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1. Introduction

Understanding physics of rotating machines is essential in many application fields. For example, safety and service life
in power plants rotating machinery such as turbo-alternator [1] or GT-MHR reactor project [2] are directly linked to a high-
quality control of their vibratory behaviour. Basic rotordynamics modelling for design and predictive maintenance [3] is
usually sufficient to solve most of the industrial problems encountered but there is still advanced topics to investigate [4].
One of them concerns the 3D global modelling of asymmetric rotating systems.

Behaviour of unsymmetrical large rotating machines includes here a lot of cases of practical importance such as
dynamics of rotors with shape imperfections [5], vibratory signature of cracked rotors for on-line monitoring [6,1], lateral
instabilities of drill-strings [7]. Under the assumption of constant rotating speed, all these problems have in common to be
linear periodically time-varying systems [4], i.e. governed by differential equations with periodic coefficients. Solutions of
these equations are generally determined thanks to the well-known Floquet theory [8]. These solutions can be computed in
the time domain by direct integration of the Floquet transition matrix as in [9]. An other possibility is to determine these
r (A. Lazarus), benoit.prabel@cea.fr (B. Prabel), didier.combescure@f4e.europa.eu (D. Combescure).
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solutions in the frequency domain by analysing the set of equivalent linear time-invariant equations obtained by the Hill
expansion [10].

First modelling of unsymmetrical rotating machines were performed using simple rotating oscillators with anisotropic
stiffnesses [5]. Indeed, for these academic models, Hill governing equations are easily established and solved [11].
Extension to the finite element models in stationary coordinates is referred in [12] for unsymmetrical rotors and in [4,13]
for both anisotropic rotors and supports. Still in the inertial frame, a modal analysis for periodically time-varying rotors is
suggested in [6,14] and allows reasonable computation time for simple rotor models (with shape imperfection, transverse
cracks). However, the standard representation in the inertial frame limits our investigations to rotating shafts modelling
with beam elements [2]. A complete 3D modelling of rotors described in the rotating frame [4] enables to capture a richer
kinematics (blades, flexible discs, original shapes, etc.) and facilitates the dynamic studies of asymmetric rotors [15].

This paper focuses on the global vibratory behaviour of asymmetric rotating machines taking into account the rotor–
stator interactions. It is inspired by the 3D finite element model developed in [2] for axisymmetrical rotating machines.
More generally, it suggests a 3D finite element method based on modal analysis to solve linear periodically time-varying
systems.

In Sections 2–4, the dynamic behaviour of asymmetric rotating machines is investigated through oscillators with two
degrees of freedom written in complex coordinates. Indeed, oscillators with anisotropic stiffnesses in both rotating and
inertial frame are useful for an introductory study of rotors with open cracks or shape imperfections. We explain the
numerical method used to compute the solution of the non-autonomous governing equations. By considering Floquet
solutions and Hill’s infinite determinant, it is found that the dynamics of these rotating oscillators can be intrinsically
defined by eigenmodes in the same way as in the autonomous case. As a consequence, free whirling and forced response
are a linear combination of these parametric quasimodes. According to the linearity assumption, stability of the Floquet
solution is determined by the stability of the parametric quasimodes, i.e. their decay rates.

Section 5 concerns the extension of the previous concepts to the multiple degrees of freedom governing equation
arising from the 3D finite element discretization of a rotating machine with a possible shape imperfection. Due to the Hill
expansion of the degrees of freedom in the frequency domain, the parametric quasimodes are computed with the modal
synthesis method. The boundary conditions between substructures model the constant rotational speed O and the rotor–
stator interactions. The last part takes advantage of the numerical tools previously introduced for the dynamic
investigation of an academic test rig composed of a rectangular vertical rotor running on anisotropic supports. The
comparison between numerical and experimental results gives us a first insight of the efficiency of the proposed method.
2. Academic rotating oscillator with asymmetric stiffnesses

2.1. Influence of imperfections on the dynamic behaviour of rotating systems

The flexural behaviour of an horizontal shaft supported by anisotropic supports is represented in Fig. 1(a) [3]. The
gyroscopic coupling due to possible rotating discs is neglected to focus only on the influence of imperfections. Thanks to a
beam element model representing the position of the rotating shaft in an inertial frameR, a classic modal reduction can be
used for stability analysis and prediction of the global dynamics [4]. The representation in the modal basis is given in
Fig. 1(b) when keeping the two first flexural eigenmodes which are sufficient for qualitative results.
Fig. 1. Asymmetric shaft on nonisotropic bearings: (a) first beam mode in the x-direction; (b) representation in the modal basis.
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While the modal rotating stiffness k0 is isotropic in the rotating frame R0 in the case of healthy shafts (basic
rotordynamics), shape imperfections or open cracks [16] yield to an anisotropic stiffness in R

0

. The latter is characterized by
the added stiffness Dr directly linked to the crack depth or shape asymmetry (Fig. 1(b)). Under the reasonable assumptions
of small displacements around the static equilibrium position and constant rotational speed O, the linear periodically time-
varying system written in stationary generalized coordinates (x(t),y(t)) is obtained [3]

m €xþc _xþðk0þkxÞx�Drcos2Otx�Drsin2Oty¼ 0

m €yþc _yþðk0þkyÞx�Drsin2OtxþDrcos2Oty¼ 0

(
(1)

where m is the rotor modal mass, c is the modal viscous damping and kx, ky are, respectively, the modal fixed stiffness in
the x- and y-directions.

2.2. Governing equations in complex coordinates

In the case of rotating systems, transverse displacements are generally coupled and the use of complex coordinates
allows us to greatly simplify the governing equations of models [12]. By introducing z=x+iy the generalized complex
stationary coordinate and z its conjugate, Eq. (1) becomes

m€zðtÞþc _zðtÞþdzðtÞþezðtÞþkrðtÞzðtÞ ¼ 0 (2)

where d¼ ðkxþkyÞ=2þk0 is the mean stiffness and e¼ ðky�kxÞ=2 is the fixed stiffness deviation. For O40, the rotor
imperfection Dr introduces a periodic coefficient kr(t) in the differential equation (2). In our case, kr(t) is a harmonic
operator with a period T ¼ p=O (fundamental frequency 2O) and reads simply

krðtÞ ¼�Drei2Ot (3)

The governing equation (2) belongs to homogeneous differential equations with periodic coefficients. In this paper,
this typical Hill equation is studied in the frequency domain well adapted to linear rotordynamics considering
constant rotational speed. Moreover, this choice is necessary when considering the computational time for finite element
modelling.

