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Riesz potentials of Radon measures associated to
reflection groups

Léonard GALLARDO,* Chaabane REJEB' and Mohamed SIFI

Abstract

For a root system R on R? and a nonnegative multiplicity function k on R, we
consider the heat kernel pg(t,z,y) associated to the Dunkl-Laplacian operator Ayg.
For 8 €]0,d + 2|, where 'y =1 ZaeR (a), we study the Ag-Riesz kernel of index
defined by Ry g(z,y) = 1“(6/2) f t’*lpk t,z,y)dt and the corresponding Ag-Riesz
potential I g[p] of a Radon measure g on R?.  According to the values of 3, we
study the Ag-superharmonicity of these functions and we give some applications like
the Ag-Riesz measure of Ij g[u], the uniqueness principle and a pointwise Hedberg’s
inequality.

MSC (2010) primary: 31B05, 31B10, 31C45, 47B34; secondary: 28C05, 43A32, 46F10,
51F15.

Key words: Reflection groups, Dunkl-Laplace operator, Dunkl heat kernel, Generalized volume
mean operator, Dunkl subharmonic functions, Riesz kernel and potentials, Hedberg’s inequality.

1 Introduction

Let R be a normalized root system in R?. That is, for every a € R, ||a]|> =2, RNRa =
{xa} and 0,(R) = R, where o, is the reflection with respect to the hyperplane H,
orthogonal to « (see [15] and [17]). We fix £ > 0 a multiplicity function (i.e. k: R —
[0, +o00] invariant under the action of the Coxeter-Weyl group W associated to R) and we
consider the associated Dunkl-Laplacian operator Ay given by

Akf(-%') _ +2 Z k‘ ( ( )7a> - f(x) — f(Ua(JI)> 7 f e CQ(Rd), (1_1)

2
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with R4 a positive subsystem (see [7]).
Acting on C®(R?), it is related to the classical Laplacian operator A by means of the
so-called Dunkl intertwining operator Vi (see [6], [7], [30]) as follows:

ArVi = ViA. (1.2)

In [23], M. Résler has proved that for any x € R? there exists a compactly supported
probability measure p, on R? (which we call Résler’s measure at point ) such that

v feC®RY), Vi(f)(x)= Rdf(y)dux(y), (1.3)

with
supp py C C(x) = co{gx, g € W} (1.4)
(the convex hull of the orbit of = under the group W). We note that, according to [9], the

support of u, contains the point x and it is W-invariant under the hypothesis that the
multiplicity function is positive.

Let pi(t,z,y) (t > 0, 2,y € RY) be the heat kernel of the Dunkl Laplacian Ay which
is given by (see [21] and [25])

1 (2 2 T Y
" — (el +lyl®)/ 4t g~ I 1.5
pk( 7513,?/) (2t)d/2+,ycke k(\/ﬂ’ 275), ( )
where
Ei(z,y) = Vi(e")(z) (z,y € RY) (1.6)

is the Dunkl kernel (see [5] and [7]), ¢ is the Macdonald-Mehta constant (see [19]) given
by

- 2
Ck ::/ e wi(z)dz, (1.7)
R4
and wy, is the Dunkl weight function
wp(z) = ] ey a) K (1.8)
ac€RL

which is homogeneous of degree 2+.
It is also known (see [21]) that for all fixed x € R?, the function py(t, x,.) solves the Dunkl
heat equation

(Ak - 8t)pk(t7 Z, ) =0. (19)

Let v = Ea€R+ k(o) and suppose that d + 2y > 2. For 8 €]0,d 4 27|, we define the
Ag-Riesz kernel of index 3 as follows

1 +oo
Ry p(x,y) == F(ﬁ/2)/0 tg_lpk(t,a:,y)dt.

We note that when 8 = 2, we obtain the Dunkl-Newton kernel which has been introduced
and studied in [10].



Let x € RY, 2 # 0, be fixed and W.z be its W-orbit. Ify ¢ W.x, Ry s(z,v) is finite. But
when y € W.z, it seams hard, except in the case y = x, to decide in general if Ry, g(x,y) is
finite or infinite. These difficulties are illustrated by the particular case of the root system
of type A1 X A1 x -+ x A1 (m times, 1 < m < d), where we manage to give a complete
description of the singularities of the function Ry g(x,.).

The aim of this paper is the study, when d 4 2y > 2, of the A;-Riesz kernel Ry g and the
corresponding potential

I plpl () = /R | i, y)du(y)

of a signed Radon measure i on R?.

In particular, we will study the sub-or-superharmonicity of these functions in the sense of
the Dunkl-Laplace operator and we will describe explicitly their Ag-Riesz measures. This
notion of subharmonicity, which generalizes the classical one! has been introduced and
studied in some details in [10]. More precisely, let Q be a W-invariant open subset of RY.
A function u :  — [—00, 00| is called Ag-subharmonic (D-subharmonic) on 2 if

e u is upper semi-continuous (u.s.c.) on €,

e 1 is not identically —oco on each connected component of €2,

e it satisfies the sub-mean volume property: for every closed ball B(z,r) C 2, we have

1

ua) € Mp()(e) == s | ety (L10)

where my, is the measure wy(z)dz and hg(r, x,y) is a kernel of the form

hi(ry 2, y) = /Rd Lio. (v [[2[I2 + 1l2 = 2 (2, 2))dpuy (=) (1.11)

with 1, Rosler’s measure at point y. The function y — hy(r, z,y) is a generalized translate
of the indicator function 1pg, of the ball B(0,7) called harmonic kernel, introduced and
studied in [8] and which properties will be recalled in the next section. Moreover the
harmonic kernel is a crucial tool to get quite explicit expressions of the Ag-Riesz kernel
(see section 3).

Naturally, a function u is D-superharmonic on 2 if —u is D-subharmonic on €.

Finally, we study some applications. The main one is the following version of the
uniqueness principle: if 4 and v are finite and nonnegative Radon measures on R% and if
I glp) = I glv] a.e. on R? | then 1 = v. We also prove a pointwise Hedberg’s inequality
in the sense of the operator A; and we deduce LP-boundedness properties of the Ag-Riesz
potentials.

2 Generalities in Dunkl Theory

In order to help the reader, we have collected in this section some basics from Dunkl theory
which will be used in the sequel.

!see for example [2],[12],[14] and [18].



Notations: Let us introduce the following functional spaces which are present throughout
the paper:

e ) a W-invariant open subset of R¢.

o Lp(Q) (vesp. L} ,;,.(2)), 1 < p < 400 the space of measurable functions f : @ — C
such that HfH]zi(Q) = Jo | f(@)Pwg(z)de < +oo (resp. [ |f(x)[Pwy(z)dz < oo for any
compact set K C Q).

o L7°(Q) the space of measurable and essentially bounded functions on €.

e When Q = R¢, the norm of the space Li(Rd), 1 < p < 400, will be denoted ||.||x,
instead of H.HLi(Rd).

e D(Q) the space of C*°-functions on  with compact support.

e D'(Q) the space of distributions on ) (i.e. the topological dual of D(f2) carrying the
Fréchet topology).

e S(R?) the Schwartz space of C*-functions on R? which are rapidly decreasing together
with their derivatives.

e S'(R%) the space of tempered distributions.

