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PARABOLIC TRANSMISSION EIGENVALUE-FREE REGIONS IN THE DEGENERATE ISOTROPIC CASE

We study the location of the transmission eigenvalues in the isotropic case when the restrictions of the refraction indices on the boundary coincide. Under some natural conditions we show that there exist parabolic transmission eigenvalue-free regions.

Introduction and statement of results

Let Ω ⊂ R d , d ≥ 2, be a bounded, connected domain with a C ∞ smooth boundary Γ = ∂Ω. A complex number λ = 0, Re λ ≥ 0, will be said to be a transmission eigenvalue if the following problem has a non-trivial solution:

     ∆ + λ 2 n 1 (x) u 1 = 0 in Ω, ∆ + λ 2 n 2 (x) u 2 = 0 in Ω, u 1 = u 2 , ∂ ν u 1 = ∂ ν u 2 on Γ, (1.1) 
where ν denotes the Euclidean unit inner normal to Γ, n j ∈ C ∞ (Ω), j = 1, 2 are strictly positive real-valued functions called refraction indices. In the non-degenerate isotropic case when

n 1 (x) = n 2 (x) on Γ (1.2)
it has been recently proved in [START_REF] Vodev | High-frequency approximation of the interior Dirichlet-to-Neumann map and applications to the transmission eigenvalues[END_REF] that there are no transmission eigenvalues in the region

{λ ∈ C : Re λ ≥ 0, |Im λ| ≥ C} (1.3) 
for some constant C > 0. Moreover, it follows from the analysis in [START_REF] Leung | Complex transmission eigenvalues for spherically stratified media[END_REF] (see Section 4) that the eigenvalue-free region (1.3) is optimal and cannot be improved in general. In the present paper we will consider the degenerate isotropic case when n 1 (x) ≡ n 2 (x) on Γ. (1.4) We suppose that there is an integer j ≥ 1 such that

∂ s ν n 1 (x) ≡ ∂ s ν n 2 (x) on Γ, 0 ≤ s ≤ j -1, (1.5) 
∂ j ν n 1 (x) = ∂ j ν n 2 (x) on Γ.

(1.6) It was proved in [START_REF] Colton | Distribution of complex transmission eigenvalues for spherically stratified media[END_REF] (see Theorem 4.2) that in this case the eigenvalue-free region (1.3) is no longer valid. On the other hand, it follows from [START_REF] Lakshtanov | Application of elliptic theory to the isotropic interior transmission eigenvalue problem[END_REF] that under the conditions (1.5) and (1.6) there are no transmission eigenvalues in | arg λ| ≥ ε, |λ| ≥ C ε ≫ 1, ∀ 0 < ε ≪ 1. Our goal in the present paper is to improve this result showing that in this case we have a much larger parabolic eigenvalue-free region. Our main result is the following Theorem 1.1. Under the conditions (1.5) and (1.6) there exists a constant C > 0 such that there are no transmission eigenvalues in the region

λ ∈ C : Re λ ≥ 0, |Im λ| ≥ C (Re λ + 1) 1-κ j , (1.7) 
where κ j = 2(3j + 2) -1 .
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To prove this theorem we make use of the semi-classical parametrix for the interior Dirichletto-Neumann (DN) map built in [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF]. It is proved in [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF] that for |Im λ| ≥ (Re λ + 1) 1/2+ǫ , 0 < ǫ ≪ 1, the DN map is an h -ΨDO of class OPS 1 1/2-ǫ (Γ), where 0 < h ≪ 1 is a semiclassical parameter such that h ∼ |λ| -1 . A direct consequence of this fact is the existence of a transmission eigenvalue-free region of the form |Im λ| ≥ C ǫ (Re λ + 1) 1/2+ǫ , ∀ 0 < ǫ ≪ 1, (1.8) under the condition (1.2). The most difficult part of the parametrix construction in [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF] is near the glancing region (see Section 3 for the definition). Indeed, outside an arbitrary neighbourhood of the glancing region the parametrix construction in [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF] works for |Im λ| ≥ (Re λ + 1) ǫ and the corresponding parametrix belongs to the class OPS 1 0 (Γ). In other words, to improve the eigenvalue-free region (1.8) one has to improve the parametrix in the glancing region. Such an improved parametrix has been built in [START_REF] Vodev | Transmission eigenvalues for strictly concave domains[END_REF] for strictly concave domains and as a consequence (1.8) was improved to |Im λ| ≥ C ǫ (Re λ + 1) ǫ , ∀ 0 < ǫ ≪ 1, (1.9) in this case. In fact, it turns out that to get larger eigenvalue-free regions under the condition (1.2) no parametrix construction in the glancing region is needed. It suffices to show that the norm of the DN map microlocalized in a small neighbourhood of the glancing region gets small if |Im λ| and Re λ are large. Indeed, this strategy has been implemented in [START_REF] Vodev | High-frequency approximation of the interior Dirichlet-to-Neumann map and applications to the transmission eigenvalues[END_REF] to get the optimal transmission eigenvalue-free region (1.3) for an arbitrary domain. In fact, the main point in the approach in [START_REF] Vodev | High-frequency approximation of the interior Dirichlet-to-Neumann map and applications to the transmission eigenvalues[END_REF] is the construction of a parametrix in the hyperbolic region valid for 1

≪ C ǫ ≤ |Im λ| ≤ (Re λ) 1-ǫ , Re λ ≥ C ′ ǫ ≫ 1, 0 < ǫ ≪ 1.
The strategy of [START_REF] Vodev | High-frequency approximation of the interior Dirichlet-to-Neumann map and applications to the transmission eigenvalues[END_REF], however, does not work any more when we have the condition (1.4). In this case the parametrix in the glancing region turns out to be essential to get eigenvalue-free regions like (1.7). In Section 3 we revisit the parametrix construction of [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF] and we study carefully the way in which it depends on the restriction on the boundary of the normal derivatives of the refraction index (see Theorem 3.1). In Section 4 we improve Theorem 3.1. In Section 5 we show how Theorem 4.1 implies Theorem 1.1. We also show that to improve (1.7) it suffices to improve the parametrix in the glancing region, only (see Proposition 5.2).

As in [START_REF] Petkov | Asymptotics of the number of the interior transmission eigenvalues[END_REF] one can study in this case the counting function N (r, C) = #{λtrans. eig. : C ≤ |λ| ≤ r}, where r ≫ C > 0. We have the following Corollary 1.2. Under the conditions of Theorem 1.1, there exists a constant C > 0 such that the counting function of the transmission eigenvalues satisfies the asymptotics

N (r, C) = τ r d + O ε (r d-κ j +ε ), ∀ 0 < ε ≪ 1, (1.10) 
where

τ = ω d (2π) d Ω n 1 (x) d/2 + n 2 (x) d/2 dx, ω d being the volume of the unit ball in R d .
Note that the eigenvalue-free region (1.3) implies (1.10) with κ j replaced by 1. Note also that asymptotics for the counting function N (r, C) with remainder o(r d ) have been previously obtained in [START_REF] Faierman | The interior transmission problem: spectral theory[END_REF], [START_REF] Pham | Weyl asymptotics of the transmission eigenvalues for a constant index of refraction[END_REF], [START_REF] Robbiano | Counting function for interior transmission eigenvalues[END_REF] still under the condition (1.2).

