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For a root system R on R d and a nonnegative multiplicity function k on R, we consider the heat kernel p k (t, x, y) 

According to the values of β, we study the ∆ k -superharmonicity of these functions and we give some applications like the ∆ k -Riesz measure of I k,β [µ], the uniqueness principle and a pointwise Hedberg's inequality.

Introduction

Let R be a normalized root system in R d . That is, for every α ∈ R, ∥α∥ 2 = 2, R ∩ Rα = {±α} and σ α (R) = R, where σ α is the reflection with respect to the hyperplane H α orthogonal to α (see [START_REF] Humphreys | Reflection groups and Coxeter groups[END_REF] and [START_REF] Kane | Reflection Groups and Invaraint Theory[END_REF]). We fix k ≥ 0 a multiplicity function (i.e. k : R → [0, +∞[ invariant under the action of the Coxeter-Weyl group W associated to R) and we consider the associated Dunkl-Laplacian operator ∆ k given by

∆ k f (x) = ∆f (x) + 2 ∑ α∈R + k(α) ( ⟨∇f (x), α⟩ ⟨x, α⟩ - f (x) -f (σ α (x) ⟨x, α⟩ 2 ) , f ∈ C 2 (R d ), (1.1) 
1 with R + a positive subsystem (see [START_REF] Dunkl | Orthogonal Polynomials of Several variables[END_REF]). Acting on C ∞ (R d ), it is related to the classical Laplacian operator ∆ by means of the so-called Dunkl intertwining operator V k (see [START_REF] Dunkl | Hankel transform associated to finite reflection groups[END_REF], [START_REF] Dunkl | Orthogonal Polynomials of Several variables[END_REF], [START_REF] Trimèche | The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual[END_REF]) as follows:

∆ k V k = V k ∆. (1.2)
In [START_REF] Rösler | Positivity of Dunkl's intertwining operator[END_REF], M. Rösler has proved that for any x ∈ R d , there exists a compactly supported probability measure µ x on R d (which we call Rösler's measure at point x) such that

∀ f ∈ C ∞ (R d ), V k (f )(x) = ∫ R d f (y)dµ x (y), (1.3) 
with supp µ x ⊂ C(x) = co{gx, g ∈ W } (1.4)
(the convex hull of the orbit of x under the group W ). We note that, according to [START_REF] Gallardo | Support properties of the intertwining and the mean value operators in Dunkl theory[END_REF], the support of µ x contains the point x and it is W -invariant under the hypothesis that the multiplicity function is positive.

Let p k (t, x, y) (t > 0, x, y ∈ R d ) be the heat kernel of the Dunkl Laplacian ∆ k which is given by (see [START_REF] Rösler | Generalized Hermite polynomials and the heat equation for Dunkl operators[END_REF] and [START_REF] Rösler | Dunkl Operators: Theory and Applications[END_REF])

p k (t, x, y) := 1 (2t) d/2+γ c k e -(∥x∥ 2 +∥y∥ 2 )/4t E k ( x √ 2t , y √ 2t ), (1.5) 
where E k (x, y) = V k (e ⟨.,y⟩ )(x) (x, y ∈ R d ) (1.6) is the Dunkl kernel (see [START_REF] Dunkl | Integral kernels with reflection group invariance[END_REF] and [START_REF] Dunkl | Orthogonal Polynomials of Several variables[END_REF]), c k is the Macdonald-Mehta constant (see [START_REF] Opdam | Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group[END_REF]) given by

c k := ∫ R d e -∥x∥ 2 2 ω k (x)dx, (1.7) 
and ω k is the Dunkl weight function

ω k (x) = ∏ α∈R + | ⟨α, x⟩ | 2k(α) (1.8)
which is homogeneous of degree 2γ.

It is also known (see [START_REF] Rösler | Generalized Hermite polynomials and the heat equation for Dunkl operators[END_REF]) that for all fixed x ∈ R d , the function p k (t, x, .) solves the Dunkl heat equation (∆ k -∂ t )p k (t, x, .) = 0.

(1.9)

Let γ = ∑ α∈R + k(α) and suppose that d + 2γ > 2. For β ∈]0, d + 2γ[, we define the ∆ k -Riesz kernel of index β as follows

R k,β (x, y) := 1 Γ(β/2) ∫ +∞ 0 t β 2 -1 p k (t, x, y)dt.
We note that when β = 2, we obtain the Dunkl-Newton kernel which has been introduced and studied in [START_REF] Gallardo | Newtonian Potentials and subharmonic functions associated to root systems[END_REF].

Let x ∈ R d , x ̸ = 0, be fixed and W.x be its W -orbit. If y / ∈ W.x, R k,β (x, y) is finite. But when y ∈ W.x, it seams hard, except in the case y = x, to decide in general if R k,β (x, y) is finite or infinite. These difficulties are illustrated by the particular case of the root system of type

A 1 × A 1 × • • • × A 1 (m times, 1 ≤ m ≤ d),
where we manage to give a complete description of the singularities of the function R k,β (x, .). The aim of this paper is the study, when d + 2γ > 2, of the ∆ k -Riesz kernel R k,β and the corresponding potential

I k,β [µ](x) = ∫ R d R k,β (x, y)dµ(y)
of a signed Radon measure µ on R d . In particular, we will study the sub-or-superharmonicity of these functions in the sense of the Dunkl-Laplace operator and we will describe explicitly their ∆ k -Riesz measures. This notion of subharmonicity, which generalizes the classical one1 has been introduced and studied in some details in [START_REF] Gallardo | Newtonian Potentials and subharmonic functions associated to root systems[END_REF]. More precisely, let Ω be a W -invariant open subset of R d . A function u : Ω -→ [-∞, +∞[ is called ∆ k -subharmonic (D-subharmonic) on Ω if • u is upper semi-continuous (u.s.c.) on Ω, • u is not identically -∞ on each connected component of Ω,

• it satisfies the sub-mean volume property: for every closed ball B(x, r) ⊂ Ω, we have

u(x) ≤ M r B (u)(x) := 1 m k [B(0, r)] ∫ R d u(y)h k (r, x, y)ω k (y)dy, (1.10) 
where m k is the measure ω k (x)dx and h k (r, x, y) is a kernel of the form

h k (r, x, y) := ∫ R d
1 [0,r] ( √ ∥x∥ 2 + ∥y∥ 2 -2 ⟨x, z⟩)dµ y (z) (1.11) with µ y Rösler's measure at point y. The function y → h k (r, x, y) is a generalized translate of the indicator function 1 B(0,r) of the ball B(0, r) called harmonic kernel, introduced and studied in [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF] and which properties will be recalled in the next section. Moreover the harmonic kernel is a crucial tool to get quite explicit expressions of the ∆ k -Riesz kernel (see section 3). Naturally, a function u is D-superharmonic on Ω if -u is D-subharmonic on Ω.

Finally, we study some applications. The main one is the following version of the uniqueness principle: if µ and ν are finite and nonnegative Radon measures on R d and if

I k,β [µ] = I k,β [ν] a.e. on R d , then µ = ν.
We also prove a pointwise Hedberg's inequality in the sense of the operator ∆ k and we deduce L p -boundedness properties of the ∆ k -Riesz potentials.

Generalities in Dunkl Theory

In order to help the reader, we have collected in this section some basics from Dunkl theory which will be used in the sequel.

Notations: Let us introduce the following functional spaces which are present throughout the paper:

• Ω a W -invariant open subset of R d . • L p k (Ω) (resp. L p k,loc (Ω)), 1 ≤ p < +∞ the space of measurable functions f : Ω -→ C such that ∥f ∥ p L p k (Ω) := ∫ Ω |f (x)| p ω k (x)dx < +∞ (resp. ∫ K |f (x)| p ω k (x)dx < +∞ for any compact set K ⊂ Ω). • L ∞ k (Ω)
the space of measurable and essentially bounded functions on Ω.

• When Ω = R d , the norm of the space L p k (R d ), 1 ≤ p ≤ +∞, will be denoted ∥.∥ k,p instead of ∥.∥ L p k (R d ) . • D(Ω) the space of C ∞ -functions on Ω with compact support.
• D ′ (Ω) the space of distributions on Ω (i.e. the topological dual of D(Ω) carrying the Fréchet topology).

• S(R d ) the Schwartz space of C ∞ -functions on R d which are rapidly decreasing together with their derivatives.

• S ′ (R d ) the space of tempered distributions.