2.3. Numerical data

This paragraph specifies the numerical data used for the further numerical computations of Eq. (2). In the modal basis,
the rotating oscillator is modelled by n=2 degrees of freedom. The natural frequencies at standstill ðO¼ 0Þ in the x and y

directions are naturally defined by the following expressions:

ox
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d�e�Dr

m

r
and oy

0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dþeþDr

m

r
(4)

We introduce also the dimensionless fixed stiffness anisotropy ratio an ¼ kx=ky and the rotating imperfection ratio
ar ¼ ðk0�DrÞ=ðk0þDrÞ. In the following, the academic data are chosen, so that ox

0 ¼ 1 rad=s. The dimensionless damping z is
then defined relatively to ox

0 according to z¼ cox
0=2ðd�e�DrÞ. To highlight the influence of imperfections, we consider

important fixed and rotating stiffness ratios an ¼ 3 and ar ¼ 2.

3. Analysis of Hill’s equation introducing parametric quasimodes

3.1. Floquet theory and Hill’s method

Thanks to the Floquet theory [8], the solution of the linear differential equation (2) can be written as the sum of n=2
independent solutions

zðtÞ ¼ ZDðtÞe
iatþZRðtÞe

�iat (5)

where both ZD(t) and ZR(t) are T-periodic functions of time with the same period as the coefficient kr(t) and a is the
fundamental complex frequency and a its conjugate. Unknown periodic functions ZD and ZR can be expressed by the
general Fourier series

ZðtÞ ¼
Xj ¼ þ1

j ¼ �1

Zje
ijð2p=TÞt (6)

where Zj is the harmonic contribution for the j th harmonic. The periodic stiffness kr(t) is imposed by the physical situation
and can be expanded as well in the convergent trigonometric series

krðtÞ �
Xs ¼ þS

s ¼ �S

Dse
isð2p=TÞt (7)
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where Ds is the s th stiffness Fourier coefficient. In our asymmetric case, the rotating stiffness kr(t) is harmonic with a period
T ¼ p=O. Taking T into account in expression (6), the solution (5) can be expressed as the infinite sum of relevant harmonics

zðtÞ ¼
Xj ¼ þ1

j ¼ �1

ZDje
iðaþ2jOÞtþ

Xj ¼ þ1

j ¼ �1

ZRje
�iðaþ2jOÞt (8)

By replacing, respectively, kr(t) and z(t) by their expressions (3) and (8) in Eq. (2) and by separately equating to zero
each harmonic, we obtain the infinite set of algebraic equations

� � � � � � � �

� A�1 e 0 0 0 0 �

� e A�1 �Dr 0 0 0 �

� 0 �Dr A0 e 0 0 �

� 0 0 e A0 �Dr 0 �

� 0 0 0 �Dr A1 e �

� 0 0 0 0 e A1 �

� � � � � � � �

2
66666666666664

3
77777777777775

�

ZD�1

ZR�1

ZD0

ZR0

ZD1

ZR1

�

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

� f0g (9)

where Aj ¼ d�mðaþ2jOÞ2þ icðaþ2jOÞ. This eigenproblem in a results of non-autonomous equations (2) expressed in the
frequency domain for a given O. Thus, rotor imperfections introduce more or less coupling between harmonics of the
periodic solution expressed in the fixed frame R. Due to the infinite expansion (6), the determinant associated with (9) is
called the Hill infinite determinant [10].

3.2. Concept of parametric quasimodes

Let detjmax
be the jmax order determinant associated with the eigenproblem (9) and ajp the coefficients of the j th row and

p th column of the matrix in (9). According to [17], detjmax
converges, i.e. tends to a finite and determined limit det, if the

series
P

jjajp=ajjj with paj converges and it is always the case for Hill determinant.
By solving eigenproblem (9) in the state space truncated to the jmax harmonic order for a given O, one obtains

2n� ð2jmaxþ1Þ eigenvalues al where n=2 is the number of degrees of freedom. According to (8), each eigenvalues is
associated with a complex eigenvector Fl ¼ ½ZD�jmax

. . . ZRjmax
� expressed in the time domain as

FlðtÞ ¼
Xþ jmax

�jmax

ZDjle
iðalþ2jOÞtþ

Xþ jmax

�jmax

ZRjle
�iða lþ2jOÞt (10)

where ZDjl and ZRjl are the j th harmonic contributions of the l th eigenvector.
According to Poincare’s convergence of Hill infinite determinant, as jmax infinitely increases, the set of eigenvalues tends

to n independent families in which

ak
l ¼ 7ðokþ2lOÞ (11)

where l 2 ½�jmax,þ jmax� and k=[1,n]. Then, by replacing ak
l in expression (10), the associated eigenvectors FlðtÞ can be

divided into n groups Fk
l ðtÞ written in the form

Fk
l ðtÞ ¼

Xþ jmax

�jmax

Zk
Djle

iðok þ2ðlþ jÞOÞtþ
Xþ jmax

�jmax

Zk
Rjle
�iðok

þ2ðlþ jÞOÞt (12)

where ok is the fundamental frequency of Fk
l ðtÞ.

When jmax tends to infinity, the frequency spectrum width of Fk
l is not l-independent given that Zk

jl ¼ AlZ
k
ðj�1Þðlþ1Þ where

Al is any constant. Using this outstanding property in expression (12), we find that Fk
l ðtÞ ¼ AlF

k
ðlþ1ÞðtÞ. In other words, the

information given by the infinite set of Fk
l is redundant and one needs only n independent eigenvectors Fk to characterize

the periodically time-varying system (2) in the frequency domain. According to the linearity assumption, the Floquet
solution (free whirling) is a linear combination of the quasimodes such as zðtÞ ¼ BkF

k
ðtÞ where Bk is any constant.

According to Hill determinant convergence, the number of harmonic significantly contributing to the quasimodes Fk,
i.e. to the Floquet solution, is finite. Thus, one needs only a finite harmonic truncature order jmax to accurately determine
their frequency spectrum. Applying Poincare’s work to our rotating case, this order is determined by the series convergence

X
j

ajp

d�mðalþ2jOÞ2

�����
����� with jap (13)

The convergence (13) is parametric since jmax depends on the rotational speed O and the off-diagonal coefficients ajp, i.e.
the rotating stiffness kr(t) through the trigonometric series (7). Hence, fast convergence is obtained for weak coupling (few
Ds in (7)) or high rotational speed O. For a given imperfection, the number of significant harmonic contributions contained
in Fk decreases when O increases.
4



3.3. Numerical computations

The previous concepts are illustrated by computing the parametric quasimodes of the asymmetric shaft sketched in
Fig. 1. The governing equation (2) is solved in the frequency domain with the numerical data given in Section 2.3. In the
following, the given frequencies are divided by ox

0 and also denoted by the subscript �.
Fig. 2 illustrates the two parametric quasimodes of Eq. (2) computed for a subcritical rotational speed O� ¼ 0:34 and a

harmonic truncature order jmax ¼ 5. Figs. 2(a) and (b) represent the orbit Fk
ðtÞ of the modal mass m in the modal basis (x,y)

(equivalent to flexural modes in the physical one). Figs. 2(c) and (d) are the associated frequency spectrum, i.e.
visualization of Fk. In opposition to classic eigenmodes computed for instance at standstill, the parametric quasimodes in
the x and y direction are poly-harmonic and complex, i.e. coupling the transverse displacements.