Basic properties of the h -ΨDOs

In this section we will recall some basic properties of the h -ΨDOs on a compact manifold without boundary. Let Γ, dim Γ = d -1, be as in the previous section and recall that given a symbol a ∈ C ∞ (T * Γ), the h -ΨDO, Op h (a), is defined as follows

(Op h (a)f ) (x ′ ) = (2πh) -d+1 T * Γ e -i h x ′ -y ′ ,ξ ′ a(x ′ , ξ ′ )f (y ′ )dy ′ dξ ′ .
We have the following criteria of L 2 -boundedness.

Proposition 2.1. Let the function a satisfy the bounds

∂ α x ′ a(x ′ , ξ ′ ) ≤ C α , ∀ (x ′ , ξ ′ ) ∈ T * Γ, (2.1) 
for all multi-indices α. Then the operator Op h (a) is bounded on L 2 (Γ) and satisfies

Op h (a) L 2 (Γ)→L 2 (Γ) ≤ C |α|≤d C α (2.2)
with a constant C > 0 independent of h and C α .

Let the function a satisfy the bounds

∂ α x ′ ∂ β ξ ′ a(x ′ , ξ ′ ) ≤ C α,β h -(|α|+|β|)/2 , ∀ (x ′ , ξ ′ ) ∈ T * Γ, (2.3) 
for all multi-indices α and β. Then the operator Op h (a) is bounded on L 2 (Γ) and satisfies

Op h (a) L 2 (Γ)→L 2 (Γ) ≤ C |α|+|β|≤s d C α,β (2.4) 
with a constant C > 0 independent of h and C α,β , where s d > 0 is an integer depending only on the dimension.

Given ℓ ∈ R, δ 1 , δ 2 ≥ 0 and a function m > 0 on T * Γ, we denote by S ℓ δ 1 ,δ 2 (m) the set of all functions a ∈ C ∞ (T * Γ) satisfying

∂ α x ′ ∂ β ξ ′ a(x ′ , ξ ′ ) ≤ C α,β m ℓ-δ 1 |α|-δ 2 |β|
for all multi-indices α and β with constants C α,β > 0 independent of m. Given k ∈ R, 0 ≤ δ < 1/2, we also denote by S k δ the space of all symbols a ∈ C ∞ (T * Γ) satisfying

∂ α x ′ ∂ β ξ ′ a(x ′ , ξ ′ ) ≤ C α,β h -δ(|α|+|β|) ξ ′ k-|β|
for all multi-indices α and β with constants C α,β > 0 independent of h. It is well-known that the h-ΨDOs of class OPS k δ have nice calculus (e.g. see Section 7 of [START_REF] Dimassi | Spectral asymptotics in semi-classical limit[END_REF]). The next proposition is very usefull for inverting such operators depending on additional parameters (see also Proposition 2.2 of [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF]). Proposition 2.2. Let h ℓ ± a ± ∈ S ±k δ , 0 ≤ δ < 1/2, where ℓ ± ≥ 0 are some numbers. Assume in addition that the functions a ± satisfy

∂ α 1 x ′ ∂ β 1 ξ ′ a + (x ′ , ξ ′ )∂ α 2 x ′ ∂ β 2 ξ ′ a -(x ′ , ξ ′ ) ≤ µC α 1 ,β 1 ,α 2 ,β 2 h -(|α 1 |+|β 1 |+|α 2 |+|β 2 |)/2 , (2.5) 
∀ (x ′ , ξ ′ ) ∈ T * Γ, for all multi-indices α 1 , β 1 , α 2 , β 2 such that |α j | + |β j | ≥ 1, j = 1, 2, with constants C α 1 ,β 1 ,α 2 ,β 2 > 0 independent of h and µ. Then we have Op h (a + )Op h (a -) -Op h (a + a -) L 2 (Γ)→L 2 (Γ) ≤ C(µ + h) (2.6)
with a constant C > 0 independent of h and µ.

Given any real s, we define the semi-classical Sobolev norm by

f H s h (Γ) := Op h ( ξ ′ s )f L 2 (Γ)
. Using the calculus of the h -ΨDOs one can derive from (2.4) 

(a + )Op h (a -) -Op h (a + a -) = O s (h) : H s h (Γ) → H s h (Γ).

The parametrix construction revisited

In this section we will build a parametrix for the semi-classical Dirichlet-to-Neumann map following [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF]. Note that in [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF] there is a gap due to a missing term in the transport equations (4.11), which however does not affect the proof of the main results. Here we will correct this gap making some slight modifications.

Given f ∈ H m+1 (Γ), let u solve the equation

h 2 ∆ + zn(x) u = 0 in Ω, u = f on Γ, (3.1) 
where

n ∈ C ∞ (Ω) is a strictly positive function, 0 < h ≪ 1 is a semi-classical parameter and z ∈ Z 1 ∪ Z 2 ∪ Z 3 , where Z 1 = {z ∈ C : Re z = 1, 0 < |Im z| ≤ 1}, Z 2 = {z ∈ C : Re z = -1, |Im z| ≤ 1}, Z 3 = {z ∈ C : |Re z| ≤ 1, |Im z| = 1}. Given ε > 0 we also set Z 1 (ε) = {z ∈ Z 1 : h ε ≤ |Im z| ≤ 1}.
We define the semi-classical Dirichlet-to-Neumann map

N (h, z) : H m+1 (Γ) → H m (Γ)
by N (h, z)f := -ih∂ ν u| Γ where ν denotes the Euclidean unit inner normal to Γ. Given an integer m ≥ 0, denote by H m h (Ω) the Sobolev space equipped with the semi-classical norm

v H m h (Ω) = |α|≤m h |α| ∂ α x v L 2 (Ω) .
We define similarly the Sobolev space H m h (Γ). Note that this norm is equivalent to that one defined in Section 2. Throughout this section we will use the normal coordinates (x 1 , x ′ ) with respect to the Euclidean metric near the boundary Γ, where 0 < x 1 ≪ 1 denotes the Euclidean distance to the boundary and x ′ are coordinates on Γ. We denote by ∆ Γ the negative Laplace-Beltrami operator on Γ equipped with the Riemannian metric induced by the Euclidean one in Ω. Let r 0 (x ′ , ξ ′ ) ≥ 0 be the principal symbol of -∆ Γ written in the coordinates (x ′ , ξ ′ ) ∈ T * Γ. Since the function n is smooth up to the boundary we can expand it as

n(x) = N -1 k=0 x k 1 n k (x ′ ) + x N 1 M N (x)
for every integer N ≥ 1, where

n k = (k!) -1 ∂ k ν n| Γ , n 0 > 0, and M N (x) is a real-valued smooth function. Set ρ(x ′ , ξ ′ , z) = -r 0 (x ′ , ξ ′ ) + zn 0 (x ′ ), Im ρ > 0.
The glancing region for the problem (3.1) is defined by

Σ := {(x ′ , ξ ′ ) ∈ T * Γ : r ♯ (x ′ , ξ ′ ) = 1}, r ♯ = n -1 0 r 0 . Let φ ∈ C ∞ 0 (R), 0 ≤ φ ≤ 1, φ(σ) = 1 for |σ| ≤ 1, φ(σ) = 0 for |σ| ≥ 2, and set η(x ′ , ξ ′ ) = φ(r 0 (x ′ , ξ ′ )/δ 0 ). Clearly, taking δ 0 > 0 small enough we can arrange that |ρ| ≥ C r 0 1/2 ≥ C ξ ′ on supp(1 -η). We also define the function χ(x ′ , ξ ′ ) = φ((1 -r ♯ (x ′ , ξ ′ ))/δ 1 )
, where 0 < δ 1 ≪ 1 is independent of h and z. Clearly, χ = 1 in a neighbourhood of Σ, χ = 0 outside another neighbourhood of Σ.