The Dunkl transform

The Dunkl transform of a function f ∈ L 1 k (R d ) is defined by (see [START_REF] De Jeu | The Dunkl transform[END_REF] and [START_REF] Rösler | Dunkl Operators: Theory and Applications[END_REF])

F k (f )(λ) := ∫ R d f (x)E k (-iλ, x)ω k (x)dx, λ ∈ R d , ( 2.1) 
where E k (x, y) is the Dunkl kernel (1.6) which is analytically extendable to C d × C d and satisfies the following properties (see [START_REF] Dunkl | Integral kernels with reflection group invariance[END_REF], [START_REF] Dunkl | Orthogonal Polynomials of Several variables[END_REF], [START_REF] De Jeu | The Dunkl transform[END_REF])

1. for all x, y ∈ R d , we have |E k (-ix, y)| ≤ 1. (2.2)
2. for all a ∈ C, x, y ∈ C d and all g ∈ W , we have

E k (ax, y) = E k (x, ay), E k (x, y) = E k (y, x) and E k (gx, gy) = E k (x, y).
It is well known (see [START_REF] De Jeu | The Dunkl transform[END_REF]) that the Dunkl transform F k is an isomorphism of S(R d ) onto itself and its inverse is given by

F -1 k (f )(x) = c -2 k ∫ R d f (λ)E k (ix, λ)ω k (λ)dλ, x ∈ R d , (2.3)
where c k is the constant given by (1.7). We note that for f, g ∈ S(R d ) the following relation holds ∫

R d F k (f )(x)g(x)ω k (x)dx = ∫ R d f (x)F k (g)(x)ω k (x)dx. (2.4)
Moreover, the transformation c -1 k F k extends uniquely to an isometric isomorphism of L 2 k (R d ) (Plancherel theorem, see [START_REF] De Jeu | The Dunkl transform[END_REF]).

We will also need the Dunkl transform F k (S) of a tempered distribution S ∈ S ′ (R d ) which is the distribution defined by

⟨F k (S), ϕ⟩ := ⟨S, F k (ϕ)⟩, ϕ ∈ S(R d ).
It is known that F k is a topological isomorphism of S ′ (R d ) onto itself (see [START_REF] Trimèche | Paley-Wiener theorem for the Dunkl transform and Dunkl translation operators[END_REF]). Note that if µ is a bounded Radon measure on R d , µ ∈ S ′ (R d ) and its distributional Dunkl transform can be identified to the continuous function

ξ → ∫ R d E k (-ix, ξ)dµ(x)ω k (ξ).
In the literature, the function

F k (µ) : ξ → ∫ R d E k (-ix, ξ)dµ(x) (2.5)
is called the Dunkl transform of the measure µ. This transformation is injective on the space of bounded Radon measures on R d (see [START_REF] Rösler | Markov processes related with Dunkl operators[END_REF]).

We recall also that the Dunkl-Laplace operator ∆ k leaves the spaces

D ′ (R d ) and S ′ (R d ) invariant where the ∆ k -action on S in D ′ (R d )) (resp. in S ′ (R d )) is defined as in the classical case by ⟨∆ k S, ϕ⟩ = ⟨S, ∆ k ϕ⟩, ϕ ∈ D(R d ) (resp. ϕ ∈ S(R d )). (2.6)

Dunkl's translation operators and heat kernel properties

• The Dunkl translation operators τ x , x ∈ R d , are defined on C ∞ (R d ) by (see [START_REF] Trimèche | Paley-Wiener theorem for the Dunkl transform and Dunkl translation operators[END_REF])

∀ y ∈ R d , τ x f (y) = ∫ R d V k • T z • V -1 k (f )(y)dµ x (z), (2.7) 
where T x is the classical translation operator given by T x f (y) = f (x + y). The operators τ x , x ∈ R d , satisfy the following properties:

1) For all x ∈ R d , the operator τ x is continuous from C ∞ (R d ) into itself.
2) For all f ∈ C ∞ (R d ) and all x, y ∈ R d , we have

τ x f (0) = f (x), τ x f (y) = τ y f (x).
3) The Dunkl-Laplace operator ∆ k commutes with the Dunkl translations, i.e. [START_REF] Rösler | A positive radial product formula for the Dunkl kernel[END_REF]) has proved the useful formula

τ x (∆ k f ) = ∆ k (τ x f ), x ∈ R d , f ∈ C ∞ (R d ). 4) If f ∈ C ∞ (R d ) is radial, M. Rösler ([
∀ x ∈ R d , τ x f (y) = ∫ R d f ( √ ∥x∥ 2 + ∥y∥ 2 + 2 ⟨x, z⟩)dµ y (z), (2.8) 
where f is the profile of f and µ y is the measure defined by (1.3).

In the particular case when f ∈ S(R d ), τ x f ∈ S(R d ) and using the Dunkl transform we have (see [START_REF] Trimèche | Paley-Wiener theorem for the Dunkl transform and Dunkl translation operators[END_REF]):

τ x f (y) = F -1 k [E k (ix, .)F k (f )](y) = c -2 k ∫ R d F k (f )(λ)E k (ix, λ)E k (iy, λ)ω k (λ)dλ, y ∈ R d .
• Using (2.8), the Dunkl heat kernel can also be written

p k (t, x, y) = 1 (2t) d/2+γ c k τ -x ( e -∥.∥ 2 4t ) (y) (2.9) = 1 (2t) d/2+γ c k ∫ R d e -1
4t (∥x∥ 2 +∥y∥ 2 -2 ⟨x,z⟩) dµ y (z).

(2.10)

For later use, we record also the following properties of the heat kernel (see [START_REF] Rösler | Generalized Hermite polynomials and the heat equation for Dunkl operators[END_REF] and [START_REF] Rösler | Dunkl Operators: Theory and Applications[END_REF])

1. The Dunkl heat kernel is symmetric in x and y i.e. p k (t, x, y) = p k (t, y, x), t > 0.

2. For every t > 0 and x ∈ R d , we have

∥p k (t, x, .)∥ k,1 = ∫ R d p k (t, x, y)ω k (y)dy = 1.
(2.11)

3.

For every t > 0 and x, y ∈ R d ,

p k (t, x, y) = F -1 k ( E k (-ix, .)e -t∥.∥ 2 ) (y) (2.12) = c -2 k ∫ R d e -t∥ξ∥ 2 E k (-ix, ξ)E k (iy, ξ)ω k (ξ)dξ.
(2.13)

4.

For every t > 0, the following inequality holds

∀ x, y ∈ R d , p k (t, x, y) ≤ 1 (2t) d/2+γ c k e -1 4t min g∈W ∥x-gy∥ 2 .
(2.14)

5.

For all t, s > 0, the Dunkl heat kernel satisfies the semi-group property

∀ x, y ∈ R d , p k (t + s, x, y) = ∫ R d p k (t, x, z)p k (s, y, z)ω k (z)dz. (2.15)

The harmonic kernel and ∆ k -subharmonic functions

For r > 0 and x, y ∈ R d , let h k (r, x, y) be the harmonic kernel defined by (1.11). In the classical case (i.e. k = 0), we have µ y = δ y (the Dirac measure at y) and then h 0 (r, x, y) = 1 [0,r] (∥x -y∥) = 1 B(x,r) (y). This implies, in particular, that the Dunklvolume operator defined by (1.10) generalizes the usual one.

The harmonic kernel has the following properties (see [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF]):

1) For all r > 0 and x, y ∈ R d , 0 ≤ h k (r, x, y) ≤ 1.

2) For all fixed x, y ∈ R d , the function r -→ h k (r, x, y) is right-continuous and nondecreasing.

3) Let r > 0 and

x ∈ R d . If k(α) > 0 for every α ∈ R, then supp h k (r, x, . ) = B W (x, r) := ∪ g∈W B(gx, r)
and if the function k vanishes somewhere then

B(x, r) ⊂ supp h k (r, x, . ) ⊂ B W (x, r)
(see [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF] and [START_REF] Gallardo | Support properties of the intertwining and the mean value operators in Dunkl theory[END_REF]).

4)

For all r > 0 and x, y ∈ R d , we have

h k (r, x, y) = h k (r, y, x).
(2.16)

5)

Let r > 0 and x, y ∈ R d . Then, for all g ∈ W , we have

h k (r, gx, gy) = h k (r, x, y) and h k (r, gx, y) = h k (r, x, g -1 y).
(2.17)

6)

For all r > 0 and x ∈ R d , we have

∥h k (r, x, .)∥ k,1 := ∫ R d h k (r, x, y)ω k (y)dy = m k (B(0, r)) = d k r d+2γ d + 2γ , ( 2.18) 
where we recall that dm k (y) = ω k (y)dy and d k is the constant

d k = ∫ S d-1 ω k (ξ)dσ(ξ) = c k 2 d/2+γ-1 Γ(d/2 + γ) . (2.19)
Here dσ(ξ) is the surface measure of the unit sphere S d-1 of R d .

Finally, we recall that • a function u of class C 2 on Ω is D-subharmonic in the sense of (1.10) if and only if ∆ k u ≥ 0 on Ω (see [START_REF] Gallardo | Newtonian Potentials and subharmonic functions associated to root systems[END_REF]).

