRAs in an ultra-low-power (ULP) environment, com-
pletely releasing the host processor from performing loops con-
trol. This solution addresses standalone execution of all the
levels of the loops, who is capable of mapping both loops and
conditionals, and gives great flexibility to accommodate full
application mapping on the CGRA. To enable lightweight sup-
port for control flow in CGRAs, we propose a novel CGRA
architecture capable of executing jump and conditional jump
instructions, and capable of synchronizing processing elements
after executing jump or conditional jump. This approach also
eases power management of unused tiles of the CGRA, that can
be clock gated and power managed when waiting on global
synchronization barriers, avoiding unnecessary waste of en-
ergy. When compared to state of the art methods to handle
conditionals in CGRAs, namely partial and full predication, the
proposed approach provides an average energy improvement of
1.44x and 1.6x, respectively, when executing a wide set of sig-
nal processing applications. When compared to a low-power
OpenRISC CPU [10], a 4x4 CGRA architecture implemented
in 28nm UTBB FD-SOI [13] technology achieves 100 MHz
of operating frequency and power density of 1.78 µW/MHz at
0.6V, compared to 45 MHz and 3.54 µW/MHz achieved by the
CPU, with an area overhead of 2.5x. When executing a wide
range of signal processing applications our results show that
the proposed CGRA architecture, along with the mapping ap-
proach, achieves an average speed-up of 21x, 4.8x and 4.8x
with respect to a low power CPU, with -O0, -O2, -O3 opti-
mization options, respectively, leading to a peak energy im-
provement of 50.42x.

The paper is organized as follows. The next section dis-
cusses the background and related work. Section 3 presents
the context and contribution of this paper. Subsequently the
mapping method is described in section 4. Section 5 elabo-
rates on the need for hardware support to handle full control
flow of an application and also presents the CGRA architec-
ture to support mapping of CDFG. In section 6 experimental
set-up is presented and results are discussed. Finally the paper
concludes in section 7.

II. BACKGROUND

Several solutions have been proposed to map large applica-
tions with control flow onto CGRAs. The most commonly em-
ployed solution is to couple the CGRA with a host processor.
Loosely coupled CGRAs like MorphoSys [17] or FLORA [11]
employ shared registers or a special bus to connect the CPU
to the CGRA. In Morphosys a tiny RISC processor, a fixed
8×8 16-bit Processing Element (PE) array, a data cache and
DMA controller are linked together. The RISC processor han-
dles control flow code, while the PE array accelerates data flow.
ADRES [2] defines a template which allows application op-
timization, using two modes of operation (VLIW mode and
CGRA mode) in mutually exclusive manner. VLIW mode han-
dles the outer loops and CGRA mode concentrates on execut-
ing inner loop part. ADRES implements predicated operations
for inner loop control flow.

Partial predication [6] maps instructions of both if-part and
else-part on different PEs. If both the if-part and the else-part
update the same variable, the final result is computed by se-
lecting the output from the path that must have been executed
based on the evaluation of the branch condition. Full predica-
tion [7] addresses the loss of performance due to the execution
of both paths and the select operations. It does not require a
select operation, instead, the operations that update the same
variable are mapped to the same PE but at different times. The
correct value of the output will be present in the PE after the
maximum time. Since operations from one of the paths are ex-
ecuted at runtime and operations of the other path are squashed,
the performance of full predication is degraded. Since the PE
fetches the instructions on an unnecessary path, the condition
can be checked only after fetching.

An upgrade of full predication was proposed in [8]. This
scheme prevents the wasted instruction issues from false con-
ditional path by introducing sleep and awake mechanisms, but
it does not improve performance in terms of latency. Dual issue
scheme in CGRA [6] improves the latency by issuing two in-
structions to a PE simultaneously, one from the if-path, another
from the else-path. But this proposition is too restrictive, as far
as imbalanced conditionals are concerned. All the approaches
mentioned in this section do not map the outer loops of a nested
loop application. Rather they focus on innermost loop only.