2.1 The Dunkl transform
The Dunkl transform of a function f € Li(R?) is defined by (see [16] and [25])

Fr(f)(A) := y f(@)ER(—i, 2)wp(z)dz, X e RY, (2.1)

where Ej(z,y) is the Dunkl kernel (1.6) which is analytically extendable to C¢ x C% and
satisfies the following properties (see [5], [7], [16])

1. for all z,y € R?, we have
| Ep(—iz,y)| < 1. (2.2)

2. forall a € C, z,y € C? and all g € W, we have
Ey(az,y) = Ey(v,ay), Ex(v,y) = Ex(y,z) and Ey(gz,9y) = Ex(z,y).

It is well known (see [16]) that the Dunkl transform F is an isomorphism of S(R?) onto
itself and its inverse is given by

F (@) = ¢ /Rd FONEg(iz, Nwip(AN)dA, = e RY, (2.3)

where ¢, is the constant given by (1.7).
We note that for f, g € S(R?) the following relation holds

[ A @g@pn(e)dr = | @) Felo)w)ar(a)de. 24)

Moreover, the transformation clzlfk extends uniquely to an isometric isomorphism of
LZ(R?) (Plancherel theorem, see [16]).



We will also need the Dunkl transform Fj(S) of a tempered distribution S € S'(R9)
which is the distribution defined by

(Fi(S), 0) == (S, Fi(9)), ¢ € S(RY).

It is known that F is a topological isomorphism of &'(R%) onto itself (see [31]).

Note that if 4 is a bounded Radon measure on R?, ;s € S'(R9) and its distributional Dunkl
transform can be identified to the continuous function & — [pa Ex(—iz, &)du(z)wy(E). In
the literature, the function

Fiw 1§ [ Bulin,du(o) (25

is called the Dunkl transform of the measure p. This transformation is injective on the
space of bounded Radon measures on R? (see [22]).

We recall also that the Dunkl-Laplace operator Ay leaves the spaces D'(R?) and S'(R9)
invariant where the Ag-action on S in D/(R?)) (resp. in S’(R?)) is defined as in the
classical case by

(ARS, ¢) = (S, Apd), ¢ € DR?) (resp. ¢ € S(R?)). (2.6)

2.2 Dunkl’s translation operators and heat kernel properties

e The Dunkl translation operators 7.,z € R?, are defined on C*(R?) by (see [31])

vy eRY, mf(y) = / Vo T2 0 VM (f) (0) dpa(2). (2.7)
Rd

where T, is the classical translation operator given by T, f(y) = f(z + y). The operators
Te, € R? satisfy the following properties:

1) For all x € R? the operator 7, is continuous from C>(R%) into itself.

2) For all f € C*(R?) and all z,y € R?, we have
7 f(0) = f(z), T2f(y) =7y f().
3) The Dunkl-Laplace operator Ay commutes with the Dunkl translations, i.e.
To(Akf) = Ap(of), x €RYL f € C¥(RY).

4) If f € C*°(RY) is radial, M. Résler ([26]) has proved the useful formula

VaeR!, nfe)= [ F/RPFET2Emadne,  @8)

where fis the profile of f and p, is the measure defined by (1.3).



In the particular case when f € S(RY), 7,f € S(R?) and using the Dunkl transform we
have (see [31]):

maf (W) = F 1Bulie, ) Fe(DIw) = 6. | FelH)N)Biliz, N Eiliy, (WA, y € R

e Using (2.8), the Dunkl heat kernel can also be written

1 b2
pk(tvl'ay) = (Qt)d/QJr’YCk Tfm(e 4t )(y) (29)
1 —L(||= —2(x,z
= Gy fou e PO ) (2.10)

For later use, we record also the following properties of the heat kernel (see [21] and [25])

1. The Dunkl heat kernel is symmetric in = and y i.e. pi(t,z,y) = pr(t,y,x), t > 0.

2. For every t > 0 and = € R?, we have
It s = [ et o)y = 1. (211)

3. For every t > 0 and z,y € RY,

_ . _ 2
pk(ta z, y) = ‘Fk 1(Ek(_7’x7 .)6 I )(y) (212)
= / e W By, ) Biiy, €)wi () de. (2.13)
R
4. For every t > 0, the following inequality holds

1 1 . 2

d - o~ mingew [lz—gyll
Va,yeRY  pi(t,z,y) < ClEEra oc : (2.14)

5. For all t,s > 0, the Dunkl heat kernel satisfies the semi-group property
Vz,y € RY, pr(t+ s, z,y) = / pr(t, z, 2)pi(s,y, 2)wk(2)dz. (2.15)
Rd

2.3 The harmonic kernel and Aj;-subharmonic functions

For r > 0 and z,y € R% let hy(r,z,y) be the harmonic kernel defined by (1.11). In
the classical case (i.e. k = 0), we have p, = J, (the Dirac measure at y) and then
ho(r,z,y) = 1o, (llz — yll) = 1p(w,(y). This implies, in particular, that the Dunkl-
volume operator defined by (1.10) generalizes the usual one.

The harmonic kernel has the following properties (see [8]):

1) For all 7 >0 and =,y € R%, 0 < hy(r, z,y) < 1.



2) For all fixed x,y € RY, the function r — hy(r,x,%) is right-continuous and nonde-
creasing.

3) Let r > 0 and z € RY. If k() > 0 for every a € R, then
supp hg(r,z,. ) = BW(QSJ‘) = Ugew B(gx, )
and if the function k vanishes somewhere then
B(z,r) C supp hy(r,z,. ) € BV (z,7)
(see [8] and [9]).
4) For all r > 0 and z,y € R?%, we have
hi(r,x,y) = hi(r,y, x). (2.16)
5) Let » > 0 and z,y € R Then, for all g € W, we have
hi(r, gz, 9y) = hi(ro,y) and hy(r, gz, y) = hi(r,z,g7'y). (2.17)

6) For all r > 0 and = € R?, we have

dkrd+2fy
(el = [ o)y = m(BO.0) = B2 29
R + 2y
where we recall that dmy(y) = wi(y)dy and d, is the constant
Ck
dp. = d = . 2.1
k /S'd—l wk(é.) 0(5) 2d/2+7_1F(d/2 + ’Y) ( 9)

Here do(€) is the surface measure of the unit sphere S9! of R,

Finally, we recall that

e a function u of class C? on Q is D-subharmonic in the sense of (1.10) if and only if
Agu >0 on £ (see [10]).

e if u is D-subharmonic on €2, then uwy € L}, .(Q) (that is u € L}, ,,.(Q)) and its distribu-
tional Dunkl-Laplacian Ag(uwy) is a nonnegative distribution on © in the sense that for

any nonnegative function ¢ € D(£2) we have
(Bu(won),6) = (o 8ed) = [ ula) Arolahan(w)ds =0, (2.20)
R
The nonnegative distribution A (uwy) is then a nonnegative Radon measure on € called

the Ag-Riesz measure of the D-subharmonic function u (see [10]). In particular, if u €
C%(Q) its Ag-Riesz measure is equal to Apu(z)wy(z)dz.