• if u is D-subharmonic on Ω, then uω k ∈ L 1 loc (Ω) (that is u ∈ L 1 k,loc (Ω)
) and its distributional Dunkl-Laplacian ∆ k (uω k ) is a nonnegative distribution on Ω in the sense that for any nonnegative function ϕ ∈ D(Ω) we have

⟨∆ k (uω k ), ϕ⟩ := ⟨uω k , ∆ k ϕ⟩ = ∫ R d u(x)∆ k ϕ(x)ω k (x)dx ≥ 0.
(2.20)

The nonnegative distribution ∆ k (uω k ) is then a nonnegative Radon measure on Ω called the ∆ k -Riesz measure of the D-subharmonic function u (see [START_REF] Gallardo | Newtonian Potentials and subharmonic functions associated to root systems[END_REF]). In particular, if u ∈ C 2 (Ω) its ∆ k -Riesz measure is equal to ∆ k u(x)ω k (x)dx.

The ∆ k -Riesz kernel

In this section, we will study some properties of the ∆ k -Riesz kernel. Recalling that for x, y ∈ R d and 0 < β < d + 2γ, the ∆ k -Riesz kernel is defined by

R k,β (x, y) := 1 Γ(β/2) ∫ +∞ 0 t β 2 -1 p k (t, x, y)dt.
(3.1)

Remark 3.1 1) Since the Dunkl heat kernel is positive, we have 0 < R k,β (x, y) ≤ +∞ for all x, y ∈ R d . 2) Let x ∈ R d be fixed. From (2.14), we can see that if y / ∈ R d \W.x, then for any β ∈] -∞, d + 2γ[ the function t → t β 2 -1 p k (t, x, y) is integrable on ]0, +∞[. Thus, using the properties of the Gamma function, the function y → 1 Γ(β/2) ∫ +∞ 0 t β 2 -1 p k (t, x, y)dt is well defined on R d \ W.x whenever β ∈] -∞, d + 2γ[\ -2N.
In this case, we will continue denoting it y → R k,β (x, y).

In the following result, we will show that the ∆ k -Riesz kernel can be expressed in terms of the harmonic kernel. This new formula will be a crucial tool in the sequel of the paper.

Proposition 3.1 For every x, y ∈ R d , we have R k,β (x, y) = κ ∫ R d ( ∥x∥ 2 + ∥y∥ 2 -2 ⟨x, z⟩ ) β-(d+2γ) 2 dµ y (z) (3.2) = κ d + 2γ -β ∫ +∞ 0 t β-d-2γ h k (t, x, y) dt t , ( 3.3) 
where

κ = κ(d, γ, β) = 2 1-β Γ( d+2γ-β 2 ) d k Γ(β/2)Γ(d/2 + γ) = 2 d 2 +γ-β Γ( d+2γ-β 2 ) c k Γ(β/2) , ( 3.4) 
c k and d k being the constants given by (1.7) and (2.19) respectively.

Proof: Using the change of variables 1/4t ↔ t, the relation (2.10) can be rewritten

R k,β (x, y) = 2 d 2 +γ-β Γ(β/2)c k ∫ +∞ 0 t d+2γ-β 2 -1 ∫ R d e -t(∥x∥ 2 +∥y∥ 2 -2 ⟨x,z⟩) dµ x (z)dt.
Now, by Fubuni's theorem and the identity

∀ a ≥ 0, ∀ θ > 0, a -θ/2 = 1 Γ(θ/2) ∫ +∞ 0 s θ 2 -1 e -sa ds
(notice that if we take a = 0, the both terms are equal +∞), we deduce that (3.2) holds.

• Let us now prove (3.3). Starting from (3.2) and applying again Fubini's theorem, we get

R k,β (x, y) = κ ∫ R d ( ∥x∥ 2 + ∥y∥ 2 -2 ⟨x, z⟩ ) β-(d+2γ) 2 dµ y (z) = κ d + 2γ -β ∫ R d ∫ +∞ √ ∥x∥ 2 +∥y∥ 2 -2 ⟨x,z⟩ t β-d-2γ dt t dµ y (z) = κ d + 2γ -β ∫ +∞ 0 t β-d-2γ (∫ R d 1 [0,t] ( √ ∥x∥ 2 + ∥y∥ 2 -2 ⟨x, z⟩)dµ y (z) ) dt t = κ d + 2γ -β ∫ +∞ 0 t β-d-2γ h k (t, x, y) dt t .
This gives the desired relation. [START_REF] Landkof | Foundations of Modern Potential Theory[END_REF]).

Example 3.1 1) When k = 0, as µ y = δ y we have R 0,β (x, y) = κ(d, 0, β)∥x -y∥ β-d the classical Riesz kernel (see
2) Since µ 0 = δ 0 , for any choice of the Coxeter-Weyl group and of a nonnegative multiplicity function, we have

R k,β (x, 0) = κ(d, γ, β)∥x∥ β-d-2γ . 3) We consider R d (d ≥ 1) with the root system R m := {±e 1 , . . . , ±e m }, where m is a fixed integer in {1, . . . , d} and (e j ) 1≤j≤d is the canonical basis of R d . For ξ ∈ R d , we will denote ξ = (ξ (m) , ξ ′ ) ∈ R m × R d-m . We note that the Coxeter-Weyl group is W = Z m 2 and the Z m 2 -orbit of a point ξ ∈ R d is as follows Z m 2 .ξ := { ε.ξ := (ε 1 ξ 1 , . . . , ε m ξ m , ξ ′ ), ε = (ε i ) 1≤i≤m ∈ {±1} m } .
The multiplicity function can be represented by the m-multidimensional parameter k = (k 1 , . . . , k m ) with k j = k(e j ) > 0. Moreover, the Rösler measure is of the form

µ y = µ (y (m) ,y ′ ) = µ y 1 ⊗ • • • ⊗ µ ym ⊗ δ y ′ with µ y i the Z 2 -Rösler measure at point y i . If y i = 0, we know that µ 0 = δ 0 and if y i ̸ = 0, we have ⟨µ y i , f ⟩ := ∫ 1 -1 f (ty i )ϕ k i (t)dt, f ∈ C(R),
where ϕ k i is the Z 2 -Dunkl density function of parameter k i given by (see [START_REF] Dunkl | Integral kernels with reflection group invariance[END_REF] or [START_REF] Rösler | Dunkl Operators: Theory and Applications[END_REF] p.104)

ϕ k i (t) := Γ(k i + 1/2) √ πΓ(k i ) (1 -t) k i -1 (1 + t) k i 1 [-1,1] (t). (3.5) In this case, the ∆ k -Riesz kernel is of the form R k,β (x, y) = κ ∫ [-1,1] m ( ∥x (m) ∥ 2 + ∥y (m) ∥ 2 -2 m ∑ j=1 t j x j y j + ∥x ′ -y ′ ∥ 2 ) β-d-2γ 2 × m ∏ i=1 ϕ k i (t i )dt 1 . . . dt m . (3.6) Proposition 3.2 Suppose that γ > 0. Let 0 < β < d + 2γ and x, y ∈ R d . 1) If y / ∈ W.x, then R k,β (x, y) < +∞. 2) Assume that x ∈ R d \ ∪ α∈R H α . Then R k,β (x, x) = +∞ if and only if d ≥ β. 3) If x ∈ ∪ α∈R H α and β ≤ d, then R k,β (x, x) = +∞.
Proof: At first we note that

∀ x, y ∈ R d , ∀ t > 0, t β 2 -1 p k (t, x, y) ≤ Ct β-d-2γ 2 -1
Hence, as

β < d + 2γ, the function t → t β 2 -1 p k (t, x, y) is integrable on [1, +∞[ for every x, y ∈ R d .

1)

We obtain the result by using (2.14).

2)

Fix x ∈ R d such that x is not in any hyperplane H α , α ∈ R (i.e.
x lives in a Weyl chamber). We will use the following short-time asymptotic result of the Dunkl type heat kernel which has been established in ([24], Corollary 2): Let C be a fixed Weyl chamber. If x, y ∈ C, then

p k (t, x, y) ∼ t→0 ( ω k (x)ω k (y) ) -1/2 (4πt) -d/2 e -∥x-y∥ 2 4t . ( 3.7) 
Taking y = x, we deduce that the function

t → t β 2 -1 p k (t, x, x) is not integrable near 0 if and only if d ≥ β. 3) Let x ∈ H α for some α ∈ R. One can see that the function ψ : ξ -→ R k,β (ξ, ξ) is the increasing limit of the sequence of continuous functions ξ -→ ∫ n 1/n t β 2 -1 p k (t, ξ, ξ)dt. This implies that ψ is lower semi-continuous on R d . Consequently, when β ≤ d we have R k,β (x, x) = lim inf ξ→x R k,β (ξ, ξ) = +∞.
As already mentioned, for g ̸ = id, it is much more difficult to see if R k,β (x, gx) is finite or infinite. This new phenomena will be illustrated by the following complete characterization of the singularities of the ∆ k -Riesz kernel in the case of the Z m 2 -Coxeter-Weyl group acting on R d . More precisely, we have:

Proposition 3.3 Let x ∈ R d \{0}.
Using the same notations of Example 3.1, 3), denoting H i the hyperplane orthogonal to e i and recalling ε.

x = (ε 1 x 1 , . . . , ε m x m , x ′ ) ∈ Z m 2 .
x, we have

1. If x ∈ ∩ m i=1 H i , then x = ε.x and R k,β (x, x) = +∞. 2. Assume that x / ∈ ∩ m i=1 H i . Set A := {i ∈ {1, . . . , m}, x i ̸ = 0} and ε (n) .x = (ε 1 x 1 , . . . , ε m x m , x ′ ) the point of Z m 2 -orbit of x such that {j ∈ A, ε j = 1} = n i.e the point ε (n) .
x has exactly n among the nonzero coordinates (x j ) j∈A that have not been changed under the action of Z m 2 . Then,

R k,β (x, ε (n) .x) = +∞ ⇐⇒ d ≥ 2 ( |A| -n + ∑ j∈A k j -γ ) + β. (3.8) 3. Assume that x / ∈ ∪ m i=1 H i . Then, R k,β (x, ε (n) .x) = +∞ ⇐⇒ d ≥ 2(m -n) + β. (3.9)
In this case, we have

∑ m n=max(0,⌊m-d 2 + β 2 ⌋) ( m n ) singularities living in R d \ ∪ m i=1 H i .
Proof: For abbreviation, we will use the following constants

C 1 := 2 β-d-2γ 2 κ, C(k) := Γ(k + 1/2) √ πΓ(k) . (3.10) From (3.6), it is easy to see that R k,β (x, ε.x) = C 1 ∫ [-1,1] m ( m ∑ j=1 (1 -ε j t j )x 2 j ) β-d-2γ 2 m ∏ j=1 ϕ k j (t j ) ⊗ m j=1 dt j . (3.11) 1) Clearly, from (3.11), the condition x ∈ ∩ m i=1 H i i.e. x (m) = 0 implies that x = ε.x = (0, x ′ ) and R k,β (x, ε.x) = +∞. 2) Suppose that x / ∈ ∩ m i=1 H i .
Using the notations of the Proposition, Fubini's theorem and the fact that ϕ k j are probability densities, (3.11) can be written in the following form

R k,β (x, ε.x) = C 1 ∫ [-1,1] |A| ( ∑ j∈A (1 -ε j t j )x 2 j ) β-d-2γ 2 ∏ j∈A ϕ k j (t j ) ⊗ j∈A dt j .
(3.12)

We will distinguish two cases: First case |A| = 1. Let i ∈ {1, . . . , m} such that x i ̸ = 0. In this case, using (3.5) and (3.10), we deduce that (3.12) takes the form

R k,β (x, ε.x) = C 1 ∫ 1 -1 ( (1 -ε i s)x 2 i ) β-d-2γ 2 ϕ k i (s)ds = C(k i )C 1 |x i | β-d-2γ ∫ 1 -1 (1 -ε i s) β-d-2γ 2 (1 -s) k i -1 (1 + s) k i ds.
• If ε i = 1, then according to our notations, we have n = |A| = 1, ε.x = ε (1) .x = x and

R k,β (x, ε (1) .x) = C(k i )C 1 |x i | β-d-2γ ∫ 1 -1 (1 -s) k i + β-d-2γ 2 -1 (1 + s) k i ds.
Consequently, R k,β (x, ε (1) .x) = +∞ if and only if d ≥ β + 2k i -2γ. Then, the result is proved in this case.

• When ε i = -1, we have n = 0, ε.x = ε (0) .x and R k,β (x, ε (0) .x) = C(k i )|x i | β-d-2γ ∫ 1 -1 (1 + s) k i + β-d-2γ 2 (1 -s) k i -1 ds.
Thus, as

k i > 0 we have R k,β (x, ε (0) .x) = +∞ if and only if d ≥ 2(1 + k i -γ) + β.
Second case |A| = r ≥ 2. Using (3.12) and the change of variables t j ↔ 1 -ε j t j , we obtain

R k,β (x, ε.x) = C 1 ∫ ]0,2[ |A| ( ∑ j∈A t j x 2 j ) β-d-2γ 2 ∏ j∈A ϕ k j (ε j -ε j t j ) ⊗ j∈A dt j = C 1 ∫ ]0,2[ |A| ∩Br + C 1 ∫ ]0,2[ |A| \Br = C 1 I(x, ε.x) + C 1 J(x, ε.x),
where B r is the open unit ball in

R |A| = R r .
The singularities of these integrals being at point 0 and thus it is clear that J(x, ε.x) < +∞. Thus, we need to know when the integral I(x, ε.x) diverges. To do this, we will identify (t j ) j∈A with v = (v 1 , . . . , v r ) ∈ R r and use the spherical coordinates in R r :

ρ = ∥v∥, v 1 = ρa 1 , . . . , v r-1 = ρa r-1 and v r = ρa r ,
where

a 1 = cos θ 1 , . . . , a r-1 = r-2 ∏ i=1 sin θ i cos θ r-1 , a r = r-1 ∏ i=1 sin θ i .
Notice that all a j are positive.

I(x, ε.x) = ∫ S r-1 + ψ(a (r) , x (r) ) ( ∫ 1 0 ∏ j∈A ϕ k j (ε j -ε j a j ρ)ρ r+ β-d-2γ 2 -1 dρ ) dσ r (a (r) ), (3.13) 
where S r-1

+ :=]0, 2[ r ∩S r-1
, dσ r is the surface measure of the unit sphere S r-1 of R r , a (r) = (a j ) j∈A , x (r) = (x j ) j∈A and ψ(a (r) , x (r) 

) := ( ∑ j∈A a j x 2 j ) β-d-2γ 2 .
We have

ϕ k j (ε j -ε j a j ρ) = C(k j )(1 -ε j + ε j a j ρ) k j -1 (1 + ε j -ε j a j ρ) k j .
Hence,

ϕ k j (ε j -ε j a j ρ) =      C(k j )a k j -1 j ρ k j -1 (2 -a j ρ) k j , if ε j = 1 C(k j )a k j j ρ k j (2 -a j ρ) k j -1 , if ε j = -1. (3.14) Define A 1 := { j ∈ A, ε j = 1 } , A 2 = A\A 1 .
According to our notations, we have

|A 1 | = |{j, ε j = 1}| = n.
Then, from (3.13), (3.14) and recalling the definition of the vector ε (n) .x, we deduce that

I(x, ε (n) .x) = ∫ S r-1 + ψ(a (r) , x (r) ) ( ∫ 1 0 f (a (r) , ρ)ρ λ+r+ β-d-2γ 2 -1 dρ ) dσ r (a (r) ), (3.15) 
with

f (a (r) , ρ) := ∏ j∈A 1 C(k j )a k j -1 j (2 -a j ρ) k j ∏ j∈A 2 C(k j )a k j j (2 -a j ρ) k j -1 .
and λ :=

∑ j∈A 1 (k j -1) + ∑ j∈A 2 k j = ∑ j∈A k j -n.
The function ρ -→ f (a (r) , ρ) is continuous and does not vanish on the compact set [0, 1]. So that the singularity in the dρ-integral is only in the term of

ρ λ+r+ β-d-2γ 2 -1 = ρ ( ∑ j∈A k j )-n+r+ β-d-2γ 2 -1 .
Finally, we conclude that

R k,β (x, ε (n) .x) = +∞ ⇔ I(x, ε (n) .x) = +∞ ⇔ d ≥ 2(|A| -n + ∑ j∈A k j -γ) + β.
This completes the proof of the assertion 2).

3) When x / ∈ ∪ m i=1 H i , we have A = {1, . . . , m} and then the result is a particular case of the statement 2). Proposition 3. [START_REF]Two results on the Dunkl maximal function[END_REF] The Riesz kernel R k,β (., .) satisfies the following properties 1) For every x, y ∈ R d and g ∈ W , we have

R k,β (x, y) = R k,β (y, x), R k,β (gx, y) = R k,β (x, g -1 y).
(3.16)

2) Let β, θ > 0 such that β + θ < d + 2γ. Then we have the following generalized Riesz composition formula ∫

R d R k,β (x, z)R k,θ (y, z)ω k (z)dz = R k,β+θ (x, y).
(3.17)

3) Let x ∈ R d . Then, for every y ∈ R d \W.x, we have κ min g∈W ( ∥x -gy∥ β-d-2γ ) ≤ R k,β (x, y) ≤ κ max g∈W ( ∥x -gy∥ β-d-2γ ) (3.18) 4) Let y ∈ R d . Then, the function x → R k,β (x, y) is -lower semi-continuous (l.s.c.) on R d . -of class C ∞ on R d \W.
x and we have

∂ j R k,β (x, y) = (β -d -2γ)κ ∫ R d (x j -z j ) ( ∥x∥ 2 + ∥y∥ 2 -2 ⟨x, z⟩ ) β-2-d-2γ
2 dµ y (z).