This paper implements all the conditionals efficiently in-
side the CGRA, improving energy consumption, whereas low
power CGRA like [15] only focuses on DFG mapping. HPC
Machines like RHyMe [4], ReNÉ [12] can execute loops inde-
pendently. These architectures are based on REDEFINE [1]
CGRA, which consists of a set of reconfigurable data-paths
called HyperCells interconnected through a network-on-chip
(NoC). While the data flow in these architectures rely on power

hungry communication through switched network and NoC,
the architecture proposed in this paper uses simple point to
point data communication. Also the proposed CGRA architec-
ture supports automated global synchronization of processing
elements (PE) to orchestrate kernel execution. This makes it
suitable for the ultra low power environment, as shown in the
experiments.

III. CONTEXT AND CONTRIBUTION

This paper focuses on mapping complete applications (in-
cluding control structures) onto a CGRA. The high level ab-
straction of the application is directly taken as an input in the
form of a CDFG. The other input is the CGRA model where
the CDFG has to be mapped on. Formally, a CDFG is repre-
sented as G = (V,E) where V is the set of basic blocks and
E ⊆ V × V is the set of directed edges representing control
flow. A Basic Block (BB) is represented as a data flow graph
(DFG) orBB = (D,O,A) whereD is the set of data nodes,O
is the set of operation nodes andA is the set of arcs representing
data dependencies. A basic block is a sequence of consecutive
statements in which flow of control enters at the beginning and
leaves at the end of basic block. The control flow at the end of
basic block is supported with jump (jmp) and conditional jump
(cjmp) instructions.

��������

��������

�����	���

�
������

�	���	�

��
�������������������

�

��������������

���������������

����������

�����������

������������
�

��� �

������������	�

!

""#�

�����������������

�����	�����
������

�	���	���������

""#�

��������

""#$

������

""#�

��������������

���������������

����������

""#

�������

""#	

������������
�

""#%

������������	�

&��

�&��

&��

&�� &��
&��

""#'

()* �+��

*,����
�

����

�&��

Fig. 1. Sample program and corresponding CDFG

TABLE I
THEORETICAL EFFICIENCY OF THE PROPOSED APPROACH

#instructions fetched #instructions executed
Partial
pred

Full
pred

Proposed
approach

Partial
pred

Full
Pred

Proposed
approach

3n 2n n 3n n n

Fig. 1 represents a sample program and the corresponding
CDFG. In this figure basic blocks are represented as blue rect-
angles. The flow from one basic block to another basic block
is represented by black arrows and managed by jmp operation.
The true and false path of a conditional which are managed
by cjmp are shown by solid and dashed arrows respectively.
Considering the execution flow of the above mentioned CDFG:
BB 1→ BB 2→ (either BB 3 or BB 8) if BB3 → BB 4

→ (either BB 5 or BB 6)→ BB 7→ BB 2 · · · in CGRA,
it becomes imperative to synchronize all the tiles to the execu-
tion of the same basic block. When the execution flow jumps
from one basic block to another, all the tiles in CGRA must be
synchronized to the current basic block execution. This is nec-
essary as all the tiles can be used concurrently or sequentially
to execute a single basic block. Hence, several basic block can
use same PE in different time.

Table I presents a theoretical study of the efficiency of this
synchronization based approach over partial and full predica-
tion. Here we have considered a conditional that has n oper-
ations in each path. All the n outputs of n operations from
each path will be used in the rest of the program. Hence, par-
tial predication needs to execute 3n instruction (2n from both
the paths and n select instructions). Full predication requires
to fetch all the 2n instructions, but it can squash execution of
n instructions from the false path depending on the predicate
value. The proposed approach in one hand reduces the waste-
ful execution of the partial predication and instruction fetches
in the full predication, decreasing overall energy consumption
while executing kernels. The results show that the proposed
approach achieves an average of 1.44× and 1.6× energy im-
provement over partial and full predication.

In summary the contributions of this work are: (a) A map-
ping support for full control flow of an application onto the
CGRA. (b) A novel CGRA architecture to support execution
of CDFGs, which is implemented using STMicroelectronics
UTBB FD-SOI 28nm technology. (c) The efficiency of control
flow execution over cpu performance. We show that, we are
able to execute CDFGs with much more parallelism than a sin-
gle cpu, leading to significant speed-up and energy efficiency
boost, even with very moderate assumptions on the available
bandwidth to memory. In addition, the area overhead of CGRA
with different dimensions is given with respect to a cpu. (d)
The energy improvement for execution of several kernels using
the proposed mapping approach, compared to the state of the
art mechanisms to handle control flow.