We will say that a function a

∈ C ∞ (T * Γ) belongs to S ℓ 1 δ 1 ,δ 2 (m 1 ) + S ℓ 2 δ 3 ,δ 4 (m 2 ) if ηa ∈ S ℓ 1 δ 1 ,δ 2 (m 1 ) and (1 -η)a ∈ S ℓ 2 δ 3 ,δ 4 (m 2 )
. Given any integer k, it follows from Lemma 3.2 of [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF] that

ρ k , |ρ| k ∈ S k 2,2 (|ρ|) + S k 0,1 (|ρ|). (3.2)
In particular, (3.2) implies that

(1 -η)ρ k , (1 -η)|ρ| k ∈ S k 0 . (3.3) Since ρ = i √ r 0 1 + O(r -1 0 ) as r 0 → ∞, it is easy to check that (1 -η)ρ k -(1 -η)(i √ r 0 ) k ∈ S k-2 0 (3.4) for every integer k. Since |ρ| ≥ C |Im z| for z ∈ Z 1 , (x ′ , ξ ′ ) ∈ supp χ and |ρ| ≥ C > 0 for z ∈ Z 2 ∪ Z 3 or z ∈ Z 1 , (x ′ , ξ ′ ) ∈ supp (1 -χ) (see Lemma 3.1 of [14]), it also follows from (3.2) that (1 -χ)ρ k , (1 -χ)|ρ| k ∈ S k 0 , (3.5) 
h k - 4 χρ k , h k - 4 χ|ρ| k ∈ S -N 1/2-ǫ , z ∈ Z 1 (1/2 -ǫ), (3.6) 
χρ k , χ|ρ| k ∈ S -N 0 , z ∈ Z 2 ∪ Z 3 , (3.7) 
for every integer N ≥ 0 and 0

< ǫ ≪ 1, where k -= 0 if k ≥ 0, k -= |k| if k < 0.
Our goal in this section is to prove the following

Theorem 3.1. Let z ∈ Z 1 (1/2-ǫ), 0 < ǫ ≪ 1.
Then, for every integer s ≥ 0 there is a function b s ∈ S 0 1/2-ǫ independent of all n k with k ≥ s such that

N (h, z) -Op h ρ + b s + c s h s ρ -s-1 zn s L 2 (Γ)→H s+1 h (Γ) ≤ C s h s+1 |Im z| -2s-3/2 (3.8)
where c s = 0 if s = 0, and

c s = -is!(-2i) -s-1 for s ≥ 1. If z ∈ Z 2 ∪ Z 3 , then (3.8) holds with |Im z| replaced by 1. Moreover, for z ∈ Z 1 (1 -ǫ) we have N (h, z)Op h (1 -χ) -Op h ρ(1 -χ) + b s + c s h s (1 -χ)ρ -s-1 zn s L 2 (Γ)→H s+1 h (Γ) ≤ C s h s+1
(3.9) where the function b s ∈ S 0 0 is independent of all n k with k ≥ s. Proof. We will recall the parametrix construction in [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF]. We will proceed locally and then we will use partition of the unity to get the global parametrix. Fix a point x 0 ∈ Γ and let U 0 ⊂ Γ be a small open neighbourhood of x 0 . Let (x 1 , x ′ ), x 1 > 0, x ′ ∈ U 0 , be the normal coordinates. In these coordinates the Laplacian can be written as follows

∆ = ∂ 2 x 1 + r(x, ∂ x ′ ) + q(x, ∂ x ) where r(x, ξ ′ ) = R(x)ξ ′ , ξ ′ ≥ 0, R = (R ij ) being a symmetric (d -1) × (d -1
) matrix-valued function with smooth real-valued entries, q(x, ξ) = q(x), ξ = q ♯ (x)ξ 1 + q ♭ (x), ξ ′ , q ♯ and q ♭ being smooth functions. We can expand them as follows

R(x) = N -1 k=0 x k 1 R k (x ′ ) + x N 1 R N (x), q ♯ (x) = N -1 k=0 x k 1 q ♯ k (x ′ ) + x N 1 Q ♯ N (x), q ♭ (x) = N -1 k=0 x k 1 q ♭ k (x ′ ) + x N 1 Q ♭ N (x), for every integer N ≥ 1. Clearly, r 0 (x ′ , ξ ′ ) = r(0, x ′ , ξ ′ ) = R 0 (x ′ )ξ ′ , ξ ′ . Take a function ψ 0 ∈ C ∞ 0 (U 0 ).
In what follows ψ will denote either the function ψ 0 or the function ψ 0 (1χ). Following [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF], we will construct a parametrix u ψ of the solution of (3.1) with

u ψ | x 1 =0 = Op h (ψ)f in the form u ψ = (2πh) -d+1 e i h ( y ′ ,ξ ′ +ϕ(x,ξ ′ ,z)) Φ δ (x, ξ ′ , z)a(x, ξ ′ , h, z)f (y ′ )dξ ′ dy ′ where Φ δ = φ(x 1 /δ)φ(x 1 /ρ 1 δ), with ρ 1 = |ρ| 3 if z ∈ Z 1 (1/2-ǫ), ψ = ψ 0 , and ρ 1 = 1 if z ∈ Z 2 ∪Z 3 or z ∈ Z 1 (1 -ǫ), ψ = ψ 0 (1 -χ).
Here 0 < δ ≪ 1 is a parameter independent of h and z to be fixed later on. The phase ϕ is complex-valued such that ϕ| x 1 =0 =x ′ , ξ ′ and satisfies the eikonal equation mod O(x N 1 ):

(∂ x 1 ϕ) 2 + R(x)∇ x ′ ϕ, ∇ x ′ ϕ -zn(x) = x N 1 Ψ N (3.10)
where N ≫ 1 is an arbitrary integer and the function Ψ N is smooth up to the boundary x 1 = 0. It is shown in [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF], Section 4, that the equation (3.10) has a smooth solution of the form

ϕ = N k=0 x k 1 ϕ k (x ′ , ξ ′ , z), ϕ 0 = -x ′ , ξ ′ , safisfying ∂ x 1 ϕ| x 1 =0 = ϕ 1 = ρ. (3.11)
More generally, the functions ϕ k satisfy the relations

k+j=K (k + 1)(j + 1)ϕ k+1 ϕ j+1 + k+j+ℓ=K R ℓ ∇ x ′ ϕ k , ∇ x ′ ϕ j -zn K = 0 (3.12)
for every integer 0 ≤ K ≤ N -1. Then equation (3.10) is satisfied with

Ψ N = R N (x)∇ x ′ ϕ, ∇ x ′ ϕ -zM N (x) + k+j≥N x k+j-N 1 (k + 1)(j + 1)ϕ k+1 ϕ j+1 + k+j+ℓ≥N x k+j+ℓ-N 1 R ℓ ∇ x ′ ϕ k , ∇ x ′ ϕ j
where ϕ ν = 0 for ν ≥ N + 1 so that the above sums are finite. Using (3.12) one can prove by induction the following lemma (see Lemma 4.1 of [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF]).