Fig. 3 shows the parametric quasimode and its power spectral density in the x direction for a supercritical rotational
speed O� ¼ 4 and a harmonic truncature order jmax ¼ 2.

According to the convergence (13), when increasing O, the number of significant harmonic contributions contained in
the quasimodes Fx and Fy decreases. Moreover, the frequency spectra of the latter tend, respectively, to the single
fundamental harmonic ox

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d�e=m

p
and oy

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dþe=m

p
. In fact, the larger is the shaft rotating frequency O compared to

its higher natural frequency oy
0, the more the rotating stiffness seems isotropic (apparent averaging in the fixed frame). The

quasimodes tend also to the equivalent classic eigenmodes of Eq. (2) with kr(t)=k0. This phenomenon highlight the quasi
O- independence on the fundamental frequencies ok on the contrary of the strongly O- dependence concerning the
secondary harmonics.

Remark. For a finite harmonic truncature jmax, the relation Zk
jl ¼ AlZ

k
ðj�1Þðlþ1Þ is not true for l¼ 7 jmax (truncature error).

Thus, for practical purposes, the choosen parametric quasimodes Fk are the eigenvectors associated with the fundamental
harmonic ak

0 ¼ok since they converge faster than the other ones.

3.4. Prediction of the unbalanced response

The response to unbalance load is often required to check the capacity of a rotating machine to withstand mass and
geometrical defect. Referring to Fig. 1(b), let d be the distance between the mass m and the rotation axis and f the phase
angle in the rotating frame. In the inertial frame, the unbalance load is a direct rotating force, proportional to the square of
the constant rotational speed O2, so that the governing equation (2) becomes in the modal basis [4]

m€zðtÞþc _zðtÞþdzðtÞþezðtÞþkrðtÞzðtÞ ¼mdO2eiðOtþFÞ (14)
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Fig. 2. Parametric quasimodes for O� ¼ 0:34 and jmax ¼ 5: (a) orbit of the mass for Fx
ðtÞ; (b) orbit of the mass for Fy

ðtÞ; (c) power spectral density of Fx
ðtÞ;

(d) power spectral density of Fy
ðtÞ.
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Fig. 4. Unbalance response of the horizontal asymmetric shaft in the modal basis: (a) orbit of m for O� ¼ 0:34; (b) waterfall representation.
The general solution of the linear equation (14) can be written as the sum of the two particular solutions

zpðtÞ ¼
Xþ jmax

�jmax

ZDje
iðOþ2jOÞtþ

Xþ jmax

�jmax

ZRje
�iðOþ2jOÞt (15)

By replacing, respectively, zp(t) and kr(t) by their expressions (15) and (3) in Eq. (14), unknowns ZDj and ZRj are easily
computed for each O thanks to a truncated linear system where the matrix is equivalent to the one given in (9) with a¼O.
Thus, the truncature order jmax of expression (15) is still determined by the convergence (13) with al ¼O.

Fig. 4 represents the numerical computation of the unbalance response of the horizontal asymmetric shaft of Fig. 1 for
jmax ¼ 5 and c=0.1. The forced response is poly-harmonic in opposition to classic response of healthy shaft [3]. The
waterfall in Fig. 4(b), computed for jmax ¼ 5, shows that the steady-state response frequency spectrum is strongly
dependent on the rotational speed O according to the convergence (13). The secondary harmonics tend to disappear when
O is increasing. In addition to the first flexural critical speed occurring for O�ok, the vibration level of asymmetric
rotating machines is characterized by secondary critical speeds due to the resonances of secondary harmonic contributions
of the parametric quasimodes.

For practical purposes, according to the convergence (13), the harmonic truncature order jmax determined for Oi

remains valid in all the domain ½Oi�Of � if OioOf .
3.5. Particular case

A well-known particular case occurs if the anisotropic rotor is supported by isotropic supports, i.e. when Dra0 but
e¼ 0. Indeed, when studying the system in the rotating frame R0, the governing equation is a differential equation with
constant coefficients and the computation of its associated eigenproblem becomes straightforward. When working in the
6



inertial frame R, the solution of the governing equation (2) can be written in the exact form

zðtÞ ¼ ZD0eiotþZR�1e�iðo�2OÞt : (16)

When replacing z(t) in (2), the associated eigenproblem is O- dependent but finite and can be expressed as

A�1 �Dr

�Dr A0

" #
ZR�1

ZD0

( )
¼ f0g (17)

For this particular case, Hill’s method is therefore not necessary. In fact, if e¼ 0, the infinite eigenproblem (9) can be seen as
l independent ones in the form (17) and leads to redundant informations. Whatever jmax40, the relation Fk

l ðtÞ ¼ AlF
k
ðlþ1ÞðtÞ

is always true and Eq. (17) is sufficient to compute the n=2 parametric quasimodes of the rotating oscillator. According to
convergence (13), the second harmonic of z(t) tends to disappear when O increases due to the apparent rotating stiffness
averaging. This case will be studied further in Section 6.

4. Linear stability of parametric quasimodes

4.1. Frequency lock-in mechanism

The Floquet solution being a linear combination of the parametric quasimodes, its stability is determined by their
growth rates sl simply related to the eigenvalues following sl ¼�ImðalÞ. Thus, the computation of eigenvalues of the
undamped equations (9) truncated to a jmax order for each O predict the linear stability of the rotating system (Fig. 5).
Referring to expressions (11) and (12), the real part of al gives informations on the frequencies of z(t) whereas a negative
imaginary part triggers its instability.

In fact, each parametric quasimode Fk
ðtÞ can be seen as the sum of forward and backward waves associated with the

frequency spectra 7 ðokþ2jOÞ and 7 ðok�2jOÞ where j 2 Zþ . According to Fig. 5(a) where only positive frequencies are
represented against the rotational speed O, there is a strong possibility of frequency lock-in between these travelling
waves. The periodically time-varying rotating oscillator is then characterized by instability regions due to harmonics
coalescences of parametric quasimodes.