IV. PROPOSED METHOD

A. Problem formulation

As the basic blocks in a CDFG are represented as DFGs, any
of the known DFG mapping onto CGRA [5, 16, 3, 9] can be ap-
plied to map the basic blocks. Mapping of the basic blocks is
done independently, since execution of basic blocks are mu-
tually exclusive. So each basic block can use the maximum
available resources, increasing the flexibility of the mapping.
Problem arises for the variables which are used in several ba-
sic blocks. As an instance, variable c in the CDFG (Fig. 1) is
used as result in BB 3 and as operand, in BB 4, BB 5 and
BB 6. So the same register allocation must be used in BB 4,
BB 5 andBB 6 where cwas written inBB 3. The same goes
for X1, X2, X3, X4, X5, i, a and b. These variables will be
referred to as symbol variables in this paper. Allocated reg-
isters for these variables will be denoted with an overline, as
variable name. In our sample program m, n are the input ar-
rays and p is the output array. The inputs and outputs are dealt
with normal load and store operations in CGRA.

Another problem arises while ordering the basic blocks for
mapping, i.e. traversing the CDFG. To illustrate this problem

let’s consider a scenario, scenario 1 where BB 6 is mapped
first, BB 3 is mapped next and so on. When mapping BB 6,
variables c and X5 are placed at c̄ and X5. When mapping
BB 3, c and X5 which are already mapped in BB 6, must be
considered because c will be used to map c in BB 3. In other
words, the placement of the variables in the memory elements
must be respected. Also a, b, X1 and X2 must not reuse X5.
Otherwise, X5 will have wrong value when executing BB 6.
Let’s consider scenario 2 with another order, like first BB 3
and then BB6 and so on, then it is necessary to pass c and
X5 from BB 3 to BB 6 mapping. To keep c and X5 alive in
BB 6, c and X5 both must be used in mapping of BB 6. The
placement or binding information which are passed from the
mapping of one basic block to mapping of the other basic block
is referred as constraints (e.g. scenario 1: c and X5 passed
fromBB 6 toBB 3). There are two kinds of constraints. Con-
straints related to data that are used within a basic block map-
ping phase (e.g. scenario 1: c in BB 3 mapping) are called as
target location constraints. Some of the data related to the con-
straints may not be used in the basic blocks but the constraints
must be respected in the mapping of basic blocks. In order to
keep these variables alive it is necessary to reserve the mem-
ory elements. Hence, while mapping the basic block, these
resources must not override (e.g. scenario 1: X5 in BB 3
mapping). These are called reserved location constraints. If
the number of reserved location constraints is high, mapping a
basic block becomes more complex. The number of reserved
location constraints varies with the traversal of the CDFG. The
effect becomes more prominent for larger applications with
large number of data, larger number of basic blocks and com-
plex control flow. Hence, an appropriate traversal is necessary
to map the full CDFG efficiently.

The basic solution to deal with the symbol variables is to
load and store the variables when necessary. The symbol vari-
ables will be stored where they are used as results and will be
loaded when used as operands. This basic solution reduces the
complexity of the mapping as there is no constraints in the basic
block mapping. On the other hand it requires a huge memory
bandwidth, significantly reducing the energy efficiency of the
system. In the rest of the paper this basic solution is referred to
as systematic load-store based approach.

B. Proposed approach

The proposed solution is named as register allocation based
approach. The idea is to map the symbol variables in the reg-
ister file of the processing element (PE). The symbol variables
will be written in register file, where they are used as results
and be retrieved from the registers where used as operands.
In this approach, the effects of constraints in mapping are in-
evitable. Reserved location constraints restrict the use of some
resources. Target location constraints force to reuse some re-
sources. If there is only a single target location constraint in a
basic block mapping, it becomes easier to start mapping from
the known place. But as a matter of fact situations often arise
where there appear several target location constraints while
mapping a basic block. Forced placements by these constraints
induce extra routing effort. To illustrate this, lets consider a
scenario where BB 1 and BB 4 in Fig. 1 are already mapped
(variables X1, X2, X3, X4, X5, c, i already mapped). The
mapping ofBB 3 must be done with target location constraints

c, X1 and X2 and reserved location constrains X5, X3, X4
and i . a and b will be mapped in the respective PEs where X1
and X2 are allocated. Extra routing effort may be necessary
to bring a and b to the PE where c is allocated. The mapping
can be done because the addition operation attached to c must
produce it in c which is a register in the register file (RF) of the
corresponding PE. A graphical view of this issue is presented
in Fig. 2, where BB 3 is being mapped onto a 3 × 1 CGRA
with 4 registers in the RFs of each PE (R0 is the output reg-
ister, see Fig. 4). In this CGRA, we consider the register files
are local to the PEs. Connection between PEs are from output
register (R0) to the inputs of neighbouring PE.