3 The A,-Riesz kernel

In this section, we will study some properties of the Aj-Riesz kernel. Recalling that for
z,y € R% and 0 < § < d + 27, the Aj-Riesz kernel is defined by

1 T
Ry p(z,y) = / t2 pi(t, =, y)dt. (3.1)
’ I'(5/2) Jo
Remark 3.1 1) Since the Dunkl heat kernel is positive, we have 0 < Ry g(z,y) < +00
for all z,y € R

2) Let © € R? be fized. From (2.14), we can see that if y ¢ R\W.x, then for any
B €] — 00,d + 2| the function t — tg_lpk(t,x,y) is integrable on |0, +oo[. Thus, using
the properties of the Gamma function, the function y — m O+°° 13-
well defined on R\ W.x whenever B €] — 0o, d + 2v[\ — 2N. In this case, we will continue

denoting it y — Ry, g(x,y).

1pk.(t,a:, y)dt is

In the following result, we will show that the Ag-Riesz kernel can be expressed in terms
of the harmonic kernel. This new formula will be a crucial tool in the sequel of the paper.

Proposition 3.1 For every z,y € R?, we have

B—(d+27)

Ruso) =n [ (Il + P =2G2)) * (2 (3:2)
- /0 L (3.3)

S SAT(ERE)  ghiosp(ines)
- ’V’B)der(ﬁ/z)r(d/zjw): al(8/2) @4)

¢, and dy being the constants given by (1.7) and (2.19) respectively.
Proof: Using the change of variables 1/4t <> ¢, the relation (2.10) can be rewritten
d
25t7=h TOO dpay-p 2 2
Res(a,y) = / tz—l/ ot (el HII22(.2)) gy (2\dt.
0D = T By ke pol?)

Now, by Fubuni’s theorem and the identity

1 too
Ya>0 VO0>0, a %= / s37lemsagg
0



(notice that if we take a = 0, the both terms are equal +00), we deduce that (3.2) holds.
e Let us now prove (3.3). Starting from (3.2) and applying again Fubini’s theorem, we get

B—(d+2v)

Rusle) =n [ (||w|12+uyu2—2<m,z>) T dny(2)

dt
B—d=2v22

iy (2)

d+27 5/Rd/ VTP =2 (2,2) £

= dt
[ e / 1 B PRy e

d+2~y—5/0 < » 0.0/ 11z ]12 + Iyl (@, 2))dpy(2) ;

K + dt

= tﬁfd*QWh t )

d+27—,8/0 Ktz y)5

This gives the desired relation. O

Example 3.1 1) When k =0, as i, = §, we have Ry s(z,y) = k(d,0, B)||z — y||*~¢ the
classical Riesz kernel (see [18]).

2) Since g = do, for any choice of the Coxeter-Weyl group and of a nonnegative multi-
plicity function, we have Ry, g(x,0) = k(d,~, B)||z|P 42

3) We consider R? (d > 1) with the root system R, := {%e1,...,*en}, where m is a
fived integer in {1,...,d} and (ej)1<j<a is the canonical basis of R:. For & € RY, we will
denote £ = (£, ¢') € R™ x R&™,

We note that the Coxeter-Weyl group is W = Z3' and the Z3'-orbit of a point £ € R? is
as follows

gn.f = {Ef = (8151, . ,Emfm,f/), g = (Ei)lgigm c {:l:l}m}.

The multiplicity function can be represented by the m-multidimensional parameter k =
(k1,...,ky) with kj = k(ej) > 0. Moreover, the Rdsler measure is of the form p, =
yom) gy = Hap @+ @ [y, @ Oy with puy, the Zy-Risler measure at point y;. If y; =0, we
know that pg = 69 and if y; # 0, we have

(try. f /ftyz ¢, (t)dt, e C(R),

where ¢, is the Zo-Dunkl density function of parameter k; given by (see [5] or [25] p.104)
I'(ki+1/2)

(t) = L— )k 1+ M1 (). 3.5
Ok (1) fF()( )P+ )T gy (2) (3.5)
In this case, the Ag-Riesz kernel is of the form
m B—d—2~v
m m 2
Riploy) = [ o U+ 1™ =23t + o = 1P)

) ]:1

ngbk Ddty .. dty,. (3.6)



Proposition 3.2 Suppose that v > 0. Let 0 < B < d+ 2y and z,y € R%.

1) Ify ¢ W.x, then Ry g(x,y) < +00.

2) Assume that v € RN\, cp Ho- Then Ry, g(z,z) = 400 if and only if d > B.
3) If v € Uper Ha and B < d, then Ry g(x,x) = +oo0.

Proof: At first we note that

B B—d—2
Va,yeRYL V>0, t2lpy(t,z,y) <Ct z -1

Hence, as 8 < d + 27, the function ¢ tgflpk(t,x,y) is integrable on [1,4o0[ for every
z,y € R,

1) We obtain the result by using (2.14).

2) Fix z € R? such that z is not in any hyperplane H,, a € R (i.e. z lives in a Weyl
chamber). We will use the following short-time asymptotic result of the Dunkl type heat
kernel which has been established in ([24], Corollary 2): Let C' be a fixed Weyl chamber.
If x,y € C, then

Pt 2, 9) ~10 (wp(@)won(y)) ™ (dmt) 2= (3.7)

B
Taking y = x, we deduce that the function ¢ — ti_lpk(t, x,x) is not integrable near 0 if
and only if d > .

3) Let € H, for some o € R. One can see that the function ¢ : £ — Ry g(&, &) is
the increasing limit of the sequence of continuous functions £ —— fln/n tgflpk(t,f ,€)dt.
This implies that v is lower semi-continuous on R?. Consequently, when 8 < d we have
Ry g(x,x) = liminfe,, Ry, g(&, &) = +o0. O

As already mentioned, for g # id, it is much more difficult to see if Ry, g(x, gx) is finite
or infinite. This new phenomena will be illustrated by the following complete characteri-

zation of the singularities of the Aj-Riesz kernel in the case of the Z5'-Coxeter-Weyl group
acting on R?. More precisely, we have:

Proposition 3.3 Let z € R)\{0}. Using the same notations of Evample 3.1, 3), denoting
H; the hyperplane orthogonal to e; and recalling e.x = (e121,. .., emTm,x’) € ZJ'.x, we
have

1. If x € "1 H;, then x = e.x and Ry g(x, x) = +o00.

2. Assume that * ¢ NP H;. Set A = {i € {1,....m}, =z # 0} and ™.z =
(€11, ..., EmTm, &’) the point of Z5'-orbit of x such that ‘{j €A g = 1}‘ =n ie
the point €™ .z has exactly n among the nonzero coordinates (xj)jea that have not been
changed under the action of Z5'. Then,

Reg(z,e™a) =400 = d>2(|Al—n+Y 4k —7)+8 (3.8)

10



3. Assume that x ¢ U"H;. Then,
Rip(x,e™.z) =400 <= d>2(m—n)+p. (3.9)

In this case, we have Y. singularities living in R\ U, H;

n=max(0, \_m72+ ) (m)

Proof: For abbreviation, we will use the following constants

p=d-2y  I'(k+1/2)

N0 (3.10)

From (3.6), it is easy to see that

f—d—2y M

Ris(w,c.2) :01/[ 1 (2(1—5]-75]-)@«?) T o (1) @y dty. (3.11)
. e

71]m

1) Clearly, from (3.11), the condition z € N, H; i.e. 2™ = 0 implies that = = c.x =
(0,2") and Ry g(z,e.x) = +o0.