Lemma 3.2. We have

ϕ k ∈ S 4-3k 2,2 (|ρ|) + S 1 0,1 (|ρ|), 1 ≤ k ≤ N, (3.13) ∂ k x 1 Ψ N ∈ S 2-3N -3k 2,2 (|ρ|) + S 2 0,1 (|ρ|), k ≥ 0, (3.14)
uniformly in z and 0 ≤ x 1 ≤ 2δ min{1, |ρ| 3 }. Moreover, if δ > 0 is small enough, independent of ρ, we have

Im ϕ ≥ x 1 Im ρ/2 for 0 ≤ x 1 ≤ 2δ min{1, |ρ| 3 }. (3.15)
One can also easily prove by induction the following Lemma 3.3. For every integer k ≥ 1 the functions ϕ k and ϕ k+1 -zn k 2(k+1)ρ are independent of all n ℓ with ℓ ≥ k.

It follows from (3.13) that (1 -η)ϕ k ∈ S 1
0 for all k. Define now the functions ϕ k independent of all n ℓ , ℓ ≥ 0, satisfying the relations 

k+j=K (k + 1)(j + 1) ϕ k+1 ϕ j+1 + k+j+ℓ=K R ℓ ∇ x ′ ϕ k , ∇ x ′ ϕ j = 0, (3.16) 1 ≤ k ≤ N -1, and ϕ 0 = -x ′ , ξ ′ , ϕ 1 = i √ r 0 . Using (3.
(1 -η)(ϕ k -ϕ k ) ∈ S -1 0 . The amplitude a is of the form a = N -1 j=0 h j a j (x, ξ ′ , z)
where the functions a j satisfy the transport equations mod O(x N 1 ):

2i∂ x 1 ϕ∂ x 1 a j + 2i R(x)∇ x ′ ϕ, ∇ x ′ a j + i (∆ϕ) a j + ∆a j-1 = x N 1 A (j) N , 0 ≤ j ≤ N -1, (3.17) a 0 | x 1 =0 = ψ, a j | x 1 =0 = 0 for j ≥ 1
, where a -1 = 0 and the functions A (j) N are smooth up to the boundary x 1 = 0. We will be looking for the solutions to (3.17) in the form

a j = N k=0 x k 1 a k,j (x ′ , ξ ′ , z).
We can write ∆ϕ =

N -1 k=0 x k 1 ϕ ∆ k + x N 1 E N (x) with ϕ ∆ k = (k + 1)(k + 2)ϕ k+2 + ℓ+ν=k R ℓ ∇ x ′ •, ∇ x ′ ϕ ν + q ♯ ℓ (ν + 1)ϕ ν+1 + q ♭ ℓ , ∇ x ′ ϕ ν , E N = R N ∇ x ′ •, ∇ x ′ ϕ + Q ♯ N ∂ x 1 ϕ + Q ♭ N , ∇ x ′ ϕ + ℓ+ν≥N x ℓ+ν-N 1 R ℓ ∇ x ′ •, ∇ x ′ ϕ ν + q ♯ ℓ (ν + 1)ϕ ν+1 + q ♭ ℓ , ∇ x ′ ϕ ν ,
where ϕ ν = 0 for ν ≥ N + 1. Similarly

∆a j-1 = N -1 k=0 x k 1 a ∆ k,j-1 + x N 1 F (j-1) N (x) with a ∆ k,j-1 = (k + 1)(k + 2)a k+2,j-1 + ℓ+ν=k R ℓ ∇ x ′ •, ∇ x ′ a ν,j-1 + q ♯ ℓ (ν + 1)a ν+1,j-1 + q ♭ ℓ , ∇ x ′ a ν,j-1 , F (j-1) N = R N ∇ x ′ •, ∇ x ′ a j-1 + Q ♯ N ∂ x 1 a j-1 + Q ♭ N , ∇ x ′ a j-1 + ℓ+ν≥N x ℓ+ν-N 1 R ℓ ∇ x ′ •, ∇ x ′ a ν,j-1 + q ♯ ℓ (ν + 1)a ν+1,j-1 + q ♭ ℓ , ∇ x ′ a ν,j-1 ,
where a ν,j-1 = 0 for ν ≥ N + 1. We also have

(∆ϕ) a j = N -1 k=0 x k 1 k 1 +k 2 =k ϕ ∆ k 1 a k 2 ,j + x N 1 E (j) N with E (j) N = E N a j + k 1 +k 2 ≥N x k 1 +k 2 -N 1 ϕ ∆ k 1 a k 2 ,j , ∂ x 1 ϕ∂ x 1 a j = N -1 k=0 x k 1 k 1 +k 2 =k (k 1 + 1)(k 2 + 1)ϕ k 1 +1 a k 2 +1,j + x N 1 F (j) N with F (j) N = k 1 +k 2 ≥N x k 1 +k 2 -N 1 (k 1 + 1)(k 2 + 1)ϕ k 1 +1 a k 2 +1,j , R(x)∇ x ′ ϕ, ∇ x ′ a j = N -1 k=0 x k 1 k 1 +k 2 +k 3 =k R k 1 ∇ x ′ ϕ k 2 , ∇ x ′ a k 3 ,j + x N 1 G (j) N with G (j) N = R N (x)∇ x ′ ϕ, ∇ x ′ a j + k 1 +k 2 +k 3 ≥N x k 1 +k 2 +k 3 -N 1 R k 1 ∇ x ′ ϕ k 2 , ∇ x ′ a k 3 ,j ,
where ϕ ν = 0, a ν,j = 0 for ν ≥ N + 1 so that the above sums are finite. Inserting the above identities into equation (3.17) and comparing the coefficients of all powers x k 1 , 0 ≤ k ≤ N -1, we get that the functions a k,j must satisfy the relations

k 1 +k 2 =k 2i(k 1 + 1)(k 2 + 1)ϕ k 1 +1 a k 2 +1,j + k 1 +k 2 +k 3 =k 2i R k 1 ∇ x ′ ϕ k 2 , ∇ x ′ a k 3 ,j + k 1 +k 2 =k iϕ ∆ k 1 a k 2 ,j = -a ∆ k,j-1 , for 0 ≤ k ≤ N -1, 0 ≤ j ≤ N -1, (3.18) 
and a 0,0 = ψ, a 0,j = 0, j ≥ 1, a k,-1 = 0, k ≥ 0. Then equation (3.17) is satisfied with

A (j) N = 2iF (j) N + 2iG (j) N + iE (j) N + F (j-1) N .
Let us calculate a 1,0 . By (3.18) with j = 0, k = 0, we get

a 1,0 = -ϕ -1 1 B 0 ξ ′ , ∇ x ′ ψ -(ϕ -1 1 ϕ 2 + 2 -1 q ♯ 0 -(2ϕ 1 ) -1 q ♭ 0 (x ′ ), ξ ′ )ψ. (3.19)
On the other hand, by (3.12) with K = 1 we get