The coalescence range depends on the harmonics concerned and the frequency lock-in phenomenon will exist only for
some harmonic contributions. Concerning our asymmetric horizontal shaft, harmonics coalescences of the quasimodes are
observed only for the first harmonics ok and ok�2O (Fig. 5). Instability regions including the fundamental harmonics are
referred as principal instability regions while others, less prejudicial for the system, are the secondary instability regions.

4.2. Parametric instability

The instability of the quasimodes is parametric since it depends on the added stiffness Dr (or the rotating imperfection
ratio ar) and the rotational speed O. By computing the eigenproblem (9) for an order of truncature jmax ¼ 2, we plot the
most prejudicial imaginary part of the eigenfrequencies in the ðar ,O�Þ space (Fig. 6) and obtain the stability map of the
system (Strutt diagram). For the undamped system in Fig. 6(a), a principal instability region is found for O 2 ½1�1:75� in
Fig. 5. Evolution of eigenvalues against rotational speed O for jmax ¼ 2: (a) real part; (b) imaginary part.
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Fig. 6. Strutt diagram for an ¼ 3 and jmax ¼ 2: (a) without damping ðz¼ 0Þ; (b) with damping ðz¼ 0:05Þ.
agreement with the Hsu criterion predicting the localization of principal instability regions for periodically time-varying
linear systems with multiple degrees of freedom [18]. Moreover, a secondary instability region is visible for O 2 ½0:5�1�.

The principal instability region is divided into three subdomains. The first one emerging at O¼ox
0 ðO� ¼ 1Þ is related to

the coalescence between the fundamental and the secondary harmonic of the quasimode Fx
ðtÞ. In the same way, the third

one emerging at O¼oy
0 results from the lock-in between the two first harmonics of the quasimode Fy

ðtÞ. Finally, the
intermediate subdomain is due to the cross coalescence between the first two harmonics of the different quasimodes Fx

ðtÞ

and Fy
ðtÞ, i.e. the fundamental harmonic of Fx

ðtÞ with the second harmonic of Fy
ðtÞ and vice versa.

For periodically time-varying linear systems with multiple degrees of freedom, parametric instabilities due to harmonic
coalescences happening inside each quasimode are referred as instability of the first kind in the Hsu criterion. Frequency
lock-in between two different quasimodes corresponds to the instability of the second kind and their localization depends
on the symmetry of the periodic operator in the differential equation [18]. According to the Hsu criterion, the number of
principal instability regions directly depends on the number of Fourier coefficients Ds in the expansion (7) of the periodic
operator. Due to the weak harmonics coupling (kr(t) is harmonic), there is only one principal instability region in Fig. 6.

Finally, Fig. 6 shows that lock-in ranges are larger when increasing the rotating imperfection ratio ar . A simple solution
to stabilize the system for small Dr is obtained by adding fixed damping c which reduces every harmonic contributions
(Fig. 6(b)). Since this effect always exists for practical purposes, we are generally not interested by the secondary instability
regions.

4.3. Particular case

The particular case of isotropic nonrotating stiffnesses with e¼ 0 is computed through the finite eigenproblem (17)
already mentioned in the previous section. Localization of the frequencies against rotational speed O and stability map of
z(t) are, respectively, given in Fig. 7 for z¼ 0.

The single instability region observed in Fig. 7(b) results from the coalescence between the harmonics ox
0 and ox

0�2O of
the quasimode Fx

ðtÞ (Fig. 7(a)). The particular Strutt diagram given in Fig. 7(b) verifies the degenerate form of the Hsu
criterion when ox

0 ¼o
y
0. The lock-in range depends on ar and is exactly located following O¼ ½oxoy� where ox and oy are,

respectively, the fundamental frequencies of the quasimodes Fx
ðtÞ and Fy

ðtÞ. As in the previous general case, fixed
damping would stabilize the system. Finally, note that Fig. 7(a) informs only on the localization of the harmonics of the
Floquet solution. Informations about amplitudes of the harmonic contributions require the computation of the parametric
quasimodes.

5. 3D finite element modelling

5.1. Discretization of the governing equations

5.1.1. Governing equations

We consider the problem of small vibrations about the equilibrium point relative to centrifugal forces of an assembly
composed of a fixed part (stator) and a rotating part (rotor). As indicated by Fig. 8, the relative speed of rotation O is still
supposed constant in magnitude and direction.
8



Fig. 7. Stability of the particular case ðe¼ 0Þ: (a) frequency spectrum against O; (b) stability map.

Fig. 8. Definition of the rotating (rotor) and nonrotating (stator) parts.
The absolute displacement uðxÞ, velocity _uðxÞ and acceleration €uðxÞ of a rotating material point x (with cartesian
coordinates x1, x2, x3) can be expressed in the Galilean frame R as function of their value in the rotating frame R0

_uðxÞR ¼ _uðR0=RÞþ _uðxÞþX4ðxþuðxÞÞ (18a)

€uðxÞR ¼ €uðR0=RÞþ €uðxÞþ _X4ðxþuðxÞÞþX4X4ðxþuðxÞÞþ2X4 _uðxÞ (18b)

Eqs. (18a) and (18b) contain more kinematics than those of beam elements and enable to discretize the rotor in R0 taking
into account in particular centrifugal and Coriolis effects as discussed in [2].

We assume simple linear visco-elastic constitutive equations between the deformation (or deformation rate) and the
stress tensor such as

r¼ relþrvisc ¼DðE,nÞeþDvisc
ðZ,nÞ_e (19)

where D is the Hooke matrix and Dvisc is relative to the viscous part of the stress.
Then, the weak form of the problem, written for the rotating domain D of boundary ðqDF [ qDuÞ, reads simplyZ

D
r €u � v dDþ

Z
D
r : eðvÞdD¼

Z
D

fd � v dDþ
Z
qDF

Fd � v dG (20)

8v in V0 ¼ fv, so that v¼ 0 on qDug. For a material point x belonging to the stator, expression of the kinematics quantities
uðxÞ, _uðxÞ and €uðxÞ in R are straightforward and the weak form (20) remains valid.
9



5.1.2. Discretization in the anisotropic case

Anisotropy of both rotating and nonrotating part, interacting one with the other, leads to governing equations with
periodic coefficients. In the case of open cracked rotors or for its academic counterpart rectangular rotor, a period T ¼ p=O
has to be considered. According to Floquet’s theory, the form of the solution is given by

uðx,tÞ ¼
Xgmax

�gmax

ugðxÞ � eiðaþgð2p=TÞÞt (21)

When applying to the rotating machine given in Fig. 8, the discretized form of rotor and stator displacements can be
expressed in their respective frame as

urot
R0 ðx

0,tÞ ¼
Xþ j0max

�j0max

½Nðx0Þ�ðUj0
ÞR0 � e

iðx0 þ2j0OÞt (22a)

usta
R ðx,tÞ ¼

Xþ jmax

�jmax

½NðxÞ�ðUj
ÞR � e

iðxþ2jOÞt (22b)

where the complex frequency notation x¼oRþ ioI is introduced. The vectors Uj0 and Uj represent, respectively, the
complex harmonic contribution j

0

and j of urot and usta while x0 and x are their fundamental complex frequencies inR0 and
R.