2) Suppose that « ¢ N, H;. Using the notations of the Proposition, Fubini’s theorem
and the fact that ¢, are probability densities, (3.11) can be written in the following form

B—d—2vy
Rip(z,e.x) = /[11A (Z 1 —ejt; 32) ’ H¢k ) Qjea dt;. (3.12)

We will distinguish two cases:
First case |A| = 1. Let i € {1,...,m} such that z; # 0. In this case, using (3.5) and
(3.10), we deduce that (3.12) takes the form

1 B—d—2y
Ry p(x,e.x) = C’l/l <(1 - Eis)x?> * g, (s)ds

1 —d—
= C(ki)C | P~ / (1= ei5) 752 (1 — )R 11+ s)¥ids.

-1

e If ; = 1, then according to our notations, we have n = |A| =1, e.x = eW 2 = 2 and

1
Ry p(z,eW.z) = c(ki)clmﬁ—d—?v/ (1 — )bt 4 g)kids.
-1
Consequently, Rkﬁ(:c,s(l).m) = +4o00 if and only if d > B + 2k; — 2. Then, the result is
proved in this case.
e When ¢; = —1, we have n = 0, e.z = ¢(© .z and

1 —d—
Ry p(z,e).x) = C(ki)‘xﬂﬂd?v/ (1+ s)kiJrﬁ % 27(1 _ g)ki~1gs,
-1

11



Thus, as k; > 0 we have Ry g(z,c(®.2) = +oo if and only if d > 2(1 + k; —v) + 3.
Second case |A| = r > 2. Using (3.12) and the change of variables t; <+ 1 — ¢;t;, we
obtain

pod=2y
Ry p(w,e.x) = /02[ I(Ztﬂ]> ’ H¢k j) @jea di;

JEA
= + &
10,2[lAINB, 10,2[14\ B,
= C1I(z,e.x) + C1J(x,e.2),

where B, is the open unit ball in R4 = R".
The singularities of these integrals being at point 0 and thus it is clear that J(x,e.x) < +oc.
Thus, we need to know when the integral I(x,e.x) diverges. To do this, we will identify
(tj)jea with v = (v1,...,v,) € R" and use the spherical coordinates in R":

p=|lvll, vi=pa, ...,v0—1=par—1 and v, = pa,,

where

r— r—
ap =cosb,...,a,_1 = Hsin@i cosb,._1, ar= HsinGi.

i=1
Notice that all a; are positive.
Iwex)= [ v / [T 6, (5 — zjas)o™ =5 Adp) dory (o), (3.13)
S-Tk JEA
where Si_l :=]0,2["NS™!, do, is the surface measure of the unit sphere S™! of R",

a™ = (a;)jen, 27 = (2;)jea and

Bd=2y
2
p(a ( Z a5 )
jeEA
We have
O, (g5 — gjajp) = Clkj) (1 — g5 + £ja;p)" (1 + & — gja;p)"

Hence,

C’(/-cj)a?j_lpkj_l(Q —a;p)t, if g =1

Or, (€5 — gjajp) = (3.14)

C(/fj)afjpkﬂ' (2—ajp)it, if g5 =-1.

Define
Ay = {j €A, ¢ = 1}, Ay = A\A,.

According to our notations, we have |A;| = |{j, &; =1} =n.

Then, from (3.13), (3.14) and recalling the definition of the vector €™ .z, we deduce that

1 —d—
I(z,e™.2) = ) @b(a(T),x(T))(/ f(a(T),p)p)‘+r+g 3 27_1d,0) do,(aM), (3.15)
s 0
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with

ki— 1 -
= H C(kj)a;” (2 = a;p) H C(k ajp)ti=t.
JEA JEA2
and
A= (k=1 + > ki=> kj—n
JEAL JEA2 JEA
The function p — f(a("), p) is continuous and does not vanish on the compact set [0, 1].

So that the singularity in the dp-integral is only in the term of

—d—2 ‘ f—d—2
p)\—ﬁ-r—l—ﬁ -1 :p(zjeAkg)*n+7"+%*1‘

Finally, we conclude that

Rkﬁ(:c,a(”).a:) =400 & I(z,eMa)=400 < d>2(A-n+ ij —v)+ 5.
jeA

This completes the proof of the assertion 2).
3) When = ¢ U™, H;, we have A = {1,...,m} and then the result is a particular case of
the statement 2). O

Proposition 3.4 The Riesz kernel Ry, (., .) satisfies the following properties

1) For every z,y € R? and g € W, we have
Rk,ﬁ(xu y) = Rk,/)’(ya .’IJ), Rk,ﬂ(ng y) = Rk,ﬁ(xu g_ly)' (316)

2) Let 3,0 > 0 such that 8+ 60 < d+ 2y. Then we have the following generalized Riesz
composition formula

) Ry g(x, 2) Ri0(y, 2)wi(2)dz = Ry, gro(x,y). (3.17)
R

3) Let x € RY. Then, for every y € R\W.z, we have

. B 6—d—2'y> <R < a ( — ﬂ_d_QV) 3.18
ﬁ;rélvg(\lx gyll < k,ﬁ(ﬂf,y)_ﬂgévgi |z — gyl (3.18)

4) Let y € R Then, the function x — Ry g(z,y) is
-lower semi-continuous (l.s.c.) on R,
-of class C*® on R\W.x and we have

B—2—d—2v

aij,g(x,y)=(B—d—2v)m/Rd(xj—Zj)(|93||2+||y||2—2<w72>) > dpy().
(3.19)
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Proof: 1) The result follows from (3.3), (2.16) and (2.17).

2) The result follows from the Fubini’s theorem and the semi-group property of the Dunkl-
heat kernel (2.15).

3) Let y € R% From (1.4) for any z € supp py,, we can write z = > gew Ag(2)gy, where
Ag(2) € [0, 1] are such that >y, Ag(2) = 1. Then, we have

21 + [lyl* =2 (z,2) = > Ag(2) & — gyl*. (3.20)
geWwW

Asp:t— 75" is a convex function on 10, +o00], by (3.20) we have

Bd=2y B-d—2y

(et + W -20.)) 7 = (2 M@l —aul?)

geWw
< — gy||P~9=2).
< max (llz — gyl )

This implies the right inequality. Again by convexity, Jensen’s inequality and (3.20), we
get

B—d—2vy
2
Rusl) = ([ (ol + 11 =2 (.20 ()
B—d—2vy
=103 (/ Ag(Z)d/w(Z)> lz = gyl®
gewW R?
B—d—2+
2
> (mallo = anl?) = wip (1o - anl*0),

where in the last line we have used the fact that v is a decreasing function.
4) The function o + Ry g(z,vy) is L.s.c. on R? as being the increasing limit of the sequence

s
(fn) of continuous functions defined by f, : = fln/nﬁ_lpk(t, x,y)dt.
Fix y € R%. Using the fact that fy is with compact support and the fact that the function
B—d—2y

(z,2) — (lz[I* + Iyll* — 2(z, 2)) *

is of class C* on RN\ W.y x R, we can differentiate under the integral in the relation (3.2)
and we obtain the result. g

In the following result, we study the Lz,l oo (R%)-integrability of the function Ry g(z,.),

for fixed z € R%.

Proposition 3.5 Let 0 < § < d+ 2y and p € [1, di;zzﬁ

exists a positive constant C = C(R,p,d,~, ) such that

[. Then, for every R > 0, there

VaeeR: ||Ris(e, )l psom) < C. (3.21)

In particular, for every x € R, Ry g(z,.) is in L;loc(Rd).
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Proof: By Jensen’s inequality and (3.2), we have

p(B—d—2v)

(R p(x,y))" < wP /Rd (2l + Ny l* = 22, 2)) 2 duy(2).