(

3.19)

Proof: 1) The result follows from (3.3), (2.16) and (2.17).

2) The result follows from the Fubini's theorem and the semi-group property of the Dunklheat kernel (2.15).

3) Let y ∈ R d . From (1.4) for any z ∈ supp µ y , we can write z = ∑ g∈W λ g (z)gy, where λ g (z) ∈ [0, 1] are such that ∑ g∈W λ g (z) = 1. Then, we have

∥x∥ 2 + ∥y∥ 2 -2 ⟨x, z⟩ = ∑ g∈W λ g (z)∥x -gy∥ 2 . (3.20) As ψ : t -→ t β-d-2γ 2
is a convex function on ]0, +∞[, by (3.20) we have

( ∥x∥ 2 + ∥y∥ 2 -2 ⟨x, z⟩ ) β-d-2γ 2 = ( ∑ g∈W λ g (z)∥x -gy∥ 2 ) β-d-2γ 2 ≤ max g∈W ( ∥x -gy∥ β-d-2γ
) .

This implies the right inequality. Again by convexity, Jensen's inequality and (3.20), we get

R k,β (x, y) ≥ κ (∫ R d (∥x∥ 2 + ∥y∥ 2 -2 ⟨x, z⟩)dµ y (z) ) β-d-2γ 2 ≥ κ   ∑ g∈W (∫ R d λ g (z)dµ y (z) ) ∥x -gy∥ 2   β-d-2γ 2 ≥ κ ( max g∈W ∥x -gy∥ 2 ) β-d-2γ 2 = κ min g∈W ( ∥x -gy∥ β-(d+2γ)
) ,

where in the last line we have used the fact that ψ is a decreasing function.

4)

The function x → R k,β (x, y) is l.s.c. on R d as being the increasing limit of the sequence (f n ) of continuous functions defined by

f n : x → ∫ n 1/n t β 2 -1 p k (t, x, y)dt. Fix y ∈ R d .
Using the fact that µ y is with compact support and the fact that the function 

(x, z) -→ ( ∥x∥ 2 + ∥y∥ 2 -2 ⟨x, z⟩ ) β-d-2γ 2 is of class C ∞ on R d \W.y × R d ,
∀ x ∈ R d , ∥R k,β (x, .)∥ L p k (B(0,R)) ≤ C. (3.21)
In particular, for every

x ∈ R d , R k,β (x, .) is in L p k,loc (R d ).
Proof: By Jensen's inequality and (3.2), we have

(R k,β (x, y)) p ≤ κ p ∫ R d ( ∥x∥ 2 + ∥y∥ 2 -2 ⟨x, z⟩ ) p(β-d-2γ) 2 dµ y (z).
Using the same idea as in the proof of (3.3), we can write the previous inequality as follows

(R k,β (x, y)) p ≤ κ p p(d + 2γ -β) ∫ +∞ 0 t p(β-d-2γ) h k (t, x, y) dt t = C 1 ∫ 1 0 t p(β-d-2γ) h k (t, x, y) dt t + C 1 ∫ +∞ 1 t p(β-d-2γ) h k (t, x, y) dt t ≤ C 1 ∫ 1 0 t p(β-d-2γ) h k (t, x, y) dt t + C 1 p(d + 2γ -β) ,
where C 1 = κ p p(d+2γ-β) and we have used the fact that h k (t, x, y) ≤ 1 in the last inequality. Let then R > 0. From (2.18), Fubini's theorem and our hypothesis, we deduce that ∫ B(0,R)

∫ 1 0 t p(β-d-2γ) h k (t, x, y) dt t ω k (y)dy ≤ d k d + 2γ ∫ 1 0 t p(β-d-2γ) t d+2γ dt t := C 2 < +∞.
This proves the desired inequality where we can take

C = ( C 1 C 2 + C 1 m k [B(0, R)] p(d + 2γ -β) ) 1/p . Proposition 3.6 Let 0 < β < d + 2γ and x 0 ∈ R d . Then, the function R k,β (x 0 , .) is i) D-superharmonic on R d when β ≥ 2, ii) D-harmonic on R d \W.x 0 when β = 2,
iii) D-subharmonic on R d \W.x 0 when β ≤ 2

Proof: The case β = 2 (i.e. the case of the Dunkl-Newton kernel) has been done in [START_REF] Gallardo | Newtonian Potentials and subharmonic functions associated to root systems[END_REF]. So, we will deal with the case β ̸ = 2. i) Suppose that β > 2. We consider the function S x 0 ,β,r

S x 0 ,β,r (x) := 1 Γ(β/2) ∫ +∞ r t β 2 -1 p k (t, x 0 , x)dt.
By the monotone convergence theorem, we see that the function R k,β (x 0 , .) is the pointwise increasing limit of the sequence

( S x 0 ,β, 1 n ) n
. Hence, by Proposition 3.3 in [START_REF] Gallardo | Newtonian Potentials and subharmonic functions associated to root systems[END_REF], it suffices to prove that for every r > 0, S x 0 ,β,r is D-superharmonic on R d . To do this, we have only to show that S x 0 ,β,r is of class C 2 on R d and ∆ k S x 0 ,β,r ≤ 0 on R d (see [START_REF] Gallardo | Newtonian Potentials and subharmonic functions associated to root systems[END_REF], Proposition 4.1).

The function p k (t, x 0 , .) is of class C ∞ on R d and we can differentiate under the integral sign in the relation (2.10) to obtain

∂ j p k (t, x 0 , .)(x) = - 1 2t 1 (2t) d 2 +γ c k ∫ R d (x j -z j )e -1 4t (∥x∥ 2 +∥x 0 ∥ 2 -2 ⟨x,z⟩) dµ x 0 (z) (3.22)
and

∂ i ∂ j p k (t, x 0 , .)(x) = -δ ij 1 2t p k (t, x 0 , x) + 1 4t 2 1 (2t) d 2 +γ c k ∫ R d (x j -z j )(x i -z i )e -1 4t (∥x∥ 2 +∥x 0 ∥ 2 -2 ⟨x,z⟩) dµ x 0 (z), (3.23)
where δ ij is the Kronecker symbol.

Using the fact that supp µ x 0 ⊂ B(0, ∥x 0 ∥), we deduce from (3.22) and (3.23) that

|∂ j p k (t, x 0 , .)(x)| ≤ ∥x∥ + ∥x 0 ∥ (2t) 1+ d 2 +γ c k , |∂ i ∂ j p k (t, x 0 , .)(x)| ≤ 1 (2t) 1+ d 2 +γ c k + (∥x∥ + ∥x 0 ∥) 2 (2t) 2+ d 2 +γ c k .
Let R > 0. The previous inequalities and the differentiation theorem under the integral sign imply that S x 0 ,β,r is of class C 2 on the open ball • B(0, R) and as x → p k (t, x 0 , x) is a solution of the Dunkl-heat equation (1.9), we deduce that (3.22), (3.23) and (3.20), we can see that

∀ x ∈ • B(0, R), ∆ k S x 0 ,β,r (x) = 1 Γ(β/2) ∫ +∞ r t β 2 -1 ∆ k (p k (t, x 0 , .)) (x)dt = 1 Γ(β/2) ∫ +∞ r t β 2 -1 ∂ t p k (t, x 0 , x)dt = - r β 2 -1 Γ(β/2) p k (r, x 0 , x) - β -2 2Γ(β/2) ∫ +∞ r t β 2 -2 p k (t, x 0 , x)dt < 0. Therefore, S x 0 ,β,r is D-superharmonic on • B(0, R). As R > 0 is arbitrary, we conclude that S x 0 ,β,r is D-superharmonic on R d as desired. iii) Let β ∈]0, 2[. Using
|∂ j p k (t, x 0 , .)(x)| ≤ ∥x∥ + ∥x 0 ∥ (2t) 1+ d 2 +γ c k e - min g∈W (∥x-gx 0 ∥ 2 ) 4t
,

|∂ i ∂ j p k (t, x 0 , .)(x)| ≤ ( 1 (2t) 1+ d 2 +γ c k + (∥x∥ + ∥x 0 ∥) 2 (2t) 2+ d 2 +γ c k ) e - min g∈W (∥x-gx 0 ∥ 2 ) 4t
.

Fix an arbitrary open Dunkl ball O

W (a, R) := ∪ g∈W • B(ga, R) such that its closure is contained in R d \W.x 0 .
The previous inequalities imply that we can differentiate with respect to x ∈ O W (a, R) under the integral sign in the relation (3.1). Furthermore, using the heat equation (1.9) and integrating by parts, we obtain

∀ x ∈ O W (a, R), ∆ k (R k,β (x 0 , .)) (x) = 1 Γ(β/2) ∫ +∞ 0 t β 2 -1 ∂ t p k (t, x 0 , x)dt = - β -2 2Γ(β/2) ∫ +∞ 0 t β 2 -2 p k (t, x 0 , x)dt ≥ 0.
According to Remark 3.1-2), the above relation can be written as

∀ x ∈ O W (a, R), ∆ k (R k,β (x 0 , .)) (x) = -R k,β-2 (x 0 , x) ≥ 0. (3.24)
Therefore, the function R k,β (x 0 , .) is D-subharmonic on O W (a, R) and so on R d \W.x 0 .