Introducing in (20) the previous approximations (22) and taking into account expressions (18a), (18b) and (19), we
obtain a linear system of equations in the form

Xþgmax

�gmax

½Sg
ðaÞ�ðUg

Þ ¼ ðFg
Þ (23a)

with

Sg
¼ ½½Kþ i2gOC�ð2gOÞ2M�þia½Cþ2ið2gOÞM��a2½M�� (23b)

and where Fg is the vector of external forces contributing to the g th harmonic. Depending if the rotor (g ¼ j0 and a¼x0) or
stator (g ¼ j and a¼x) is considered, the finite element matrices read

K¼
Krot
þO2Kce

þO2Ks

Ksta

(
, C¼

Crot
þOGcori

Csta

(
, M¼

Mrot

Msta

(
(23c)

Besides the standard stiffness, damping and mass matrices, the constant rotational speed O leads to specific matrices in
the rotating frame R0 such as centrifugal stiffness Kce, geometrical stiffness Ks and Coriolis pseudo-damping Gcori [2].
Finally, complete system relative to the rotor–stator assembly is obtained with kinematic relations presented in paragraph
5.2.

5.2. Linking rotor and stator kinematics

Linking the parts of the rotor and the stator which interact is realized in two steps: first the displacement is condensed
into spatial Fourier series, and then coefficients are equating one to another with appropriate relationships. This process
considerably reduces the number of degrees of freedom involve in the interaction conditions but needs to specify, a priori,
the rotor–stator global modes we are interested in.

5.2.1. Condensation of the displacement

As a first step, displacements of both rotating and nonrotating parts of coincident circles are condensed on a single
geometrical point x (Fig. 9) by developing them into spatial Fourier’s series.
Fig. 9. Condensation of the displacement of one of the parts.
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For a considered frontier, we have

uðx,tÞ ¼ ðuðyÞcosoRt�iuðyÞsinoRtÞe�oI t C
X

n ¼ 0...N

ððUc
ncosðnyÞþUs

nsinðnyÞÞcosoRt�ðIUc
ncosðnyÞþIUs

nsinðnyÞÞsinoRtÞe�oI t

(24a)

where the coefficients are expressed in the orthonormal basis ðe1,e2,e3Þ by

Uc
n ¼

X
k ¼ 1,2,3

Uc
knek with Uc

kn ¼

1

2p
R p
�p ukðyÞdy if n¼ 0

1

p
R p
�p ukðyÞ � cosnydy if na0

8>><
>>:

Us
n ¼

X
k ¼ 1,2,3

Us
knek with Us

kn ¼

0 if n¼ 0
1

p
R p
�p UkðyÞ � sinnydy if na0

8<
: (24b)

The same projection is realized for the IUc
kn part of the displacement.

Expression (24) is given in a 3D cartesian coordinate system but is obviously related to the well-known 2D-Fourier
kinematics. However, because of the change of coordinate system, the coefficient n is not exactly the Fourier mode
number ny. For instance, for imposing a condition on a rigid body motion, i.e. n=0, the displacement (24a) simply
reduces to

uðx,tÞ ¼ ðUc
0cosoRt�IUc

0sinoRtÞe�oI t (25)

Then, the in-plane translation in (25) is equivalent to the one of a pure flexion mode associated with ny ¼ 1. On the
other hand, the constant axial translation for n=0 correspond to an axial Fourier mode ny ¼ 0.

5.2.2. Linking the rotating and nonrotating frames

The methodology to link the condensed displacements of rotor and stator is presented here for n=0, but may be applied
to the general case of arbitrary n. Two reasons explain this choice. The first one is the sake of clarity. Indeed the
introduction of a displacement depending of y implies to make the additional change of variable y0 ¼ y�Ot and to use a lot
of trigonometric relations to get an expression for the rotor in the same shape than the stator one. The second reason is
physical. In most practical cases, rotor-bearing systems mainly act to limit rigid body motions of the shaft and other kinds
of deformation (like ovalization effects for instance) are of second order.

Using the classic transition matrix and trigonometric relations, displacement of the rotor connecting point x0 can be
expressed in the Galilean frame R in the expanded form

urot
R ðx

0,tÞ ¼ e�o
0
I
t �
Xþ j0max

�j0max

Uj0

1

0

0

0
B@

1
CAcosððo0Rþ2j0OÞtÞ�

IUj0

1

0

0

0
B@

1
CAsinððo0Rþ2j0OÞtÞþ

1

2

0

Uj0

2�IUj0

3

Uj0

3þ IUj0

2

0
BB@

1
CCAcosððo0Rþð2j0 þ1ÞOÞtÞ

�
1

2

0

IUj0

2þUj0

3

IUj0

3�Uj0

2

0
BB@

1
CCAsinððo0Rþð2j0 þ1ÞOÞtÞþ

1

2

0

Uj0

2þ IUj0

3

Uj0

3�IUj0

2

0
BB@

1
CCAcosððo0Rþð2j0�1ÞOÞtÞ�

1

2

0

IUj0

2�Uj0

3

IUj0

3þUj0

2

0
BB@

1
CCAsinððo0Rþð2j0�1ÞOÞtÞ

(26a)

which can be recast in a more compact way

urot
R ðx

0,tÞ ¼
Xþ j0max

�j0max

Uj0

Aeðx
0 þ2j0OÞtÞ þUj0

F eðx
0 þ ð2j0 þ1ÞOÞtþUj0

Beðx
0 þ ð2j0�1ÞOÞt (26b)

and where subscript A, F and B, respectively, denotes axial, forward and backward motions. The relationship between the
natural frequencies in the rotating and fixed frames is function of the investigated Fourier mode number following
o0 ¼o�nyO [2]. For n=0 and according to the previous remark, the relation becomes o0 ¼o for an axial motion and
o0 ¼o�O for an in-plane displacement. Thus, complex oscillations of the rotor connecting point can be expressed in the
stator coordinate system such as

urot
R ðx,tÞ ¼

Xþ j0max

�j0max

Uj0

Aeðxþ2j0OÞtÞ þUj0

F eðxþ2j0OÞtþUj0

Beðxþ2ðj0�1ÞOÞt (27)