Using the same idea as in the proof of (3.3), we can write the previous inequality as follows

KP +0o0 dt

R )P < / PB=d=2p (2 y)—
1 dt +oo d dt
= 01/0 tp(’B_d_%)hk(t,vay)? + 01/1 PP~ _2V)hk(t,$7y)7

dt 4

1
<Oy | PPyt y) —
B 1/o (b, 9)5 +p(d+2’y—ﬂ)

where C = ZWIM and we have used the fact that hy(t,z,y) <1 in the last inequality.
Let then R > 0. From (2.18), Fubini’s theorem and our hypothesis, we deduce that

1 1
/ / tp(ﬂ—d—?y)hk(t’ z, y)@wk(y)dy < / tp(ﬁ—d—Q’y)td-i-Z’Y@ - 02 < 400.
B(0,R) J0O t 0 t

d+ 2y
This proves the desired inequality where we can take

Clmk[B(O, R)] ) 1/p

C= (0102+ T B

Proposition 3.6 Let 0 < 3 < d+ 2y and g € R%. Then, the function Ry g(wo,.) is
i) D-superharmonic on R when > 2,
ii) D-harmonic on R\W.zo when 8 = 2,

iii) D-subharmonic on RN\W.xo when § < 2

Proof: The case 8 = 2 (i.e. the case of the Dunkl-Newton kernel) has been done in [10].
So, we will deal with the case 8 # 2.
i) Suppose that 5 > 2. We consider the function Sy, g,

S (x) -1 +Oot§*1 (t, 20, x)dt
x0,B,r . F(,B/2) , DPr(t, Xo, .

By the monotone convergence theorem, we see that the function Ry, g(xo, .) is the pointwise
increasing limit of the sequence (Sxo 51 ) . Hence, by Proposition 3.3 in [10], it suffices
b 7774 n

to prove that for every r > 0, S, 3, is D-superharmonic on R?. To do this, we have only
to show that S, g, is of class C? on R% and ASze8r < 0 on R4 (see [10], Proposition
4.1).
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The function p(t,zo,.) is of class C* on R? and we can differentiate under the integral
sign in the relation (2.10) to obtain
1 1

0jpr(t, wo,.)(z) = _EW
Ck

/Rd (aj — zg)e”aillalP+lleolP =2 2D gy () (3.22)
and

1
0;0pi(t, xo,.)(x) = —0d;j Q—tpk(t, xo, )

1 1 1 2 2
- o V(s — ) e~z Bl HllzollF =2 (x,2))
’ 42 (Qt)g'i"Yc]g /]Rd (xj ZJ)(J;Z Zl)e " duxo (Z)7 (3~23)

where 6;; is the Kronecker symbol.
Using the fact that supp p, C B(0, ||zo]|), we deduce from (3.22) and (3.23) that

]| + [|zol|
8pk’ t, xo,.)(T < )
ot < ]
1 ([l + [lzol)?

Q)15 (20)2Fe e
Let R > 0. The previous inequalities and the differentiation theorem under the integral

sign imply that Sy, g, is of class C? on the open ball B(0, R) and as x — py(t, 2o, x) is a
solution of the Dunkl-heat equation (1.9), we deduce that

o 1 Too 4
Ve BO,R), ApSepr(x)=— F(5/2)/ 1AL (pr(ts 20, ) ()t
+oo
— F(Bl/Q) / tg_l&gpk(t, xo, LL‘)dt
'r‘g*l 6 -2 +eo B_o
= —ka(ﬁ To,T) — W/T t2 " pr(t, xo, x)dt < 0.

o
Therefore, Sy, g, is D-superharmonic on B(0, R). As R > 0 is arbitrary, we conclude that
Szo,8,r 18 D-superharmonic on R as desired.

iii) Let 5 €]0,2[. Using (3.22), (3.23) and (3.20), we can see that

[zl + lloll - minaew (o=scol®

Oipi(t, xo, ) ()| <
Omutt . o)l <

)

1 (Iw\|+|woll)2>emgevv{4";m“2>.

|8i8jpk(t’ 20, )(l‘)‘ < ((2t>1+§+70k (215)2+%+chk

[¢]
Fix an arbitrary open Dunkl ball OW (a, R) := Uzew B(ga, R) such that its closure is
contained in R\ W.zg. The previous inequalities imply that we can differentiate with
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respect to € OW (a, R) under the integral sign in the relation (3.1). Furthermore, using
the heat equation (1.9) and integrating by parts, we obtain

VIEOW(Q R) A (R ( :# “+oo g—l
’ ) k k,B\Z0, )) (iE) F(B/Q) 0 t 8tpk;(t, g, x)dt
— +oo
B _21§(ﬂ/22)/0 5 2pi(t. o, @)t > 0.

According to Remark 3.1-2), the above relation can be written as
VazecOW(a,R), Ag(Rygs(wo,.))(x)=—Rps_a(xe,x)>0. (3.24)
Therefore, the function Ry g(zo,.) is D-subharmonic on O" (a, R) and so on R\ W.zg. O

Proposition 3.7 Let 3 €]0,d+2v[ and zog € R:. Then, the function x — Ry g(z0, z)wy(z)
defines a tempered distribution and we have

Fi (Rip(zo, Jwr) = Ex(—izo, )| Pwr in S'(RY). (3.25)

Proof: Let m € N such that m > d + 2y. We claim that there exists a constant C), =
C(d,~,8,m) > 0 such that

V 1z € RY, / (1 + ||2|*)"™ Ry, g(w0, z)wi (x)dx < Cpy. (3.26)
Rd
From (3.3), we can write
Ry g(xo, ) = ﬁ(/l P2 (8 2, 2) dE + /+OO iy Y (A x)dt)
k,B\L0, d+2’}’_6 0 k\t, L0, ) k\l, L0,

= A(zg,z) + Bz, x).

e Using Fubini’s theorem and the relation (2.18), for any x¢ € R? we obtain

/ (1+ ||z]|>) "™ A(zo, z)wg (x)dz < A(zg, z)wg (z)dx
R4 R4

1
K
= 2 (8 mo, e dt
d—|—2’y—ﬁ/0 |7k, 20, ) |lk1

— dkH — C’
S Bd+m)d+y—p) T

e Now, using the inequality hg (¢, zo,x) < 1, we deduce that

K

RY B L —
\V/$O€ ) (xo’x)_(d+2'}’_ﬁ)2

This relation and the choice of m imply that

V 2o € RY, /Rd(l + Ha:HQ)*mB(xo, x)wi(z)dz < (1+ HxHZ)*mwk(aﬁ)dw

K
(d+2y—p)? /Rd

= Cg7m < +00.
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This proves (3.26) and this implies that the function Ry g(xo,.)wy defines a tempered
distribution (see [27], Theorem VII, p. 242).

Let us now prove (3.25). For ¢ € S(R?), we have

; /R (/Omtg‘lpk“vxo,x)dt) Fi(¢)(x)wp(x)dz.