Proposition 3.7 Let β ∈]0, d+2γ[ and x 0 ∈ R d . Then, the function x → R k,β (x 0 , x)ω k (x)
defines a tempered distribution and we have

F k (R k,β (x 0 , .)ω k ) = E k (-ix 0 , .)∥.∥ -β ω k in S ′ (R d ). ( 3 

.25)

Proof: Let m ∈ N such that m > d + 2γ. We claim that there exists a constant

C m = C(d, γ, β, m) > 0 such that ∀ x 0 ∈ R d , ∫ R d (1 + ∥x∥ 2 ) -m R k,β (x 0 , x)ω k (x)dx ≤ C m . (3.26) From (3.3), we can write R k,β (x 0 , x) = κ d + 2γ -β ( ∫ 1 0 t β-d-2γ-1 h k (t, x 0 , x)dt + ∫ +∞ 1 t β-d-2γ-1 h k (t, x 0 , x)dt ) := A(x 0 , x) + B(x 0 , x).
• Using Fubini's theorem and the relation (2.18), for any

x 0 ∈ R d we obtain ∫ R d (1 + ∥x∥ 2 ) -m A(x 0 , x)ω k (x)dx ≤ ∫ R d A(x 0 , x)ω k (x)dx = κ d + 2γ -β ∫ 1 0 t β-d-2γ-1 ∥h k (t, x 0 , .)∥ k,1 dt = d k κ β(d + 2γ)(d + 2γ -β) := C 1,m .
• Now, using the inequality h k (t, x 0 , x) ≤ 1, we deduce that

∀ x 0 ∈ R d , B(x 0 , x) ≤ κ (d + 2γ -β) 2 .

This relation and the choice of m imply that

∀ x 0 ∈ R d , ∫ R d (1 + ∥x∥ 2 ) -m B(x 0 , x)ω k (x)dx ≤ κ (d + 2γ -β) 2 ∫ R d (1 + ∥x∥ 2 ) -m ω k (x)dx := C 2,m < +∞.
This proves (3.26) and this implies that the function R k,β (x 0 , .)ω k defines a tempered distribution (see [START_REF] Schwartz | Théorie des distributions[END_REF], Theorem VII, p. 242).

Let us now prove (3.25). For ϕ ∈ S(R d ), we have

⟨F k (R k,β (x 0 , .)ω k ) , ϕ⟩ = 1 Γ(β/2) ∫ R d (∫ +∞ 0 t β 2 -1 p k (t, x 0 , x)dt ) F k (ϕ)(x)ω k (x)dx.
Multiplying and dividing by (1 + ∥x∥ 2 ) m (the integer m is chosen as above) and using the fact that F k (ϕ) ∈ S(R d ), we see that we can use Fubini's theorem in the above relation. Moreover, from (2.4) and (2.12), we obtain

⟨F k (R k,β (x 0 , .)ω k ) , ϕ⟩ = 1 Γ(β/2) ∫ +∞ 0 t β 2 -1 (∫ R d F k (p k (t, x 0 , .))(x)ϕ(x)ω k (x)dx ) dt = 1 Γ(β/2) ∫ +∞ 0 t β 2 -1 (∫ R d E k (-ix 0 , x)e -t∥x∥ 2 ϕ(x)ω k (x)dx ) dt.
Applying again Fubini's theorem, we deduce that

⟨F k (R k,β (x 0 , .)ω k ) , ϕ⟩ = ∫ R d E k (-ix 0 , x)∥x∥ -β ϕ(x)ω k (x)dx.
This completes the proof.

Corollary 3.1 For every x 0 ∈ R d , we have

lim β→0 R k,β (x 0 , .)ω k = δ x 0 in S ′ (R d ). ( 3 

.27)

Proof: We can see that for every ξ ∈ R d ,

∥ξ∥ -β ≤ 1 R d \B(0,1) (ξ) + ∥ξ∥ -d-2γ 1 B(0,1) (ξ).
Consequently, we can use the dominated convergence theorem to obtain from (3.25)

lim β→0 F k (R k,β (x 0 , .)ω k ) = E k (-ix 0 , .)ω k = F k (δ x 0 ) in S ′ (R d ).
Thus, we deduce the result by using the properties of the Dunkl transform on S ′ (R d ).

From the formula (3.24), we see that the ∆ k -Riesz measure related to the D-subharmonic function R k,β (x 0 , .), β < 2, is given by -R k,β-2 (x 0 , x)ω k (x)dx. In the following result, we will compute the ∆ k -Riesz measure of the D-superharmonic function

R k,β (x 0 , .) with β ∈ [2, d + 2γ[. Corollary 3.2 Let 2 ≤ β < d + 2γ and x 0 ∈ R d . If m ∈ [1, β/2] be an integer, then the function x → R k,β (x 0 , x) satisfies (-∆ k ) m (R k,β (x 0 , .)ω k ) =    R k,β-2m (x 0 , .)ω k in S ′ (R d ) if β > 2m, δ x 0 in S ′ (R d ) if β = 2m, (3.28) 
where δ x 0 is the Dirac measure at x 0 .

Proof: At first, we remark that if U ∈ S ′ (R d ), then

F k (∆ k U ) = -∥.∥ 2 F k (U ), (3.29) 
as easily follows from the relation

∆ k F k (f ) = -F k (∥.∥ 2 f ) for all f ∈ S(R d ).
From (3.29) and (3.25), we obtain

F k ( (-∆ k ) m (R k,β (x 0 , .)ω k ) ) = E k (-ix 0 , .)∥.∥ β-2m ω k =    F k ( R k,β-2m (x 0 , .)ω k ) in S ′ (R d ) if β > 2m, F k (δ x 0 ) in S ′ (R d ) if β = 2m.
Hence, we deduce the result by the fact that

F k is a topological isomorphism of S ′ (R d ) onto itself. Remark 3.2 Let 1 ≤ m < γ + d/2 an integer. Taking x 0 = 0 in (3.28), we deduce that the function S : y → R k,2m (0, y)ω k (y) = κ∥y∥ 2m-d-2γ ω k (y) is the fundamental solution of the Dunkl-polylaplacian of order m (-∆ k ) m i.e. (-∆ k ) m S = δ 0 in S ′ (R d ).

Riesz potentials of Radon measures

The sets M(R d 

I k,β [µ](x) = ∫ R d R k,β (x, y)dµ(y), x ∈ R d . (4.1) Proposition 4.1 Let µ ∈ M + (R d ) and β ∈]0, d + 2γ[. 1. If µ is bounded, then I k,β [µ] ∈ L p k,loc (R d ) whenever p ∈ [1, d+2γ d+2γ-β [. In particular, I k,β [µ] is finite a.e. in R d .

The following statements are equivalent

i) I k,β [µ] is finite a.e. in R d , ii) the measure µ satisfies ∫ R d (1 + ∥y∥) β-d-2γ dµ(y) < +∞, (4.2) 
iii)

I k,β [µ](x 0 ) < +∞ for some x 0 ∈ R d . If ii) holds, then I k,β [µ] ∈ L 1 k,loc (R d ).
Proof: 1) Assume that µ is a probability measure on R d . Let p as in the proposition and R > 0. Using respectively (4.1), Jensen's inequality, Fubini's theorem, the fact that the Riesz kernel is symmetric and (3.21), we get ∫ B(0,R)

(I k,β [µ](x)) p (x)ω k (x)dx ≤ ∫ B(0,R) ( ∫ R d (R k,β (x, y)) p dµ(y) ) ω k (x)dx = ∫ R d ( ∫ B(0,R) (R k,β (x, y)) p ω k (x)dx ) dµ(y) ≤ C < +∞,
where C is the constant in (3.21).

2) ii) ⇒ i) Assume that the condition (4.2) holds. We will prove that

x → I k,β [µ](x) is in L 1 k,loc (R d ). Let R > 1
. By Fubini's theorem, we have

A R := ∫ B(0,R) I k,β [µ](x)ω k (x)dx = ∫ R d ∫ B(0,R) R k,β (x, y)ω k (x)dxdµ(y) = ∫ ∥y∥≤2R ∫ B(0,R) R k,β (x, y)ω k (x)dxdµ(y) + ∫ ∥y∥>2R ∫ B(0,R) R k,β (x, y)ω k (x)dxdµ(y) := A 1,R + A 2,R .
Applying the assertion 1) with the finite measure µ |B(0,R) , we get A 1,R < +∞. Now, from (3.18) we deduce that

A 2,R ≤ κ ∫ ∥y∥>2R ∫ B(0,R) max g∈W ( ∥x -gy∥ β-d-2γ
) ω k (x)dxdµ(y).