ϕ 2 = -(2ρ) -1 B 0 ξ ′ , ∇ x ′ ρ -(4ρ) -1 B 1 ξ ′ , ξ ′ + z(4ρ) -1 n 1 .
Using the identity 2ρ∇

x ′ ρ = -∇ x ′ r 0 + z∇ x ′ n 0
we can write ϕ 2 in the form

ϕ 2 = (2ρ) -2 B 0 ξ ′ , ∇ x ′ r 0 -(4ρ) -1 B 1 ξ ′ , ξ ′ -z(2ρ) -2 B 0 ξ ′ , ∇ x ′ n 0 + z(4ρ) -1 n 1 . (3.20)
By (3.19) and (3.20),

a 1,0 = -ρ -1 B 0 ξ ′ , ∇ x ′ ψ -2 -1 ψq ♯ 0 + (2ρ) -1 ψ q ♭ 0 (x ′ ), ξ ′ -4 -1 ρ -3 ψ B 0 ξ ′ , ∇ x ′ r 0 + 4 -1 ρ -2 ψ B 1 ξ ′ , ξ ′ +z4 -1 ρ -3 ψ B 0 ξ ′ , ∇ x ′ n 0 -z4 -1 ρ -2 ψn 1 .
(3.21) By (3.2) and (3.21) we conclude

a 1,0 ∈ S -3 2,2 (|ρ|) + S 0 0,1 (|ρ|). (3.22)
The next lemma follows from Lemma 3.2 and (3.22) together with equations (3.18) and can be proved in the same way as Lemma 4.2 of [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF]. We will sketch the proof.

Lemma 3.5. We have

a k,j ∈ S -3k-4j 2,2 (|ρ|) + S -j 0,1 (|ρ|), for k ≥ 1, j ≥ 0, (3.23) ∂ k x 1 A (j) N ∈ S -3N -3k-4j-2 2,2 (|ρ|) + S 1-j 0,1 (|ρ|), for k ≥ 0, j ≥ 0, (3.24) 
uniformly in z and 0 ≤ x 1 ≤ 2δ min{1, |ρ| 3 }.

Proof. Recall that ∇ x ′ ϕ 0 = -ξ ′ . By (3.13) we have

∇ x ′ ϕ k ∈ S 2-3k 2,2 (|ρ|) + S 1 0,1 (|ρ|), k ≥ 1, ϕ ∆ k ∈ S -2-3k 2,2 (|ρ|) 
+ S 1 0,1 (|ρ|), k ≥ 0. We will prove (3.23) by induction. In view of (3.22) we have (3.23) with k = 1, j = 0. Suppose now that (3.23) is true for all j ≤ J -1 and all k ≥ 1, and for j = J and k ≤ K. We have to show that it is true for j = J and k = K + 1. To this end, we will use equation (3.18) with j = J and k = K. Indeed, the LHS is equal to 2i(K + 1)ρa K+1,J modulo S -3K-4J-2 2,2 (|ρ|) + S -J+1 0,1 (|ρ|), while the RHS belongs to S -3K-4J-2 2,2 (|ρ|) + S -J+1 0,1 (|ρ|). In other words, ρa K+1,J belongs to S -3K-4J-2 2,2 (|ρ|) + S -J+1 0,1 (|ρ|). This implies that a K+1,J belongs to S -3K-4J-3 2,2 (|ρ|) + S -J 0,1 (|ρ|), as desired. Furthermore, (3.24) follows from (3.13) and (3.23) since the functions A (j) N are expressed in terms of ϕ k and a k,j . One needs the simple observation that

a ∈ S ℓ 1 2,2 (|ρ|) + S ℓ 2 0,1 (|ρ|) implies x k 1 a ∈ S ℓ 1 +3k 2,2 (|ρ|) + S ℓ 2 0,1 (|ρ|). 2 
Using Lemma 3.3 we will prove the following Lemma 3.6. For all k ≥ 1, j ≥ 0, the function

a k,j - (k + j)! k! zψn k+j (-2iρ) j+2
is independent of all n ℓ with ℓ ≥ k + j.

Proof. It follows from Lemma 3.3 that the function ϕ ∆ k -(2ρ) -1 (k + 1)zn k+1 is independent of all n ℓ with ℓ ≥ k + 1. We will first prove the assertion for j = 0 and all k ≥ 1 by induction in k. In view of (3.21) it is true for k = 1. Suppose it is true for all integers k ≤ K with some integer K ≥ 1. We will prove it for k = K + 1. To this end, we will use equation (3.18) with j = 0 and k = K. Since the RHS is zero, we get that the function 2i(K + 1)ρa K+1,0 + iϕ ∆ K ψ is independent of all n ℓ with ℓ ≥ K + 1. Hence, so is the function a K+1,0 + (2ρ) -2 (K + 1)zψn K+1 as desired. We will now prove the assertion for all k ≥ 1, j ≥ 0 by induction in j. Suppose it is true for j ≤ J and all k ≥ 1 with some integer J ≥ 1. We will prove for j = J + 1 and all k ≥ 1. To this end, we will use equation (3.18) with j = J + 1 and k replaced by k -1, k ≥ 1. We have that, modulo functions independent of all n ℓ with ℓ ≥ k + J + 1, the LHS is equal to 2ikρa k,J+1 , while the RHS is equal to -k(k + 1)a k+1,J . Hence the function

a k,J+1 + (2iρ) -1 (k + 1)a k+1,J
is independent of all n ℓ with ℓ ≥ k + J + 1, which clearly implies the desired assertion.

2

It follows from (3.23) that (1η)a k,j ∈ S -j 0 for all k ≥ 1, j ≥ 0. Define now the functions a k,j independent of all n ℓ , ℓ ≥ 0, satisfying the relations

k 1 +k 2 =k 2i(k 1 + 1)(k 2 + 1) ϕ k 1 +1 a k 2 +1,j + k 1 +k 2 +k 3 =k 2i R k 1 ∇ x ′ ϕ k 2 , ∇ x ′ a k 3 ,j + k 1 +k 2 =k i ϕ ∆ k 1 a k 2 ,j = -a ∆ k,j-1 , (3.25) 
and a 0,0 = ψ, a 0,j = 0, j ≥ 1, a k,-1 = 0, k ≥ 0, where ϕ ∆ k is defined by replacing in the definition of ϕ ∆ k all functions ϕ j by ϕ j . Using Lemma 3.4 we will prove the following Lemma 3.7. For all k ≥ 1, j ≥ 0, we have (1η)(a k,ja k,j ) ∈ S -j-1 0 .

Proof. By Lemma 3.4 together with (3.18) and (3.25) we obtain that the relations

k 1 +k 2 =k 2i(k 1 + 1)(k 2 + 1)(1 -η) ϕ k 1 +1 (a k 2 +1,j -a k 2 +1,j ) + k 1 +k 2 +k 3 =k 2i(1 -η) R k 1 ∇ x ′ ϕ k 2 , ∇ x ′ (a k 3 ,j -a k 3 ,j ) + k 1 +k 2 =k i(1 -η) ϕ ∆ k 1 (a k 2 ,j -a k 2 ,j ) = -(1 -η)(a ∆ k,j-1 -a ∆ k,j-1 ) (3.26)
are satisfied modulo S -j-1 0 . We will proceed by induction. Suppose now that the assertion is true for all j ≤ J -1 and all k ≥ 1, and for j = J and k ≤ K. This implies that the LHS of (3.26) with k = K and j = J is equal to 2i(K + 1)(1η) ϕ 1 (a K+1,Ja K+1,J ) modulo S -J 0 , while the RHS belongs to S -J 0 . Hence, (1η)(a K+1,Ja K+1,J ) belongs to S -J-1 0 , as desired. 2

In view of (3.11) we have

-ih∂ x 1 u ψ | x 1 =0 = T ψ (h, z)f = Op h (τ ψ )f
where

τ ψ = a ∂ϕ ∂x 1 | x 1 =0 -ih ∂a ∂x 1 | x 1 =0 = ρψ -i N -1 j=0 h j+1 a 1,j .
Lemma 3.8. For every integer m ≥ 0 there are N m > 1 and ℓ m > 0 such that for all N ≥ N m we have the estimate

N (h, z)Op h (ψ) -T ψ (h, z) L 2 (Γ)→H m h (Γ) ≤ C N,m h ǫN -ℓm (3.27) if ψ = ψ 0 , z ∈ Z 1 (1/2 -ǫ), or ψ = ψ 0 (1 -χ), z ∈ Z 1 (1 -ǫ). If ψ = ψ 0 , z ∈ Z 2 ∪ Z 3 , then (3.27)
holds with ǫ replaced by 1.