On the other side, the expanded condensed displacement of the stator part is recast for convenience in the form

usta
R ðx,tÞ ¼

Xþ jmax

jmax

Uj
Aeðxþ2jOÞtÞ þUj

Feðxþ2jOÞtþUj
Beðxþ2jOÞt (28)
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By simply equating the two expressions (27) and (28) for each harmonic, it appears the kinematic relations modelling the
harmonic coupling due to rotor–stator interaction limited to the displacements verifying n=0

Uj
A ¼Uj0 ¼ j

A , Uj
F ¼Uj0 ¼ j

F , and Uj
B ¼Uj0 ¼ jþ1

B (29)

These relations have to be fulfil for the truncature order j 2 f�jmax . . . jmaxg and j0 2 f�j0max . . . j
0
maxg. Moreover the boundary

conditions Uj ¼ jmax

B ¼ 0 and Uj0 ¼ �jmax

B ¼ 0 should not be forgotten.
To capture an higher kinematics such as n40 (disc modes, ovalization modes, etc.), the process described here remains

relevant, the difference being the stronger difficulty to express the equations. The supplementary kinematic relations
associated with a n Fourier coefficients are simply added to the previous boundary conditions.

5.3. Taking advantage of substructuring and modal synthesis

Eqs. (22a) and (22b) indicate that the same discretization is used for every terms of the Hill expansion. The set of vectors
fUj0 ,Uj

g are linked one to another only by the kinematic relations exposed in paragraph 5.2. These basic observations allow
us to take great advantage of substructuring and modal synthesis methods. Craig–Bampton substructuring [19] is therefore
adapted to the case of study.

5.3.1. Substructuring

For every harmonic j
0

and j, the corresponding vector of unknown harmonic contributions is approximated by the Ritz
transformation

Uj0C ½Uj0

a Uj0

b� �
qj0

a

qj0

b

0
@

1
AC ½Uj0

� � ðqj0 Þ (30a)

UjC ½Uj
a Uj

b� �
qj
a

qj
b

0
@

1
AC ½Uj

� � ðqjÞ (30b)

where Uj0

a ¼ ½/
0

a1 . . .� (resp. Uj
a ¼ ½/a1 . . .�) refers to the set of fixed interface normal modes obtained for the undamped

rotating (resp. nonrotating) part of the system, and Uj0

b ¼ ½/
0

b1 . . .� (resp. Uj
b ¼ ½/

0

b1 . . .�) refers to the set of constraint modes
obtained as static solutions of the rotating (resp. nonrotating) part of the system.

The complex modes Uj0 and Uj, identical for every j
0

and j, are calculated only one time according to

½K�o2
mMþB� � ð/amÞ ¼ ð0Þ (31a)

K BT
n

Bn 0

" #
�

/bn

ln

 !
¼

0

Uimp
n ¼ 1

!
(31b)

where K and M are the classic stiffness and mass matrix of the rotor or stator (for O¼ 0). Bn refers to the boundary
conditions matrix of the n th interface degree of freedom and B gathers every Bn. The static modes /bn are obtained by
imposing successively a unit displacement on each generalized coordinates qb which are simply the coefficients Un of the
spatial Fourier series (24) used in the previous condensation.

5.3.2. Modal synthesis

The modal basis of the global system incorporating all the harmonic contributions of both rotor and stator (and the
kinematic relations linking one to another) is computed with the modal synthesis method at standstill, and for an order of
truncature jmax, according to

ðK�o2MÞqþLjT
maxk¼ ð0Þ and Ljmax qb ¼ ð0Þ (32a)

The entities K and M are the stiffness and mass matrix of the complete system built with the modes Uj0 and Uj for
j 2 f�jmax . . . jmaxg and j0 2 f�j0max . . . j

0
maxg. The generalized coordinates q (or the interface coordinates qb) are in the form

q¼ ½q�j0max q�jmax . . . qj0max qjmax �T (32b)

The matrix of boundary conditions Ljmax arises from the previous Section 5.2. Notably, if only interactions n=0 are
considered, Ljmax is expressed, according to (29), in the form

Ljmax ¼

� � � � � �

� L�1
B L00

B 0 0 �

� 0 L00

Aþ F L0
AþF 0 �

� 0 0 L0
B L10

B �

� � � � � �

2
66666664

3
77777775

(32c)
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The eigenproblem (32) provides the modal basis Uss allowing the global vibration analysis of a complete 3D rotating
machine. The parametric quasimodes are obtained by solving the homogeneous part of (23)

Xþgmax

�gmax

½Sg
ðx,OÞ�ðUg

Þ ¼ ð0Þ (33)

projected on Uss. This parametric eigenproblem simulates the harmonic coupling of the Floquet solution through the
modal basis Uss. It is directly expressed in the working frame R stating o0 ¼o�nyO and needs also to know, a priori, the
kinematics of the investigated modes.

On the one hand, the 3D quasimodes orbits are reconstructed in the Galilean frame R for each O according to the Hill
expansion (22). On the other hand, their linear parametric stability are calculated by analysing the imaginary part of the
eigenvalues ImðoÞ in a specific rotational speed range. Moreover, vibration levels of the machine under external loads
(unbalancing, weight, etc.) are predicted thanks to the complete steady-state problem (22) expressed in R and still
projected on the modal basis Uss.

Applying Eq. (33) to the two degrees of freedom problem studied in the previous section shows that (33) is only a
reformulation of the eigenproblem (9) in a more convenient way for the 3D modelling. As a consequence, the harmonic
convergence is still governed by Poincare’s formula (13) and gmax depends on the rotating speed O and the stiffness
anisotropy introduced in K.
6. Application to an academic test bench

6.1. Experimental setup

In this section, an academic test bench is studied to demonstrate the capacity of the proposed method to predict the
dynamical behaviour of an asymmetric rotating machine. The experimental mockup consists in a vertical rectangular
cross-section shaft mounted on an anisotropic stator. Fig. 10(a) shows a 3D modelling of the test bench. The steel structure
is designed, so that flexible rotor and stator interact enough to observe important secondary harmonics in the vibratory
response.

The fixed part is composed of a quasirigid plate supported by four rectangular flexible struts (length 0.21 m and section
0.0119 �0.007 m2). The rectangular shaft (length 0.60 m and section 0.034 �0.024 m2) is mounted using a pair of conical
bearings and is driven by an asynchronous motor working in the frequency range O=[0–50] Hz. The mass of the stator is
23 kg while the rotor one is 7.2 kg.
Fig. 10. Description of the academic test bench: (a) first flexural mode in the particular case; (b) vibration excitator and sensors.