But, for every x ∈ B(0, R) and every y ∈ R d \B(0, 2R), we have ∥x-gy∥ ≥ ∥y∥-∥x∥ ≥ ∥y∥ 2 . Moreover, as R > 1, we see that ∥y∥ ≥ 1 2 (1 + ∥y∥) whenever ∥y∥ ≥ 2R. In other words, the inequality max

g∈W ( ∥x -gy∥ β-d-2γ ) ≤ 4 β-d-2γ (1 + ∥y∥) β-d-2γ
holds for every x ∈ B(0, R) and every y ∈ R d \ B(0, 2R). Hence, by our hypothesis we conclude that

A 2,R ≤ 4 β-d-2γ κ m k [B(0, R)] ∫ ∥y∥≥2R (1 + ∥y∥) β-d-2γ dµ(y) < +∞ and thus the function x → I k,β [µ](x)ω k (x) is locally integrable on R d . In particular, I k,β [µ](x) < +∞ a.e. on R d . i) ⇒ iii) It is obvious. iii) ⇒ ii) Let x 0 ∈ R d such that I k,β [µ](x 0 ) < +∞. From (3.
18), we can see that

I k,β [µ](x 0 ) ≥ κ ∫ R d min g∈W ( ∥x 0 -gy∥ β-d-2γ
) dµ(y) 

≥ κ ∫ R d (∥x 0 ∥ + ∥y∥) β-d-2γ dµ(y).
I k,β [µ] ≤ 2 d+2γ-β M on R d . (4.6)
Proof: Let x / ∈ W.supp µ and x 0 ∈ W.supp µ such that ∥x -x 0 ∥ = dist(x, W.supp µ). We have

∀ y ∈ supp µ, ∀ g ∈ W, ∥x 0 -gy∥ ≤ ∥x 0 -x∥ + ∥x -gy∥ ≤ 2∥x -gy∥.
Hence, by (3.20) we deduce that

∀ y ∈ supp µ, ∀ z ∈ supp µ y , ∥x 0 ∥ 2 + ∥y∥ 2 -2 ⟨x 0 , z⟩ ≤ 4(∥x∥ 2 + ∥y∥ 2 -2 ⟨x, z⟩).
Now, using (2.10), we obtain

∀ y ∈ supp µ, 4 -d 2 -γ p t/4 (x, y) ≤ p t (x 0 , y).
From (3.1), the above inequality implies that

∀ y ∈ supp µ, 2 -d-2γ+β R k,β (x, y) ≤ R k,β (x 0 , y).
Finally, if we integrate with respect to the measure dµ(y) and use our hypothesis, the inequality (4.6) follows.

In the following result, we will study some continuity properties of the β-∆ k -Riesz potentials: 

F n (x) = 1 Γ(β/2) ∫ supp µ ( ∫ n 1/n t β 2 -1 p k (t, x, y)dt ) dµ(y). As t β 2 -1 p k (t, x, y) ≤ 2 -d 2 -γ c -1 k t -β-d-2γ 2 -1
, by the continuity theorem under the integral sign, we see that F n is continuous on R d . Moreover, from the monotone convergence theorem, we deduce that the function I k,β [µ] is l.s.c. on R d as being the pointwise increasing limit of the sequence (F n ).

• Let us prove the second part of 1). Fix a closed ball B(x 0 , R) in R d \ W.supp µ and set η := dist (B(x 0 , R), W.supp µ) > 0.

From (2.14), we deduce that

∀(x, y) ∈ B(x 0 , R) × supp µ, p k (t, x, y) ≤ 1 (2t) d 2 +γ c k e -η 2 4t .
Then, writing

I k,β [µ](x) = 1 Γ(β/2) ∫ supp µ ( ∫ +∞ 0 t β 2 -1 p k (t, x, y)dt ) dµ(y)
and using the continuity theorem under the integral sign, it follows that I k,β [µ] is continuous on B(x 0 , R). As the ball B(x 0 , R) is arbitrary, the result follows.

2) Fix x 0 ∈ W.supp µ and ε > 0. Let (x n ) be a sequence which converges to x 0 . For R > 0 (small), set µ R := µ |B(x 0 ,R) and ν R := µ -µ R . In particular, we note that

I k,β [µ] = I k,β [µ R ] + I k,β [ν R ].
We have

I k,β [µ](x n )-I k,β [µ](x 0 ) ≤ I k,β [µ R ](x n )+I k,β [µ R ](x 0 )+ I k,β [ν R ](x n )-I k,β [ν R ](x 0 ) . (4.7)
• As x 0 / ∈ W.supp ν R , by the assertion 1, the function

I k,β [ν R ] is continuous at x 0 . Hence, there exists N 1 ∈ N such that ∀ n ≥ N 1 , I k,β [ν R ](x n ) -I k,β [ν R ](x 0 ) ≤ ε. (4.8) • For every n, let x ′ n ∈ K := W.supp µ R = W. ( supp µ ∩ B(x 0 , R) ) such that ∥x n -x ′ n ∥ = dist(x n , K) = inf{∥x n -ξ∥, ξ ∈ K}. As x 0 ∈ K, we can see that ∥x n -x 0 ∥ ≥ ∥x n -x ′ n ∥. This implies that ∥x ′ n -x 0 ∥ ≤ ∥x n -x ′ n ∥ + ∥x n -x 0 ∥ ≤ 2∥x n -x 0 ∥
and thus x ′ n -→ x 0 as n → +∞. Using the inequality (4.6), we deduce that

I k,β [µ R ](x n ) ≤ 2 d+2γ-β I k,β [µ R ](x ′ n ) = 2 d+2γ-β ( I k,β [µ](x ′ n ) -I k,β [ν R ](x ′ n )
) . (4.9)

But, x ′ n ∈ W.supp µ and the restriction of I k,β [µ] on W.supp µ is continuous. Thus,

lim n→+∞ I k,β [µ](x ′ n ) = I k,β [µ](x 0 ). Again by continuity of I k,β [ν R ] at x 0 , we also get lim n→+∞ I k,β [ν R ](x ′ n ) = I k,β [ν R ](x 0 ). Therefore, I k,β [µ R ](x ′ n ) -→ I k,β [µ R ](x 0 ) as n → +∞. Let then N 2 ∈ N such that ∀ n ≥ N 2 , I k,β [µ R ](x ′ n ) ≤ I k,β [µ R ](x 0 ) + ε. (4.10)
Finally from (4.7), (4.8), (4.9) and (4.10), the inequality

I k,β [µ](x n ) -I k,β [µ](x 0 ) ≤ ( 2 d+2γ-β + 1 )( ε + I k,β [µ R ](x 0 ) ) (4.11)
holds for every n ≥ max(N 1 , N 2 ) and every R > 0. But, since x 0 ∈ W.supp µ and I k,β [µ] is continuous on W.supp µ, we must have I k,β [µ](x 0 ) < +∞. Furthermore, because x 0 is a singularity of R k,β (x 0 , .), Proposition 4.2 imply that lim

R→0 I k,β [µ R ](x 0 ) = lim R→0 ∫ B(x 0 ,R) R k,β (x 0 , y)dµ(y) = 0. (4.12)
Finally, by the relations (4.11) and (4.12) we deduce that

I k,β [µ] is continuous at x 0 . Theorem 4.1 Let β ∈]0, d + 2γ[ and µ ∈ M + k,β (R d ) with compact support. Then, the function I k,β [µ] is i) D-superharmonic on R d if β ≥ 2, ii) D-harmonic on R d \ W.supp µ if β = 2, iii) D-subharmonic on R d \ W.supp µ if β ≤ 2.
We need the following lemma: 

(I k,β [µ]) (x) ≤ I k,β [µ](x). Since I k,β [µ]
is l.s.c and finite a.e., we deduce that the function

I k,β [µ] is D-superharmonic on R d .
ii) If β = 2, we are in the case of the Dunkl-Newton potential and the result has been proved in [START_REF] Gallardo | Newtonian Potentials and subharmonic functions associated to root systems[END_REF].

iii) Let β < 2. From Lemma 4.4, we know that I k,β [µ] is a continuous function on R d \ W.supp µ. Furthermore, by Proposition 3.6 and Fubini's theorem, the sub-mean property is satisfied by the function

I k,β [µ] on R d \ W.supp µ. Thus, I k,β [µ] is D-subharmonic on R d \ W.supp µ. Corollary 4.1 Let β ∈ [2, d + 2γ[ . If µ ∈ M + k,β (R d ), then the function I k,β [µ] is D- superharmonic on R d .
Proof: Let Φ n the function defined by Φ n (x) = ∫ B(0,n) R k,β (x, y)dµ(y). From Theorem 4.1, the function Φ n is D-superharmonic on R d . Thus, as I k,β [µ] is not identically +∞ by hypothesis, the function I k,β [µ] is D-superharmonic on R d as being an increasing pointwise limit of the sequence (Φ n ) n of D-superharmonic functions (see [START_REF] Gallardo | Newtonian Potentials and subharmonic functions associated to root systems[END_REF], Proposition 3.3).