(6/2)

Multiplying and dividing by (1 + ||«||?)™ (the integer m is chosen as above) and using the
fact that Fi,(¢) € S(R?), we see that we can use Fubini’s theorem in the above relation.
Moreover, from (2.4) and (2.12), we obtain

(Fie (Ri (o, wg) , ¢) = -

+o0
FBustenon) ) = g [ 07 ([ Flonttan D potohwna)ds ) b
1
T3/

Applying again Fubini’s theorem, we deduce that

+oo
/ ¢5-1 < Ek(—ixo,x)e_t"’Hng(a:)wk(x)dx) dt.
0 Rd

P (Ruplav. Jor) ) = [ Bul=ian,a)lal P o(ohon(o)de
This completes the proof. O

Corollary 3.1 For every xo € R%, we have

lim Rk’g(wo, .)wk = 53[;0 m Sl(Rd). (327)
B—0

Proof: We can see that for every & € R?,

I1€)|=? < Lga\ (0,1)(§) + H§\|7d72713(0,1)(§)~
Consequently, we can use the dominated convergence theorem to obtain from (3.25)

gli% fk (Rkwg(.%'o, .)wk) = Ek<—il‘0, .)wk = .Fk(émo) in S/(Rd).

Thus, we deduce the result by using the properties of the Dunkl transform on &’ (]Rd). O

From the formula (3.24), we see that the Ag-Riesz measure related to the D-subharmonic
function Ry, g(xo,.), B < 2, is given by —Ry g_2(x0, x)wi(x)dz. In the following result,
we will compute the Aj-Riesz measure of the D-superharmonic function Ry, g(zo,.) with
B e 2,d+ 29[

Corollary 3.2 Let 2 < 8 < d+ 2y and xg € RY. If m € [1,8/2] be an integer, then the
function x — Ry, g(xo,x) satisfies

Ry gom(x0, Jwr in S'(RY) if B> 2m,
(—=Ap)™ (R (w0, Jwi) = (3.28)
Oz in S'(RY) if B=2m,

where 0, is the Dirac measure at xg.
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Proof: At first, we remark that if U € S'(R?), then
Fie(ArU) = ~||[IPFu(V), (3.29)

as easily follows from the relation ApFy(f) = —Fx(].|%f) for all f € S(RY).
From (3.29) and (3.25), we obtain

fk((—Ak)m (R (o0, - )wr) ) = B (—izo, ')H-”B_zmwk
Ry o o) i SB35 m

Fie(6z0) in S'(RY) if B=2m.

Hence, we deduce the result by the fact that Fj is a topological isomorphism of S’ (Rd)
onto itself. 0

Remark 3.2 Let 1 < m < v+ d/2 an integer. Taking zo = 0 in (3.28), we deduce that
the function S : y — Ryom(0,y)wk(y) = k|y||*™ =P wk(y) is the fundamental solution of
the Dunkl-polylaplacian of order m (—Ag)™ i.e. (—Ap)™S = & in S'(RY).

4 Riesz potentials of Radon measures

The sets M(R?) and M™*(R%) denote respectively the space of signed Radon measures on
R? and the convex cone of nonnegative Radon measures on R?.

Definition 4.1 Let u € M*(R?) and 8 €]0,d + 2y[. The 3-Ay-Riesz potential of y is
defined by

Teolil@) = [ Rusle.ndnt). o€ R (4.1)

Proposition 4.1 Let u € M*(R?) and 8 €]0,d + 27[.

1. If pu is bounded, then Iyglu] € L7, (R?) whenever p € D’(ii—;jzﬁ[' In particular,
I g[u] is finite a.e. in RZ.
2. The following statements are equivalent
i) Iy sy is finite a.e. in RY,
ii) the measure u satisfies
L@+ 1= duty) < (4.2

iii) Ix slul(w0) < +oo for some xo € RY.

If ii) holds, then Iy g[u] € Lllc,loc(Rd)-
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Proof: 1) Assume that u is a probability measure on R?. Let p as in the proposition and
R > 0. Using respectively (4.1), Jensen’s inequality, Fubini’s theorem, the fact that the
Riesz kernel is symmetric and (3.21), we get

/B(QR) (I (1] (2))F (z)wi (x)da < /B(O’R) </Rd (Ris(z, )" du(y))wk(m)dx
- /]Rd (/B(O,R) (Ris(=0)) wk(x)dx) d(y)

< C < +o0o,

where C'is the constant in (3.21).

2) ii) = i) Assume that the condition (4.2) holds. We will prove that x — I g[u(z) is
in L} ,,.(RY). Let R > 1. By Fubini’s theorem, we have

Ap = /B(O o It glp) (z)wg () dx = /Rd/ o) Ry, g(x, y)wi(z)dzdp(y)

/ / Ry p(z, y)wi(v)drdu(y) / / Ry 5(x, y)wp (x)dedu(y)
llyllI<2R JB(0,R) llyll>2R JB(0,R)
=A1r + Ang

Applying the assertion 1) with the finite measure y5(9 r), we get A1 r < +00.
Now, from (3.18) we deduce that

Ao <k / / ma (|l — gy|?~4") wie)dudp(y).
lyl>2R J B(0,R) 9€W

d [yl
But, for every 2 € B(0, R) and every y € R*\ B(0,2R), we have ||z—gy|| > |ly||—|z] > %"
Moreover, as R > 1, we see that [y|| > £(1 + [|y[|) whenever [y|| > 2R. In other words,
the inequality

max ([lz — gy|[*~4727) < 4P7IR (14 [y
geW

holds for every z € B(0, R) and every y € R%\ B(0,2R). Hence, by our hypothesis we
conclude that

Ao < 45020y [B(0, R)] / (1+ [P~ duly) < +oo
lyl|>2R

and thus the function @ ~ Iy g[u](z)wy(x) is locally integrable on RZ. In particular,
I s[u)(z) < 400 a.e. on RY.

i) = iii) It is obvious.
iii) = ii) Let o € R? such that Iy g[u](z¢) < +o00. From (3.18), we can see that

Teslil(ao) = v [ i (Jloo = gy~ du)

Rd geW

> [ (ol + 1)~ du(o).
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If ||zo]] < 1, we deduce immediately from the previous inequality that (4.2) holds.
If ||zo]| > 1, using the fact that

[[zoll + [yl < llzoll(L + NIyl

and using again the above inequality, we obtain that (4.2) holds.
This finishes the proof. O

Remark 4.1 Let 8 €]0,d + 29[.

o Let p € MR and p = pt — p~ its Hahn-Jordan decomposition. If ut and p~
satisfy (4.2), then the Ay-Riesz potential of p is well defined almost everywhere by setting
I glu)(x) = I gl ] (z) — I [~ ](z). Moreover, the function Iy glp) € L}CJOC(R”I).

e Let us introduce the following notations
M;ﬁ(Rd) = {u e MYRY), p satisfies (4.2)} (4.3)

and
My 5(RY) = {M —ut - e MRY), e M%(Rd)} . (4.4)

We note that if 0 < B1 < Ba < d+ 2y, then MzﬁQ(Rd) C MZ,& (RY) and My, g,(RY) C
M5, (RY).

e Let 3,0 > 0 be such that 5+ 0 < d+ 2. Then using the generalized Riesz composition
formula (3.17) and Fubini’s theorem we can see that

Vo€ My 5g(RY,  Tiprolu] = Irp [ Trolu) (y)wr(y)dy]. (4.5)

In the following result we will establish that any measure p € M;: 3 (RY) doesn’t charge
the singularities of the function Ry g(x,.) whenever its 5-Aj-Riesz potential valued at x
is finite. More precisely, we have

Proposition 4.2 Let p € MZB(Rd) and z € R? such that Iy glu](z) < +oo. Then
r({gz}) = 0 whenever the point gx, g € W, is a singularity of Ry g(x,.).
In particular, if B < d, the condition I g[p](x) < +oo implies that p({z}) = 0.