Fig. 2. Extra routing due to constraints in DFG mapping

As we can see in Fig. 2, execution starts with the target
location constraints c (PE3 − R2), X1 (PE1 − R1) and
X2 (PE2 − R3), and the reserved location constraints X3
(PE2 − R2), X4 (PE1 − R4), X5 (PE3 − R4) and i
(PE3 − R1). The target location constraints force to map a,
b in PE1 and PE2. Let’s say they are mapped in PE1 − R2
and PE2 − R1, as they will be produced in cycle 1. In cycle
2, a and b can not be accessed to produce c. That is why extra
routing is necessary to map the operation attached to c. The
routing of a, b from the register file to the output registers is
done in cycle 2 and in the next cycle c is generated in c which
is (PE3 − R2). Hence, mapping of the operation attached to
c in this case, will experience longer schedule due to the con-
straints.

As mentioned earlier CDFG traversal has an impact on the
number of reserved location constraints during the basic block
mapping. Hence, it is necessary to select the basic blocks
wisely for mapping. Four traversal strategies have been stud-
ied: 1) Forward breadth first traversal, 2) backward breadth
first traversal, 3) depth first traversal and 4) random traversal.
It appears that forward breadth first traversal induces the least
number of reserved location constraints in the mapping of ba-
sic blocks1. Due to the data-flow between the basic blocks,
generated symbol variables are most likely to be used in the
successor basic blocks. In the forward breadth first traversal,
the basic blocks with a greater number of symbol nodes are
mapped earlier which also helps to reduce the number of tar-
get location constraints. More precisely the modified forward
breadth first traversal is used to order the basic blocks while
mapping. Fig. 3 shows the full compilation flow. The compiler
takes application C code and the CGRA model as inputs. The C

1the comparaison results are not given due to space limitation

code is compiled to produce a CDFG. Each basic block in this
CDFG is then mapped following the modified forward breadth
first manner. At last the compiler produces the binary for each
PE.

������ �����	���

��	��

����

����

�
����������

����
����
����

�
���

���
���

���������

�
������

Fig. 3. The proposed mapping flow

V. CGRA ARCHITECTURE

As the mapping depends on control flow, CGRA which is
being targeted by this approach must support two additional
instructions jmp and cjmp. Every processing element in the
CGRA executes the same jmp or cjmp instruction after execu-
tion of corresponding basic block, to synchronize to the next
basic block execution. Every basic block has a starting address
which is referred in jmp or cjmp instruction. Each processing
element (PE) has its own instruction memory (IM), so that dif-
ferent instructions can be stored at the same address of each
IM. Therefore, each PE can operate differently according to
the instructions stored in the local IM. This makes it possible
to achieve Multiple Instruction Stream, Multiple Data Stream
(MIMD) operation in the processor array. The PEs are orga-
nized as an array using a mesh torus topology (Fig. 4), giving
the opportunity to connect directly to four neighbouring PEs.

PE 1 PE 2 PE 3 PE 4

PE 5 PE 6 PE 7 PE 8

PE 9 PE 10 PE 11 PE 12

Fig. 4. 3 × 4 CGRA with mesh torus topology

A. Architecture of PE

Fig. 5 shows the system level architecture of a PE. The in-
ternal blocks are explained as follows. Input mux: Two input
muxes are there for selecting two operands (OpA and OpB).
The sources are the neighbouring PEs and the register file. 32-
bits ALU+multiplier (16x16 bits) executes arithmetic and log-
ical operations. The shifter performs shift operation on OpA
by OpB bits. Load store unit (LSU) is optional for the PEs.
Controller is responsible for selecting the address of next in-
struction to be executed. For the CGRAs coupled with host,
this unit has to carry extra burden of managing stalls. Regu-
lar Register File (RRF) and Output Register (OR) are used
to store temporary variables. Constant register file (CRF) is

dedicated to store constants. Cond Register is one bit register,
which contains 0 for all the normal operations and true condi-
tions. The value is set to 1 on false condition. The boolean
OR of all the control bits from all the PEs gives the indication
that one PE has executed false condition. Consequently in the
next cycle, offset address of the basic block from false path is
fetched. Jump Register contains the address to be jumped.
Instruction Memory holds 32, 20-bits instruction.