13



Whirling motion of the rotor is sensed using two orthogonal non-contacting eddy-current displacement sensors fixed in
R along the x and y directions and, respectively, called dBx and dBy. Both are placed around the cylindrical mass located at
the end of the shaft (Fig. 10). Free whirling features are obtained by applying a random brief impact on the cylindrical mass
in a direction about 453 with the x and y axes (Fig. 10(b)). For each investigated spin speed O, the linear response signal is
captured and recorded by the sensors. Experimental results consist of the average of 10 recordings. The free whirling
frequency spectrum is finally obtained by using a simple signal processing system and modal analysis software.

Two experimental setup are investigated in the following subsections. In the first particular case, the displacements of
the supporting plate are forbidden. In the second case, the supporting plate is free to move. For both, comparison of the
experimental results with the numerical ones is provided. Numerical results are obtained with the Finite Element freeware
Cast3m [20].
6.2. Particular case: nonisotropic rotor on isotropic support

When the support is restrained to immobility, the test bench behaves as a simple rectangular shaft mounting on
isotropic fixed bearings.

At standstill ðO¼ 0 HzÞ, the two first flexural beam modes of the rotor associated with the natural frequencies
o1 ¼ 20 Hz and o2 ¼ 22:5 Hz are identified (dashed lines in Fig. 11(a)). Flexion mode along the x axis is represented in
Fig. 10(a). The kinematics of these two first modes is sufficient to capture the global dynamic behaviour of the rotating
oscillator in the motor working range [0–50] Hz.

For O40, Fig. 11(a) clearly shows the emergence of two secondary frequencies in the free whirling response. By
reporting the experimental frequency spectra of the free whirling motion for a set of O, the evolution of the frequencies
location against O can be plotted in Fig. 11(b). When the fundamental frequencies slowly tend to a unique average
frequency o¼ ðo2�o1Þ=2 with O, the secondary harmonics strongly depend on it following o¼o1�2O and o¼o2þ2O.
Moreover, when increasing O, the secondary harmonics magnitudes decrease while the fundamental ones remain almost
constant. Experimental results are limited to the rotational speed O¼ 1020 rev=min (17 Hz) because of the risky vibratory
levels observed from this speed.

Understanding the dynamical behaviour of the rectangular shaft in rotation is achieved with the help of the 3D finite
element method presented in the previous section. In this particular case, only the rotor is considered in the rotating frame
R0 and the conical bearings are modelled by simply clamping the shaft. At standstill, the computation of the classic
eigenmodes is easy and leads to the two first flexural modes of natural frequencies o1 ¼ 20 Hz and o2 ¼ 22:5 Hz. The
higher modes (second flexural modes, twisting modes, etc.) are neglected because too distant from the range of interest
[0–50] Hz.

To take into account the shaft asymmetry when rotating, the first step is to compute the extended modal basis Uss.
As introduced in the previous section, Uss results from the eigenproblem (32) expressed at standstill and solved with the
modal synthesis method. In the particular case considered here, the only substructures modelling the harmonic
contributions comes from the rotor. Linking rotating and nonrotating frame is achieved by applying the boundary
conditions matrix Ljmax between the harmonic contributions of the condensed displacement in R0 and a virtual node
modelling the Galilean frame R. The Fourier number n¼ 0 being sufficient for the global modes investigated, the matrix
Ljmax is the same as the one expressed in (32). According to Sections 3.5 and 4.3, the eigenproblem dimension is finite in the
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Fig. 11. Free whirling frequency response in the particular case: (a) experimental power spectral density against frequency; (b) evolution of natural

frequencies location against O.
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frequency domain. Thus, only the harmonics j=0, �1 and j
0

=0 are needed to compute Uss and Ljmax becomes

Ljmax ¼ Lp
¼

L�1
B L00

B 0

0 L00

Aþ F L0
Aþ F

0 0 L0
B

2
664

3
775 (34)

The quasimodes of the rotating shaft are computed for the desired O by projecting the eigenproblem (23) on the
previous modal basis Uss. The 3D quasimodes motion is then reconstructed in the temporal domain thanks to Hill
expansion (21). These computations lead to two quasimodes with no prevailing axis: a forward mode waving in the
rotation direction and a backward one waving in the opposite direction. Figs. 12(a) and (b) represent, respectively, the orbit
in R of a circumferential point of the rotating cylindrical mass for a forward and backward quasimode computed at
O¼ 60 rev=min (1 Hz). Their power spectral density (PSD) plotted in Fig. 12(c) shows two fundamental frequencies around
o1 and o2, and two secondary ones located at o¼o1�2O and o¼o2þ2O. Note that rotational frequency is present as
well as in the figure. Free whirling being a linear combination of the quasimodes, these later give informations on the
magnitude ratio between harmonic contributions which is in good agreement with experimental ratio observed in
Fig. 11(a).

By computing the projected eigenproblem (23) for several O, we plot the evolution of the shaft frequencies in Fig. 11(b).
Numerical predictions are found very close to the experimental values. According to Poincare’s convergence, the secondary
harmonic contributions decrease when O increases. The quasimodes tend then to the classic modes of an isotropic circular
shaft of frequency o¼ ðo2�o1Þ=2 which is in agreement with the experimental results. Finally, the high vibratory
Fig. 12. Parametric quasimodes computed for O¼ 60 rev=min in the particular case: (a) orbit of the forward quasimode; (b) orbit of the backward

quasimode; (c) associated frequency spectra.
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amplitude limiting the experiments observed for O� 1020 rev=min, can be explained by the numerical model: it is
most probably due to the imminence of a lock-in phenomena between the two harmonics of the forward quasimode
(Section 4.3).
6.3. General case: anisotropy of rotor and support

When the supporting plate is free to move, the flexible fixed rectangular struts implicitly interact with the flexible
rectangular shaft and the whole rotating machine behaves as a periodic time-varying system whatever the choosen
working frame.

At standstill, experimental setup brings out four global modes with natural frequencies included in the motor working
range [0–50] Hz. Two supplementary orthogonal sensors located at the plate level allow to discern the global flexural mode
where the plate and the cylindrical mass oscillate in phase from the modes where they are out of phase. Due to the system
anisotropy, the in-phase (ip) modes and out-of-phase (op) ones have different natural frequencies along the x and y

directions. Fig. 14(a) is a model of the in-phase and out-of-phase mode along the x axis. When the rotor angular position is
set, so that the second moment of area of the whole system is minimal along the x axis, the natural frequencies read
oip

x ¼ 15 Hz, oip
y ¼ 21 Hz, oop

x ¼ 23 Hz and oop
y ¼ 31 Hz.