Proof: Let g € W such that Ry g(x, gx) = 400 and let n € N. Since Ry g(x,.) is Ls.c. at
gx, there exists 7 > 0 such that Ry g(z,y) > n for all y € B(gx,r). This implies that

T slpl(w) > /B o Res(u)dn(s) = na(Bloz.r) = mil{gr))
gz,r

This proves the first part.
Now, since § < d, we know that x is always a singularity of the function Ry, g(z,.). Thus
the second part follows from the first one. O

Now, we establish a boundedness principle for the potential of a compactly supported
measure which generalizes the known result in the classical case (i.e. k = 0) (see [18],
Theorem 1.5).
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Proposition 4.3 Let 0 < 8 < d+27v and pu be a compactly supported nonnegative Radon
measure on R, If I glu) < M holds on W.supp p, then

Iiglp) <2727 M  on RY (4.6)

Proof: Let x ¢ W.supp p and 29 € W.supp p such that ||z — xg|| = dist(x, W.supp u). We
have

Vyesuwppu, VgeW, |zo—gyll <llzo—zll+ llz— gyl <2[z— gyl
Hence, by (3.20) we deduce that
Vyesupp s, Vzesupppy  Nooll® + Iyl — 2 (0,2 < (] + ] — 2z, 2).

Now, using (2.10), we obtain

_d_
Vyesupp p, 472 "pyu(z,y) < pe(wo,y).
From (3.1), the above inequality implies that
Vyesupp p, 27FHRy g(w,y) < Rip(wo,y).

Finally, if we integrate with respect to the measure du(y) and use our hypothesis, the
inequality (4.6) follows. O

In the following result, we will study some continuity properties of the 5-Aj-Riesz
potentials:

Proposition 4.4 Let 8 €]0,d + 2y[ and p € MgB(Rd) with compact support.
1) The function Iy, g[u] is lower semi-continuous on R¢ and continuous on R\ W.supp pu.

2) If the restriction of the function Iy g[p] on W.supp p is continuous on W.supp p, then
I g[n] is continuous on RY.

Proof: 1) e Consider the function F,, given by

Fo) = 57375 / | / ;t?—lpk(t,x,y)dt)du(y).

] f—d— - .
As t2 7 tp(t,z,y) < 27%7“’0,;1157 P 2771, by the continuity theorem under the integral

sign, we see that Fj, is continuous on R%. Moreover, from the monotone convergence the-
orem, we deduce that the function Iy, g[p] is 1.s.c. on R? as being the pointwise increasing
limit of the sequence (F},).

e Let us prove the second part of 1). Fix a closed ball B(zg, R) in R? \ W.supp u and set

= dist (B(zo, R), W.supp ) > 0.
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From (2.14), we deduce that

1 2
V(z,y) € B(zo, R) X supp p, pilt,x,y) < ———e .
<2t)5+70k

Then, writing

Lol = g [ () 2, duty)

and using the continuity theorem under the integral sign, it follows that I}, g[u] is contin-
uous on B(zg, R). As the ball B(zg, R) is arbitrary, the result follows.
2) Fix zp € W.supp p and € > 0. Let (z,) be a sequence which converges to zy. For
R > 0 (small), set up := W B(zo,r) a0d VR := p1 — pp. In particular, we note that

Ik glp] = Inglur] + Ik g[vR]-

We have

|\ Ik gl () = I pl1a) (20) | < Tk glpur) (@n)+ I p[1r] (w0) + Tk s [VR) (2n) — Ik s [VR] (20) | (4.7)

o As xg ¢ W.supp vg, by the assertion 1, the function I}, g[vg] is continuous at xo. Hence,
there exists N1 € N such that

V n Z Nl, ‘Ik,B[VR](xn) — Ikﬁ[I/R](:EU)‘ § E. (4.8)

e For every n, let z], € K := W.supp pr = W.(supp p N B(zo, R)) such that ||z, — 2}, | =
dist(xy, K) = inf{||z,, — ||, £ € K}. As zp € K, we can see that ||z, — x| > |z, — 2]|
This implies that ||z}, — xo|| < ||xn — 2} || + |2 — 20|| < 2||2n — 20| and thus x], — x¢ as
n — 4o00. Using the inequality (4.6), we deduce that

Inglur)(zn) < 297270 L glur)(2}) = 2027P (T plul(2h) — Inplvl(ar)).  (4.9)

But, z;, € W.supp p and the restriction of Ij g[u] on W.supp p is continuous. Thus,
limy 400 I gl1t)(z),) = Irp[p](zo). Again by continuity of Iy g[vr] at xo, we also get
limy, 400 I glvrl(2),) = Irplvr)(xo). Therefore, Iy glugr)(xl,) — Irslpr](zo) as n —
+o00. Let then Ny € N such that

Vn > NQ, Ik,B[MR]($;1> < Ik’g[,u,R](xo) +e€. (4.10)
Finally from (4.7), (4.8), (4.9) and (4.10), the inequality
[Tkl (2n) = L glu)(z0)| < (2472777 1) (€ + L s[ur] (20)) (4.11)

holds for every n > max(Ny, N2) and every R > 0.
But, since g € W.supp p and I, g[p] is continuous on W.supp p, we must have Iy, g[p](xo) <
+00. Furthermore, because xg is a singularity of Ry g(xo,.), Proposition 4.2 imply that

lim Ty, 5[ug] (z0) = lim - Ry, 3(x0,y)dp(y) = 0. (4.12)

Finally, by the relations (4.11) and (4.12) we deduce that Ij, g[u] is continuous at zg. [
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Theorem 4.1 Let 5 €]0,d + 2v[ and p € Mii_6< 4 with compact support. Then, the
function Iy, glp] is

i) D-superharmonic on R if B > 2,
ii) D-harmonic on R\ W.supp u if = 2,
iii) D-subharmonic on R\ W.supp u if 8 < 2.

We need the following lemma:

Proof of Theorem 4.1: i) Let 8 > 2. Using Fubini’s theorem and the D-superharmonicty
of the Ajp-Riesz kernel (see Proposition 3.6), we can easily see that Iy g[u] satisfies the
super-mean property i.e. for all x € R? and all r > 0, M5 (I glu]) (x) < I g[u](z).

Since I, g[p] is 1.s.c and finite a.e., we deduce that the function Ij, g[u] is D-superharmonic
on RZ.

ii) If § = 2, we are in the case of the Dunkl-Newton potential and the result has been
proved in [10].

iii) Let 8 < 2. From Lemma 4.4, we know that Ij g[u] is a continuous function on R?\
W.supp u. Furthermore, by Proposition 3.6 and Fubini’s theorem, the sub-mean property

is satisfied by the function Iy, g[u] on R?\ W.supp p. Thus, Iy g[u] is D-subharmonic on
R\ W.supp p. O

Corollary 4.1 Let g € [2,d+2y[ . If u € M:B(Rd), then the function Iy, glp] is D-
superharmonic on RY.