ALU + Multiplier Shifter LSU

In0 MUX In1 MUX

RRF/

32x8

Deco

der

32 32

North

South

East

West

Controller

IR OR

32

20

20

32

32

Data

mem

interfa

ce

DP Req

DP Resp

Output data

to other tiles
Instruction

memory

PC

Jump Register

Cond Reg
CRF/

32x16

 In0 In1

Control bit out

C
o
n
tr
o
l
b
it
 i
n

Fig. 5. Design of processing element

VI. EXPERIMENTS & RESULTS

A. Experimental setup

The proposed mapping flow has been fully automated
through a software tool implemented by using Java and Eclipse
Modeling Framework (EMF). GCC 4.8 is used to generate CD-
FGs from applications described in C language. A cycle ac-
curate model of the CGRA architecture presented in this pa-
per has been developed in C++. The binary generated by the
CGRA compiler is fed into this simulation model. The latency
of all operations in CGRA is assumed one cycle, without loss
of generality. Load and store operations requires two CGRA
operations, one for address bus transaction and the other for
data bus transaction. Firstly, the (a) proposed register allo-
cation based approach and the (b) basic solution systematic
load store based approach are compared with the performance
of a CPU in terms of number of cycles. The low-power cpu
chosen is a Or1K [10]. The results are obtained with OVP-
sim [14]. The binary is obtained with the toolchain provided
by OVPsim. The simulator is instruction-accurate, and we as-
sume one cycle per instruction to be in line with one cycle per
operation in the CGRA. The performance comparison of stan-
dalone execution in CGRA and CPU, is done for -O0, -O1,
-O2 and -O3 optimizations for CPU. Secondly, we compare
area and energy consumption of the post synthesis implemen-
tation of CGRA with that of CPU in STMicroelectronics 28nm
UTBB FD-SOI technology. They were synthesized using Syn-
opsys design compiler, and Synopsys PrimePower was used for

TABLE II
AREA INFORMATION

area in µm2

Gate countCombinational Sequential Total
cpu 50,000 113,636
CGRA 2x2 21,938 16,911 38,849 88,293
CGRA 3x3 41,326 38,035 79,361 180,366
CGRA 4x4 66,532 67,553 134,085 304,739

Fig. 6. Performance of proposed mapping approach in a CGRA with infinite
band-width

power analysis. Table II refers the area of the information in-
cluding 1kB of instruction memory for the CPU and 32 20-bit
words of instruction memory per tile for CGRA. We performed
timing analysis and power analysis at 0.6V supply voltage at
the temperature of 25◦C. In this operating point, the processor
can achieve 45 MHz, with a power density of 3.54 µW/MHz,
while a 4x4 CGRA achieves 100 MHz and a power density of
1.78 µW/MHz thanks to the much simpler structure of the tiles
architecture with respect to a CPU.

B. Results

We have carried out a first set of experiments on the two
approaches presented in this work: (a) systematic load store
and (b) register allocation. We have first considered a 4x4
CGRA with ”infinite bandwidth”. Each PE in this case has
a LSU and the number of load store per cycle is not limited,
since this represents the theoretical worst case for the register
allocation approach and the best case for the systematic load
store approach we want to compare with. Fig. 6 shows the
performance of the proposed register based approach and the
basic load-store based approach normalized to cpu execution,
for different optimization options. For all the cases, register
based mapping approach achieves best performances. System-
atic load store based approach sometimes (for matrix multipli-
cation and masque) performed even worse than cpu.

Fig. 6 sums up the performance gain for different applica-
tions. The speed-up decreases with the compilation option as
very aggressive compilation optimizations on loops are per-
formed on the cpu with -03. Even if we do not implement such
aggressive passes in our flow, still we are able to accelerate.