The frequency spectrum processed from the signal response captured by the shaft non-contacting sensor along the x

direction is given in Fig. 14 for the rotational speeds O¼ 7 and 8 Hz. These experimental results are filtered to remove the
spin speed subharmonics and bearing frequencies. As expected from the rotor–stator interactions, supplementary
harmonics emerge in the free whirling response. The subharmonics are simply located since they follow the relation
oj �of 72jO where of are the fundamental frequencies being almost the natural frequencies at standstill. In Fig. 13,
fundamental and first secondary harmonics related to the natural frequencies oip

x and oop
x are, respectively, marked with

red square marks and with blue spots. For the considered spin speed, harmonics associated with j41 are not sensed
anymore. Finally, note that fundamental frequencies oip

y and oop
y are not sensed by dBx while their associated secondary

harmonics are present in the frequency spectra.
Because of the number of harmonics and according to the relation oj ¼of 72jO, it is hazardous to made out the free

whirling frequency spectrum at small rotational speed. Evolution of experimental frequencies are therefore not plotted for
the general case. However, the rotating stiffness averaging for high O and the related magnitude decreasing of the
secondary harmonics are still experimentally observed for the exploitable spin speed range.

Once again, the global dynamic behaviour of the experimental test bench is modelled with the 3D finite element
method previously described. The flexible stator (plate + struts) is described in R while the rotor is still modelled in R0.
Contrary to the previous case, the shaft is no more clamped in since the conical bearings transmit the rigid body motions
between the rotor and stator. This interaction is taken into account by linking condensed displacements of rotor and stator
at the bearings level according to the Fourier expansion for n=0 given in (24).

At standstill, the classic eigenmodes are obtained by simply equating the real part of the condensed displacements
between the rotor and stator connecting part. In the working range [0–50] Hz, the computed modes are the four flexural
global modes highlighted in the experiments with the frequencies oip

x , oip
y , oop

x and oop. The in-phase and out-of-phase
shapes along the x axis are given in Fig. 14.

The extended modal basis Uss is computed in the frequency domain and R following (32). In this case, the stiffness and
mass matrix of the modal synthesis method are build with the complete jmax stator and j0max rotor substructures. The
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Fig. 14. Stability of the global modes in the general case: (a) in-phase and out-of-phase modes along x; (b) decay rate against O.
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Fig. 15. In-phase parametric quasimodes in x computed for O¼ 480 rev=min: (a) orbit of the shaft lower extremity; (b) associated frequency spectrum.
boundary conditions matrix Ljmax given in (32) models the bearings transmission by linking the harmonics of the complex
condensed displacements of rotor and stator.

The parametric quasimodes of the rotating test bench are obtained by projecting the eigenproblem (23) on Uss for a
given O and a frequential truncature order jmax. These simulations lead to four 3D quasimodes deriving from the flexural
modes at standstill.

Fig. 15 represents the orbit of a circumferential point of the rotating cylindrical mass for the in-phase quasimode along x

computed at O¼ 8 Hz and for jmax ¼ 2. The prevailing mode contribution is directed along x with the fundamental
frequency of � 15 Hz and the secondary harmonics are given by the PSD in Fig. 15(b). The location and magnitude ratio
between the harmonic contributions are in good agreement with the experimental results given in Fig. 13(b) comparing
the red squares. Because of the truncation of Ljmax to jmax ¼ 2, the harmonic contributions associated with j=2 are obviously
not discussed here. Good numerical predictions of the free whirling response are yet reported throughout the range of
considered spin speed.

As well, the linear stability of the rotating machine is evaluated through the imaginary part of o given in Fig. 14(b). The
numerical results highlight several speed range for which occurs the lock-in phenomenon between the harmonics of
parametric quasimodes. The small amplitude growth observed experimentally at O¼ 840 rev=min appears to be in
agreement with the coalescence of the first in-phase quasimode.
7. Concluding remarks

Understanding and simulating the global dynamic behaviour of rotating machines are necessary for design and on-line
monitoring. Many works have already showed that rotor axisymmetry breaking such as shape imperfections or cracks lead
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to linear periodic time-varying systems governed by Floquet theory. Although lot of developments have been done to
simulate the whirling of asymmetric rotor, the suggested finite element models were mostly limited to beam kinematics
and, if not, were not taking into account rotor–stator interactions.

This paper introduces the concept of parametric quasimodes which are practical mathematical tools simplifying the
understanding of periodic time-varying systems. Their properties have been first investigated through an asymmetric
rotating oscillator with two degrees of freedom. In summary, it is always possible to find, in the frequency domain, n

independent complex poly-harmonic entities characterizing the Hill governing equations where n is the number of degrees
of freedom. Their frequency spectra depend on the periodic coefficient k(t) and the rotational speed O following Poincare’s
convergence. As for standard eigenmodes, the free whirling and steady-state response are a linear combination of the
parametric quasimodes. However, harmonics of the latter are likely to produce lock-in phenomenon, so that the stability of
the system is parametric.

These concepts can be extended to the vibration analysis of a complete rotating machine composed of rotating and
nonrotating parts modelled in their respective frames. Due to Hill expansion in the frequency domain, the initial degrees of
freedom are duplicated leading to a finite set of substructures associated with an harmonic of the Floquet solution. The
harmonic coupling due to the axisymmetry breaking is captured by linking the rotating and fixed substructures.
This particular modelling conduces naturally to compute the modal basis at standstill with a modal synthesis method.
The parametric quasimodes or steady-state response are then obtained by projecting the independent governing equations
involving each harmonics on the coupled modal basis.

Finally, some academic experiments are performed to apply and validate the previous concepts. Experimental and
numerical results are in very good agreements, suggesting that the numerical method proposed here may be used for
modelling every linear time-varying systems requiring 3D kinematics. Indeed, the test bench presented in this paper does
not highlight all the possibilities of the finite element method. Damping, gyroscopic coupling, stability and vibratory
amplitude response could be investigated right now. For instance, an interesting case in rotordynamics is the vibration
analysis of horizontal shafts with breathing cracks [1]. Use of poly-harmonic quasimodes in a 3D finite element method is
still valuable but unlike the open crack case, the stiffness is periodic in the rotating frame and its contributions become
different for each rotating substructures. The actual difficulty of this method lies in the understanding of the harmonic
coupling process to model the effective substructures boundary conditions in 3D kinematics.
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