Proof. Denote by G D the Dirichlet self-adjoint realization of the operator -n -1 ∆ on the Hilbert space L 2 (Ω; n(x)dx). It is easy to see that

(h 2 G D -z) -1 = O θ(z) -1 : L 2 (Ω) → L 2 (Ω) where θ(z) = |Im z| if z ∈ Z 1 , θ(z) = 1 if z ∈ Z 2 ∪ Z 3 .
Clearly, under the conditions of Lemma 3.8, we have h < θ(z) ≤ 1. The above bound together with the coercivity of G D imply

(h 2 G D -z) -1 = O s θ(z) -1 : H s (Ω) → H s (Ω) (3.28)
for every integer s ≥ 0. We also have the identity

N (h, z)Op h (ψ)f -T ψ (h, z)f = -ihγ∂ ν (h 2 G D -z) -1 V (3.29)
where γ denotes the restriction on Γ, and

V = (h 2 ∆ + zn) u ψ = K(h, z)f = (2πh) -d+1 e i h ( y ′ ,ξ ′ +ϕ(x,ξ ′ ,z)) K(x, ξ ′ , h, z)f (y ′ )dξ ′ dy ′ , where K = K 1 + K 2 with K 1 = h 2 ∆, Φ δ a, K 2 = x N 1 A N + h N B N Φ δ , A N = Ψ N a + N -1 j=0 h j+1 A (j) N , B N = ∆a N -1 = N -1 k=0 x k 1 a ∆ k,N -1 + x N 1 F (N -1) N
.

By the trace theorem we get from (3.28) and (3.29),

N (h, z)Op h (ψ)f -T ψ (h, z)f H m h (Γ) ≤ O(h -1 ) (h 2 G D -z) -1 V H m+1 h (Ω) ≤ O (hθ(z)) -1 V H m+1 h (Ω) ≤ O h -2 V H m+1 h (Ω) . (3.30) 
To bound the norm of V we need to bound the kernel of the operator

K α := ∂ α x K(h, z) : L 2 (Γ) → L 2 (Ω). By Lemma 3.1 of [14] we have Im ρ ≥ |Im z| 2|ρ| on supp η, z ∈ Z 1 , Im ρ ≥ C ξ ′ for z ∈ Z 2 ∪ Z 3 and on supp (1 -η), z ∈ Z 1 ,
where C > 0 is some constant. Hence, by (3.15), for 0 ≤ x 1 ≤ 2δ min{1, |ρ| 3 } we have

x N 1 e iϕ/h ≤ x N 1 e -Im ϕ/h ≤ x N 1 e -x 1 Im ρ/2h ≤ C N h Im ρ N ≤      C N h|ρ| |Im z| N , z ∈ Z 1 , (x ′ , ξ ′ ) ∈ supp η, C N h ξ ′ N ,
otherwise.

(3.31)

On the other hand, by Lemmas 3.2 and 3.5, for |ρ| 4 ≥ h and 0 ≤ x 1 ≤ 2δ min{1, |ρ| 3 } we have

|∂ α x A N | ≤ C α,N h -ℓα |ρ| -3N , on supp η, C α,N ξ ′ 2 , on supp (1 -η), (3.32) 
|∂ α x B N | ≤ C α,N h -ℓα |ρ| -4N , on supp η, C α,N ξ ′ -N +1 , on supp (1 -η), (3.33) 
for every multi-index α with some ℓ α > 0 independent of N . By (3.31), (3.32) and (3.33), using that |ρ| 2 ≥ C|Im z|, C > 0, on supp η, we conclude

∂ α x e iϕ/h K 2 ≤ C α,N h -ℓα h |ρ| 2 |Im z| + h |ρ| 4 N ≤ C α,N h -ℓα h |Im z| 2 N (3.34) for z ∈ Z 1 , (x ′ , ξ ′ ) ∈ supp η, and 
∂ α x e iϕ/h K 2 ≤ C α,N h ξ ′ N -ℓα (3.35) 
otherwise, with possibly a new ℓ α > 0 independent of N . Similar estimates hold for the function K 1 , too. Indeed, observe that on supp [∆, Φ δ ] we have δ min{1,

|ρ| 3 } ≤ x 1 ≤ 2δ min{1, |ρ| 3 }, and hence e iϕ/h ≤ e -Im ϕ/h ≤ e -x 1 Im ρ/2h ≤ e -C|ρ| 2 |Im z|/h , z ∈ Z 1 , (x ′ , ξ ′ ) ∈ supp η, e -C ξ ′ /h , otherwise, (3.36) 
with some constant C > 0. Using (3.36) one can easily get that the estimates (3.34) and (3.35) are satisfied with K 2 replaced by K 1 . Therefore, the function K satisfies the bounds

∂ α x e iϕ/h K ≤    C α,N h 2ǫN -ℓα , z ∈ Z 1 (1/2 -ǫ), (x ′ , ξ ′ ) ∈ supp η, C α,N h ξ ′ N -ℓα , otherwise. (3.37) 
Moreover, since |ρ| ≥ Const > 0 on supp(1χ), in the case when ψ = ψ 0 (1χ) we obtain that (3.37) holds with Z 1 (1/2ǫ) replaced by Z 1 (1ǫ) and 2ǫ replaced by ǫ. Note now that the kernel, L α , of the operator K α is given by

L α (x, y ′ ) = (2πh) -d+1 e i h y ′ ,ξ ′ ∂ α x e i h ϕ(x,ξ ′ ,z)) K(x, ξ ′ , h, z) dξ ′ .
If N is taken large enough, (3.37) implies the bounds

L α (x, y ′ ) ≤ C α,N h 2ǫN -ℓα , z ∈ Z 1 (1/2 -ǫ), C α,N h N -ℓα , z ∈ Z 2 ∪ Z 3 , (3.38) 
with a new ℓ α > 0 independent of N . When ψ = ψ 0 (1χ), (3.38) holds with Z 1 (1/2ǫ) replaced by Z 1 (1ǫ) and 2ǫ replaced by ǫ. Clearly, (3.27) follows from (3.30) and (3.38). 2