In Fig. 7, to show the effect of a more realistic number of
load-store units on the mapping approaches we limit the num-
ber of load-store units to 4 (top row) [2], and we compare the
results with respect to a CPU. Systematic load-store based ap-
proach performs not up to the mark, whereas register based
approach gets much less effected by the limit of aggregated
bandwidth. The speed-up with respect to a general-purpose

Fig. 7. Performance of proposed mapping approach in a CGRA with limited
band-width

TABLE III
ENERGY CONSUMPTION IN µJ, IN CPU AND CGRA

Opt -O0 opt -O1 opt -O2 Opt -03
kernels CGRA CPU CGRA CPU CGRA CPU CGRA CPU
FFT 0.021 5.016 0.021 0.589 0.018 0.582 0.018 0.582
Convolution 1.256 14.493 0.556 2.632 0.556 2.184 0.556 2.183
Non sep filter 6.373 269.817 5.275 36.713 2.061 31.89 2.061 32.158
FIR 0.103 1.358 0.051 0.206 0.051 0.162 0.051 0.162
Matrix mul 0.002 0.022 0.001 0.004 0.001 0.003 0.001 0.003
Sep filter 5.083 166.419 4.318 24.129 1.932 21.179 1.931 21.179
Masque5x5 0.003 0.01 0.001 0.002 0.001 0.002 0.001 0.002

processor decreases with the compilation option, due to strong
CPU- dependent optimization passes performed by GCC. Ta-
ble III presents energy consumption for several kernel execu-
tion in a 4x4 CGRA and a CPU, showing that the proposed
approach outperforms the sequential execution on a CPU by
up to 21x and 50.42x in terms of performance and energy ef-
ficiency, respectively. The results show that with the proposed
approach we can execute CDFGs with much more parallelism
than a single CPU, leading to significant speedup and energy
efficiency boost, even with very moderate assumptions on the
available bandwidth to memory. In addition, the area overhead
with respect to a CPU is moderate, leading to higher silicon
area efficiency (∼20x).

When we compare the proposed approach with state of the
art, full predication and partial predication approaches, we
achieve an average of 1.44x and 1.6x energy improvement (Ta-
ble IV), respectively. As we did not implement any power man-
agement techniques, the energy results include dynamic, static
and clock tree power of the idle PEs for all the presented tech-
niques. This demonstrates that even if theoretically, predica-
tion can expose more parallelism and leads to faster execution,
in practice it leads to waste of resources and inefficiency com-
pared to synchronized execution, making the latter more suit-
able for low-power, deeply embedded applications where the
primary target is energy efficiency.

VII. CONCLUSION

Control flow in the applications is a significant bottleneck in
CGRA architectures, avoiding to exploit their full potential. In
this paper we have presented a CGRA architecture and map-
ping approach to implement full control flow onto a CGRA in
an ultra-low-power environment. The proposed approach over-
comes limitations and inefficiencies of state of the art predica-
tions methods, achieving 1.44x and 1.6x energy gain over par-

TABLE IV
ENERGY CONSUMPTION IN µJ FOR DIFFERENT APPROACHES

kernels Proposed approach Partial Pred Full Pred
FFT 0.021 0.051 0.057
Convolution 1.256 1.396 1.467
Non sep filter 6.373 8.877 9.338
FIR 0.103 0.13 0.136
ManhDist 0.046 0.058 0.065
Matrix mul 0.002 0.003 0.004
Sep filter 5.083 6.542 7.349
Masque5x5 0.003 0.003 0.004

tial and full predication techniques, respectively. The proposed
approach also achieves a speed-up up to 21x and an energy im-
provement up to 50x with respect to an embedded CPU with
an area overhead of 2.7x, demonstrating it suitability for next
generation IoT applications.

REFERENCES

[1] M. Alle, K. Varadarajan, A. Fell, R. R. C., N. Joseph, S. Das, P. Biswas, J. Chetia,
A. Rao, S. K. Nandy, and R. Narayan. Redefine: Runtime reconfigurable polymor-
phic asic. ACM Trans. Embed. Comput. Syst., 9(2):11:1–11:48, Oct. 2009.

[2] F. Bouwens, M. Berekovic, A. Kanstein, and G. Gaydadjiev. Architectural explo-
ration of the adres coarse-grained reconfigurable array. In Proceedings of the 3rd
International Conference on Reconfigurable Computing: Architectures, Tools and
Applications, ARC’07, pages 1–13, Berlin, Heidelberg, 2007. Springer-Verlag.