Proof: Let ®,, the function defined by &, (z) = fB(O n) Ry, g(x,y)dp(y). From Theorem

4.1, the function ®,, is D-superharmonic on RY. Thus, as Ij g[u] is not identically +oo by
hypothesis, the function I}, g[u] is D-superharmonic on R? as being an increasing pointwise
limit of the sequence (®,,), of D-superharmonic functions (see [10], Proposition 3.3). O

Proposition 4.5 Let u € M} 4(R?) with 3 € [2,d+2y[ and m € N be such that 1 <m <
B/2. Then, the function x — Iy, glu|(z)wi(x) satisfies

I p—om[plwr in D'(RY) if B>2m,

(=Ar)"™ (Ir,pl1)wr) = : (4.13)
1 in D'(RY) if B=2m,

Proof: Let ¢ € D(RY). We will only prove the result in the case 8 > 2m and by the same
arguments it can be obtained when 5 = 2m. We have

(~A0)™ (T slaleon) &) = /

R4

= [ (] Bus-an(o.ppotalen o)) duty
= [ T amlid@)ola)in(a)da.

( o Ry, 4)(— Ap)" 6 (w)eop () ) dia(y)
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where we have used

-Fubini’s theorem in the first and the last lines (it is possible because Iy, g[u] € L,lal oo (RY)

and by Remark 4.1, Ij. g_o,,[y] is also in L}, (RY));

- the fact that the Aj-Riesz kernel is symmetric and the relation (3.28) in the second line.
O

From the previous proposition, we obtain immediately the uniqueness principle for
Ag-Riesz potential of index 2m:

Corollary 4.2 Let m €]0,% + 4| be an integer and p,v € M, (RY). If Iyom[u] =
I om([V] a.e, then p=v.

For an arbitrary index 5 €]0,d + 27|, we have the following version of the uniqueness
principle for finite measures:

Theorem 4.2 Let 5 €]0,d+2v] and let u, v be two finite and nonnegative Radon measures
on Re. If I, g[u] = Iy p[v] a.e. on RY, then p=v.

We start by the following result

Lemma 4.1 Let i be a finite and nonnegative Radon measure on R%. Then, I, glpwy ts
a tempered distribution and its distributional Dunkl transform is given by

Fi(plidon) = P Fu(an in S'(RY). (4.14)
Here, Fi(n) is the function defined by (2.5).

Proof: Let m > d+ 2~ an integer and Cy, as in (3.26). By Fubini’s theorem, the symmetric
property of the Ag-Riesz kernel and the relation (3.26), we get

L+l sld@enoide = [ ([ 0 1elP) " Rt ponw)ds ) duto)
< Cp(RY) < 400.

This shows that Iy g[ulwr € S’(RY).
Let ¢ € S(R?). We have

Fellisliton) ) = [ ([ Bt i) Fulo)@wnoris
= [ ([, Beate Ao @hanode) uty)
Rd Rd
— [ ([, BucivalelPn()o@de ) duty)
Rd Rd
= [ Jal Rl (o))

where we have used
-Fubini’s theorem in the first second line: it is possible because F3(¢) € S(R?) and then
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the function x — (1 + ||z|*)™Fx(4)(z) is bounded with m the integer chosen as above;
-the relations (3.25) and Ry, g(x,y) = Ry g(y,x) in the third line;

-the boundedness of the function (x,y) — Ej(iy,z) (see (2.2)), Fubini’s theorem and (2.5)
in the last line. O

Proof of Theorem 4.2: By our hypothesis and Lemma 4.1, we have Ij g[u] = I g[v] in
S'(RY). Applying Dunkl transform to the both terms and using the relation (4.14), we
deduce that

P Fr(p)won, = |7 Fr(v)wr in S'(RY).

As the functions ||.||?Fi(u)wr and |.|| 7P Fi(v)wy are locally integrable on R?, we get
|17 Frlpwn = LI P Fu)wr ae. on R

Now, by continuity it follows that the functions Fi(u) and Fi(v) coincide everywhere
on R%. Finally, by the injectivity of the Dunkl transform on the space of finite Radon
measures on R%, we conclude that p = v. O

In order to extend the pointwise Hedbreg inequality in Dunkl setting, in the follow-
ing result we give the link between the Ag-Riesz potential and the volume mean of a
nonnegative Radon measure.

Proposition 4.6 Let j1 be a nonnegative Radon measure on R%. Then, for all 3 €]0,d +
27[, we have

Bslile) = g [ M@ (4.15)

where )
Mb(n)@) 1= g /R it y)duy). (4.16)
Proof: The result follows from (3.3), Fubini’s theorem, (2.18) and (4.16). O

In the following result, we will extend the pointwise Hedberg inequality (see [13]). We
recall that the Dunkl-Hardy-Littlewood maximal operator is defined for f € L,1€7106(Rd) by
(see [28])

1
My (f)(x) = sup [ B(0.1] /Rd | f ()72 (1 0,m) (¥)wk(y)dy, (4.17)

where 7_;(1p(o,) denotes the L?(R9Y)-function with Dunkl transform
& — Ep(—iz, &) Fr (1p(0.)) (£)-

According to [20], we have hy(r,z,.) = 7_(1p(,)) a.c. on R%. Thus, we will take this
remark into account in the formula (4.17) and in the sequel of the paper.

Moreover, when du(y) = |f(y)|wk(y)dy, f € L}CJOC(Rd), we will use the notation I, g f|]
instead of Iy, 5 [| f(y)|wk (y)dy]-
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Theorem 4.3 For0 < f <d+2y,1<p< dtf” there exists constants C = C(d,~, 8,p) >

0 such that for any measurable function f and any x € RY, we have

__Bp_
e gl fl](z) < C||f||d+27 (Mi(f) ()~ 75 (4.18)
Proof: For every A > 0, by (4.15) where we take du(y) = | f(y)|wk(y)dy, we can write

A +o00
%ﬁmwwdwwwmm:cét“%@wxwﬁ+cﬁ B0 (£ (@) de
=1 (x) + I(x).

o Clearly, we see that
I (x) < CAP M, (f)(x). (4.19)
e We have

2n+lA
trmimn /Rd W) (t, 2, y)wr (y) dydt

CZ /
antlA

< CHf”kpZ/ (B—d=2y=14d+2y(1=1/p) 3y

<mmM§j

where we have used Hélder’s inequality and the relation (2.18) in the second line. There-
fore, we have

L(x)<C
Now, using (4.19), (4.20) and choosing

ey — (Wl T
a=a6)= ()"
_Bp

Le gl fl](z) < ClIfHd+27 (Mi(f)(@) +e)' a2
Letting ¢ — 0, we get (4.18). O

Using the Hedberg inequality (4.18), the L?-boundedness properties of the Dunkl-
Hardy-Littlewood maximal function (see [4] or [28]) and following the same proof as in
the classical case (see Theorem 3.1.4 in [1]), we obtain the Sobolev inequality:

» (4.20)

we obtain

Corollary 4.3 Let 0 < 3 <d+2v,1<p< d+627 and p* dgjyrz%)p

1) If p =1, then Ij g is of weak type (1,p*) i.e. there exists a constant C = C(B,d,)
such that

p*
YA>0, VfelLiRY, / wi(x)dz < C (”ml) . (4.21)
{o: IupllfI>A) A
1) If p > 1, then I, g is of strong type (p,p*) i.e. I p : Lz(Rd) — Li* (R?) is bounded.
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Remark 4.2 The previous result has been obtain in [11] by another proof using interpo-
lation methods and in the particular case when the Coxeter-Weyl group is Zg in [29].
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