In the case when ψ = ψ 0 , by (3.23) we have

∂ α x ′ ∂ β ξ ′ a k,j ≤ C k,j,α,β |ρ| -3k-4j-2(|α|+|β|)
on supp η, and

∂ α x ′ ∂ β ξ ′ a k,j ≤ C k,j,α,β ξ ′ -j-|β| on supp (1-η). Since |ρ| ≥ C |Im z| for z ∈ Z 1 , (x ′ , ξ ′ ) ∈ supp χ and |ρ| ≥ C > 0 for z ∈ Z 2 ∪Z 3 or z ∈ Z 1 , (x ′ , ξ ′ ) ∈ supp (1 -χ), we get ∂ α x ′ ∂ β ξ ′ a k,j ≤ C k,j,α,β |Im z| -3k/2-2j-|α|-|β| for z ∈ Z 1 , (x ′ , ξ ′ ) ∈ supp χ, and ∂ α x ′ ∂ β ξ ′ a k,j ≤ C k,j,α,β ξ ′ -j-|β| otherwise. Hence (1 -χ)a k,j ∈ S -j 0 , h k+j a k,j ∈ S -j 1/2-ǫ uniformly in z ∈ Z 1 (1/2 -ǫ), a k,j ∈ S -j 0 for z ∈ Z 2 ∪ Z 3 . Therefore, we have Op h (ηa k,j ) -Op h (η 1 )Op h (ηa k,j ) = O(h ∞ ) : L 2 (Γ) → H m h (Γ) for every integer m ≥ 0, where η 1 ∈ C ∞ 0 (T * Γ) is such that η 1 = 1 on supp η. In view of (2.4) this implies Op h (ηa k,j ) L 2 (Γ)→H m h (Γ) ≤ Op h (ηa k,j ) L 2 (Γ)→L 2 (Γ) Op h (η 1 ) L 2 (Γ)→H m h (Γ) + O(h ∞ ) ≤ C k,j,m |Im z| -3k/2-2j , z ∈ Z 1 (1/2 -ǫ), C k,j,m , z ∈ Z 2 ∪ Z 3 , (3.39) 
for every integer m ≥ 0. In view of Proposition 2.3 we also have

Op h ((1 -η)a k,j ) L 2 (Γ)→H j h (Γ) ≤ C k,j . (3.40) 
By (3.39) and (3.40) we conclude

Op h (a k,j ) L 2 (Γ)→H j h (Γ) ≤ C k,j |Im z| -3k/2-2j , z ∈ Z 1 (1/2 -ǫ), C k,j , z ∈ Z 2 ∪ Z 3 . (3.41) 
By Lemma 3.7 we also have

Op h ((1 -η)(a k,j -a k,j )) L 2 (Γ)→H j+1 h (Γ) ≤ C k,j , z ∈ Z 1 ∪ Z 2 ∪ Z 3 . (3.42)
In the case when ψ = ψ 0 (1χ), the functions a k,j vanish on supp χ, and hence a k,j ∈ S -j 0 for z ∈ Z 1 . Therefore, in this case the estimate (3.41) holds with |Im z| replaced by 1 and Z 1 (1/2-ǫ) replaced by Z 1 .

We are ready now to prove Theorem 3.1. If s = 0 we put b ψ 0 = -ih(1η) a 1,0 , and if s ≥ 1 we put

b ψ s = -i s-1 j=0 h j+1 a 1,j -c s h s ρ -s-1 zn s ψ -ih s+1 (1 -η) a 1,s .
In view of Lemma 3.6, the function b ψ s is independent of all n ℓ with ℓ ≥ s. If we take N big enough, we can decompose the function τ ψ as

τ ψ = ρψ + b ψ s + c s h s ρ -s-1 zn s ψ + b ψ s where b ψ s = -ih s+1 ηa 1,s -ih s+1 (1 -η)(a 1,s -a 1,s ) -i N -1 j=s+1 h j+1 a 1,j .
By (3.39), (3.41) and (3.42) we have 

Op h ( b ψ s ) L 2 (Γ)→H s+1 h (Γ) ≤ C s h s+1 |Im z| -3/2-2s , z ∈ Z 1 (1/2 -ǫ), C s h s+1 , z ∈ Z 2 ∪ Z 3 . ( 3 
N (h, z)Op h (ψ) -Op h (ρψ + b ψ s + c s h s ρ -s-1 zn s ψ) L 2 (Γ)→H s+1 h (Γ) ≤ C s h s+1 |Im z| -3/2-2s , z ∈ Z 1 (1/2 -ǫ), C s h s+1 , z ∈ Z 2 ∪ Z 3 , (3.44) 
if ψ = ψ 0 . Moreover, if ψ = ψ 0 (1χ), the estimate (3.44) holds with |Im z| replaced by 1 and

Z 1 (1/2 -ǫ) replaced by Z 1 (1 -ǫ).
We will now use a partition of the unity on Γ. We can find functions {ψ 0 j } J j=1 such that J j=1 ψ 0 j = 1 and (3.44) is valid with ψ replaced by each ψ j , where ψ j is defined by replacing in the definiton of ψ the function ψ 0 by ψ 0 j . Summing up all the estimates we get (3.8) and (3.9), respectively. 2

Improved estimates

To prove Theorem 1.1 we actually need the following improved version of Theorem 3.1.

Theorem 4.1. Let z ∈ Z 1 (1/2 -ǫ), 0 < ǫ ≪ 1.
Then, for every integer s ≥ 1 there are an operator B s independent of all n k with k ≥ s and an operator

A s = O s (h -s ) : H s+1 h (Γ) → L 2 (Γ) (4.1)
independent of all n k with k ≥ 1 such that

A s N (h, z) -B s -n s I L 2 (Γ)→L 2 (Γ) ≤ C s h|Im z| -3s/2-1 (4.2)
where I denotes the identity. If z ∈ Z 2 ∪ Z 3 , then (4.2) holds with |Im z| replaced by 1.

Proof. Recall that by (3.5), (3.6), (3.7), we have that for every integer k, h k -

4 ρ k ∈ S k 1/2-ǫ uniformly in z ∈ Z 1 (1/2 -ǫ) and ρ k ∈ S k 0 if z ∈ Z 2 ∪ Z 3 .
We would like to apply Proposition 2.2 with

a + s = c s h s ρ -s-1 z -1 , a - s = c s h s ρ -s-1 z. Using (3.2) one can easily check that (2.5) is satisfied with µ = h|Im z| -2 = O(h 2ǫ ). By (2.6) we get Op h (a + s )Op h (a - s ) -I L 2 (Γ)→L 2 (Γ) ≤ Ch 2ǫ ≤ 1/2 (4.3) if h is taken small enough. It follows from (4.3) that the operator Op h (a - s ) is invertible with an inverse A s := Op h (a - s ) -1 = Op h (a + s )Op h (a - s ) -1 Op h (a + s ). Since h s a + s ∈ S s+1 1/2-ǫ uniformly in z, by Proposition 2.3 we have h s Op h (a + s ) = O s (1) : H s+1 h (Γ) → L 2 (Γ)
which implies (4.1). By (3.27) and (4.1),

A s N (h, z) -A s T (h, z) L 2 (Γ)→L 2 (Γ) ≤ C N,s h ǫN -s-ℓ s+1 ≤ h (4.4)
if N is taken large enough, where T = J j=1 T ψ j . On the other hand, we can write