[3] L. Chen and T. Mitra. Graph minor approach for application mapping on cgras.
ACM Trans. Reconfigurable Technol. Syst., 7(3):21:1–21:25, Sept. 2014.

[4] S. Das, N. Sivanandan, K. T. Madhu, S. K. Nandy, and R. Narayan. Rhyme: Re-
define hyper cell multicore for accelerating hpc kernels. In 2016 29th International
Conference on VLSI Design and 2016 15th International Conference on Embedded
Systems (VLSID), pages 601–602, Jan 2016.

[5] M. Hamzeh, A. Shrivastava, and S. Vrudhula. Regimap: Register-aware application
mapping on coarse-grained reconfigurable architectures (cgras). In Design Automa-
tion Conference (DAC), 2013 50th ACM/EDAC/IEEE, pages 1–10, May 2013.

[6] K. Han, J. Ahn, and K. Choi. Power-efficient predication techniques for acceleration
of control flow execution on cgra. ACM Trans. Archit. Code Optim., 10(2):8:1–8:25,
May 2013.

[7] K. Han, J. K. Paek, and K. Choi. Acceleration of control flow on cgra using advanced
predicated execution. In Field-Programmable Technology (FPT), 2010 International
Conference on, pages 429–432, Dec 2010.

[8] K. Han, S. Park, and K. Choi. State-based full predication for low power coarse-
grained reconfigurable architecture. In 2012 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 1367–1372, March 2012.

[9] W. Kim, Y. Choi, and H. Park. Fast modulo scheduler utilizing patternized routes
for coarse-grained reconfigurable architectures. ACM Trans. Archit. Code Optim.,
10(4):58:1–58:24, Dec. 2013.

[10] D. Lampret, C.-M. Chen, M. Mlinar, J. Rydberg, M. Ziv-Av, C. Ziomkowski, G. Mc-
Gary, B. Gardner, R. Mathur, and M. Bolado. Openrisc 1000 architecture manual.
Description of assembler mnemonics and other for OR1200, 2003.

[11] D. Lee, M. Jo, K. Han, and K. Choi. Flora: Coarse-grained reconfigurable archi-
tecture with floating-point operation capability. In Field-Programmable Technology,
2009. FPT 2009. International Conference on, pages 376–379, Dec 2009.

[12] K. T. Madhu, A. Rao, S. Das, K. C. Madhava, S. K. Nandy, and R. Narayan. Flex-
ible resource allocation and management for application graphs on renÉ mpsoc. In
Proceedings of the 7th Workshop on Parallel Programming and Run-Time Manage-
ment Techniques for Many-core Architectures and the 5th Workshop on Design Tools
and Architectures For Multicore Embedded Computing Platforms, PARMA-DITAM
’16, pages 13–18, New York, NY, USA, 2016. ACM.

[13] P. Magarshack, P. Flatresse, and G. Cesana. Utbb fd-soi: A process/design symbiosis
for breakthrough energy-efficiency. In Proceedings of the Conference on Design,
Automation and Test in Europe, pages 952–957. EDA Consortium, 2013.

[14] OVP. Open virtual platform.
[15] N. Ozaki, Y. Yasuda, M. Izawa, Y. Saito, D. Ikebuchi, H. Amano, H. Nakamura,

K. Usami, M. Namiki, and M. Kondo. Cool mega-arrays: Ultralow-power reconfig-
urable accelerator chips. IEEE Micro, 31(6):6–18, Nov 2011.

[16] T. Peyret, G. Corre, M. Thevenin, K. Martin, and P. Coussy. An automated design
approach to map applications on cgras. In Proceedings of the 24th Edition of the
Great Lakes Symposium on VLSI, GLSVLSI ’14, pages 229–230, New York, NY,
USA, 2014. ACM.

[17] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M. C. Filho.
Morphosys: an integrated reconfigurable system for data-parallel and computation-
intensive applications. IEEE Transactions on Computers, 49(5):465–481, May
2000.

[18] M. Taylor. Is dark silicon useful? harnessing the four horsemen of the com-
ing dark silicon apocalypse. In Design Automation Conference (DAC), 2012 49th
ACM/EDAC/IEEE, pages 1131–1136, June 2012.