A s T = B s + n s I + B s
where

B s = A s Op h (ρ + b s ), b s = J j=1 b ψ j s , B s = A s Op h ( b s ), b s = J j=1 b ψ j s .
Clearly, the operator B s is independent of all n k with k ≥ s because so is the function b s . Therefore, it follows from (4.4) that to prove (4.2) it suffices to prove the bound

Op h (a + s )Op h ( b s ) L 2 (Γ)→L 2 (Γ) ≤ C s h|Im z| -3s/2-1 , z ∈ Z 1 (1/2 -ǫ), C s h, z ∈ Z 2 ∪ Z 3 . (4.5) 
In view of Lemmas 3.5 and 3.7, we have b s = h s+1 g s with g s ∈ S -3-4s 2,2

(|ρ|)+S -s-1 0,1 (|ρ|) uniformly in h as long as |ρ| 4 ≥ h. Thus, (4.5) is equivalent to

Op h (ρ s+1 )Op h (g s ) L 2 (Γ)→L 2 (Γ) ≤ C s |Im z| -3s/2-1 , z ∈ Z 1 (1/2 -ǫ), C s , z ∈ Z 2 ∪ Z 3 . (4.6) 
To prove (4.6) observe that ρ s+1 g s ∈ S -2-3s 2,2

(|ρ|) + S 0 0,1 (|ρ|) uniformly in h, which yields the bounds 

∂ α x ′ ∂ β ξ ′ ρ s+1 g s ≤ C s,α,β |Im z| -3s/2-1-|α|-|β| , z ∈ Z 1 (1/2 -ǫ), C s,α,β , z ∈ Z 2 ∪ Z 3 . ( 4 
h (ρ s+1 g s ) L 2 (Γ)→L 2 (Γ) ≤ C s |Im z| -3s/2-1 , z ∈ Z 1 (1/2 -ǫ), C s , z ∈ Z 2 ∪ Z 3 . (4.8) 
On the other hand, applying Proposition 2.2 with a + = ρ s+1 and a -= g s yields the bound

Op h (ρ s+1 )Op h (g s ) -Op h (ρ s+1 g s ) L 2 (Γ)→L 2 (Γ) ≤ C s h|Im z| -3s/2-3 , z ∈ Z 1 (1/2 -ǫ), C s h, z ∈ Z 2 ∪ Z 3 . (4.9)
Clearly, (4.6) follows from (4.8) and (4.9). 2

5. Proof of Theorem 1.1

Define the DN maps N j (λ), j = 1, 2, by

N j (λ)f = ∂ ν u j | Γ
where ν is the Euclidean unit inner normal to Γ and u j is the solution to the equation ∆ + λ 2 n j (x) u j = 0 in Ω,

u j = f on Γ, (5.1) 
and consider the operator T (λ) = N 1 (λ) -N 2 (λ). Clearly, λ is a transmission eigenvalue if there exists a non-trivial function f such that T (λ)f = 0. Thus Theorem 1.1 is a consequence of the following Theorem 5.1. Under the conditions of Theorem 1.1, the operator T (λ) sends L 2 (Γ) into H j+1 (Γ). Moreover, there exists a constant C > 0 such that T (λ) is invertible for |Im λ| ≥ C(Re λ + 1) 1-κ j with an inverse satisfying in this region the bound

T (λ) -1 H j+1 (Γ)→L 2 (Γ) |λ| j-1 (5.2)
where the Sobolev space is equipped with the classical norm.

Proof. We make our problem semi-classical by putting h = |Re λ 2 | -1/2 , z = h 2 λ 2 = ±1+iIm z, if |Re λ 2 | ≥ |Im λ 2 |, ±Re λ 2 > 0, and

h = |Im λ 2 | -1/2 , z = h 2 λ 2 = Re z + i, if |Re λ 2 | ≤ |Im λ 2 |.
Clearly, h ∼ |λ| -1 . We set N j (h, z) = -ihN j (λ) and T (h, z) = N 1 (h, z) -N 2 (h, z).

We now apply Theorem 4.1 with s = j ≥ 1. In view of the conditions (1.5) and (1.6), we get (2) j ) -1 A j T (h, z) is invertible for z ∈ Z 1 (1/2ǫ), |Im z| ≥ (C ′ j h) 1/(3j/2+1) , and for z ∈ Z 2 ∪ Z 3 , h small enough. Hence so is T (h, z) and we have the bound

A j T (h, z) -(n
T (h, z) -1 H j+1 h (Γ)→L 2 (Γ) ≤ O(1) A j H j+1 h (Γ)→L 2 (Γ) ≤ O(h -j ).
(5.4) Now (5.2) follows from (5.4) after passing from (h, z) to λ and using the fact that the semiclassical norm in H j+1 h (Γ) is bounded from above by the classical norm in H j+1 (Γ). 2

It is worth noticing that it follows from the estimate (3.9) that the operator T (h, z) can be inverted outside the glancing region for much smaller |Im z|. In other words, to improve the eigenvalue-free region (1.7) one has to improve the parametrix in the glancing region, only. More precisely, we have the following Proposition 5.2. Let z ∈ Z 1 (1ǫ). Then, under the conditions of Theorem 1.1, there exists an operator A j = O(h -j ) : H j+1 h (Γ) → L 2 (Γ) such that T (h, z) A j -Op h (1χ)

H j+1 h (Γ)→H j+1 h (Γ)
≤ Ch.

(5.5)

When z ∈ Z 2 ∪ Z 3 , the estimate (5.5) holds with χ replaced by 0.

Proof. By (3.9) with s = j we have T (h, z)Op h (1χ) -Op h (1χ)c j h j ρ -j-1 z(n ≤ C j h j+1 (5.6) for z ∈ Z 1 (1ǫ). Let χ 1 ∈ C ∞ 0 (T * Γ) be such that χ = 1 on supp χ 1 , χ 1 = 1 in a neighbourhood of Σ, and set a + j = (1χ)ρ -j-1 c j z(n

(1) j -n (2) 
j ), a - j = (1χ 1 )ρ j+1 c j z(n

(1) j -n (2) j ) -1 
.

We have a + j ∈ S -j-1 0 , a - j ∈ S j+1 0 and a + j a - j = 1χ. We now apply Proposition 2.4 with a + j and a - j in place of a + and a -. We have Op h ( a + j )Op h ( a - j ) -Op h (1χ)

H j+1 h (Γ)→H j+1 h (Γ)
≤ Ch.

(5.7)

Clearly, (5.5) follows from (5.6) and (5.7) with A j = h -j Op h (1χ)Op h ( a - j ). 2

4 )

 4 together with (3.12) and (3.16), one can easily prove by induction the following Lemma 3.4. For every integer k ≥ 1, we have

L 2

 2 (Γ)→L 2 (Γ) ≤ C j h|Im z| -3j/2-1 (5.3) for z ∈ Z 1 (1/2ǫ),where n(ℓ) j = (j!) -1 ∂ j ν n ℓ | Γ , ℓ = 1, 2. When z ∈ Z 2 ∪ Z 3 ,the estimate (5.3) holds with |Im z| replaced by 1. It follows from (5.3) that the operator (n (1) jn

  .43) Moreover, if ψ = ψ 0 (1χ), the estimate (3.43) holds with |Im z| replaced by 1 and Z 1 (1/2ǫ) replaced by Z 1 . We would like to apply Lemma 3.8 with m = s + 1. To this end we take N big enough to arrange that ǫNℓ s+1 > s + 1.

	By (3.27) and (3.43) we get