Proposition 4.5 Let

µ ∈ M + k,β (R d ) with β ∈ [2, d + 2γ[ and m ∈ N be such that 1 ≤ m ≤ β/2. Then, the function x → I k,β [µ](x)ω k (x) satisfies (-∆ k ) m (I k,β [µ]ω k ) =    I k,β-2m [µ]ω k in D ′ (R d ) if β > 2m, µ in D ′ (R d ) if β = 2m, . (4.13) 
Proof: Let ϕ ∈ D(R d ). We will only prove the result in the case β > 2m and by the same arguments it can be obtained when β = 2m. We have

⟨(-∆ k ) m (I k,β [µ]ω k ) , ϕ⟩ = ∫ R d ( ∫ R d R k,β (x, y)(-∆ k ) m ϕ(x)ω k (x)dx ) dµ(y) = ∫ R d ( ∫ R d R k,β-2m (x, y)ϕ(x)ω k (x)dx ) dµ(y) = ∫ R d I k,β-2m [µ](x)ϕ(x)ω k (x)dx,
where we have used -Fubini's theorem in the first and the last lines (it is possible because

I k,β [µ] ∈ L 1 k,loc (R d ) and by Remark 4.1, I k,β-2m [µ] is also in L 1 k,loc (R d ))
; -the fact that the ∆ k -Riesz kernel is symmetric and the relation (3.28) in the second line.

From the previous proposition, we obtain immediately the uniqueness principle for ∆ k -Riesz potential of index 2m:

Corollary 4.2 Let m ∈]0, d 2 + γ[ be an integer and µ, ν ∈ M + k,2m (R d ). If I k,2m [µ] = I k,2m [ν] a.e, then µ = ν.
For an arbitrary index β ∈]0, d + 2γ[, we have the following version of the uniqueness principle for finite measures: 

F k (I k,β [µ]ω k ) = ∥.∥ -β F k (µ)ω k in S ′ (R d ). (4.14) 
Here, F k (µ) is the function defined by (2.5).

Proof: Let m > d+2γ an integer and C m as in (3.26). By Fubini's theorem, the symmetric property of the ∆ k -Riesz kernel and the relation (3.26), we get ∫ In order to extend the pointwise Hedbreg inequality in Dunkl setting, in the following result we give the link between the ∆ k -Riesz potential and the volume mean of a nonnegative Radon measure. Proof: The result follows from (3.3), Fubini's theorem, (2.18) and (4.16).

R d (1 + ∥x∥ 2 ) -m I k,β [µ](x)ω k (x)dx = ∫ R d ( ∫ R d (1 + ∥x∥ 2 ) -m R k,β (x, y)ω k (x)dx ) dµ(y) ≤ C m µ(R d ) < +∞. This shows that I k,β [µ]ω k ∈ S ′ (R d ). Let ϕ ∈ S(R d ). We have ⟨F k (I k,β [µ]ω k ) , ϕ⟩ = ∫ R d ( ∫ R d R k,β (x, y)dµ(y) ) F k (ϕ)(x)ω k (x)dx = ∫ R d ( ∫ R d R k,β (x, y)F k (ϕ)(x)ω k (x)dx ) µ(y) = ∫ R d ( ∫ R d E k (-iy, x)∥x∥ -β ω k (x)ϕ(x)dx ) dµ(y) = ∫ R d ∥x∥ -β F k (µ)(x)ω k (x)ϕ(x)
In the following result, we will extend the pointwise Hedberg inequality (see [START_REF] Hedberg | On certain convolution inequalities[END_REF]). We recall that the Dunkl-Hardy-Littlewood maximal operator is defined for f ∈ L 1 k,loc (R d ) by (see [START_REF] Thangavelu | Convolution operator and maximal function for Dunkl transform[END_REF]) According to [START_REF] Rejeb | Volume mean operator and differentiation results associated to root systems[END_REF], we have h k (r, x, .) = τ -x (1 B(0,r) ) a.e. on R d . Thus, we will take this remark into account in the formula (4.17 • Clearly, we see that

M k (f )(x) = sup
I 1 (x) ≤ CA β M k (f )(x). ( 4 

.19)

• We have

I 2 (x) = C +∞ ∑ n=0 ∫ 2 n+1 A 2 n A t β-d-2γ-1 ∫ R d |f (y)|h k (t, x, y)ω k (y)dydt ≤ C∥f ∥ k,p +∞ ∑ n=0 ∫ 2 n+1 A 2 n A t β-d-2γ-1 t d+2γ(1-1/p) dt ≤ C∥f ∥ k,p +∞ ∑ n=0 (2 n A) β-d+2γ p ,
where we have used Hölder's inequality and the relation (2.18) in the second line. Therefore, we have Letting ε -→ 0, we get (4.18).

Using the Hedberg inequality (4.18), the L p k -boundedness properties of the Dunkl-Hardy-Littlewood maximal function (see [START_REF]Two results on the Dunkl maximal function[END_REF] or [START_REF] Thangavelu | Convolution operator and maximal function for Dunkl transform[END_REF]) and following the same proof as in the classical case (see Theorem 3.1.4 in [START_REF] Adams | Functions Spaces and Potential Theory[END_REF]), we obtain the Sobolev inequality: 

Proposition 3 . 5

 35 we can differentiate under the integral in the relation (3.2) and we obtain the result. In the following result, we study the L p k,loc (R d )-integrability of the function R k,β (x, .), for fixed x ∈ R d . Let 0 < β < d + 2γ and p ∈ [1, d+2γ d+2γ-β [. Then, for every R > 0, there exists a positive constant C = C(R, p, d, γ, β) such that

Definition 4 . 1

 41 ) and M + (R d ) denote respectively the space of signed Radon measures on R d and the convex cone of nonnegative Radon measures on R d . Let µ ∈ M + (R d ) and β ∈]0, d + 2γ[. The β-∆ k -Riesz potential of µ is defined by

Proposition 4 . 3

 43 Let 0 < β < d + 2γ and µ be a compactly supported nonnegative Radon measure on R d . If I k,β [µ] ≤ M holds on W.supp µ, then

Proposition 4 . 4 1 ) 2 )

 4412 Let β ∈]0, d + 2γ[ and µ ∈ M + k,β (R d ) with compact support. The function I k,β [µ] is lower semi-continuous on R d and continuous on R d \ W.supp µ. If the restriction of the function I k,β [µ] on W.supp µ is continuous on W.supp µ, then I k,β [µ] is continuous on R d . Proof: 1) • Consider the function F n given by

  Proof of Theorem 4.1: i) Let β > 2. Using Fubini's theorem and the D-superharmonicty of the ∆ k -Riesz kernel (see Proposition 3.6), we can easily see that I k,β [µ] satisfies the super-mean property i.e. for all x ∈ R d and all r > 0, M r B

Theorem 4 . 2 4 . 1

 4241 Let β ∈]0, d+2γ[ and let µ, ν be two finite and nonnegative Radon measures on R d . If I k,β [µ] = I k,β [ν] a.e. on R d , then µ = ν. We start by the following result Lemma Let µ be a finite and nonnegative Radon measure on R d . Then, I k,β [µ]ω k is a tempered distribution and its distributional Dunkl transform is given by

  dx, where we have used -Fubini's theorem in the first second line: it is possible because F k (ϕ) ∈ S(R d ) and then the function x → (1 + ∥x∥ 2 ) m F k (ϕ)(x) is bounded with m the integer chosen as above; -the relations (3.25) and R k,β (x, y) = R k,β (y, x) in the third line; -the boundedness of the function (x, y) → E k (iy, x) (see (2.2)), Fubini's theorem and (2.5) in the last line. Proof of Theorem 4.2: By our hypothesis and Lemma 4.1, we have I k,β [µ] = I k,β [ν] in S ′ (R d ). Applying Dunkl transform to the both terms and using the relation (4.14), we deduce that∥.∥ -β F k (µ)ω k = ∥.∥ -β F k (ν)ω k in S ′ (R d ).As the functions ∥.∥ -β F k (µ)ω k and ∥.∥ -β F k (ν)ω k are locally integrable on R d , we get ∥.∥ -β F k (µ)ω k = ∥.∥ -β F k (ν)ω k a.e. on R d .Now, by continuity it follows that the functions F k (µ) and F k (ν) coincide everywhere on R d . Finally, by the injectivity of the Dunkl transform on the space of finite Radon measures on R d , we conclude that µ = ν.

Proposition 4 . 6

 46 Let µ be a nonnegative Radon measure on R d . Then, for all β ∈]0, d + 2γ[, we haveI k,β [µ](x) = d k κ (d + 2γ)(d + 2γ -β) k (t,x, y)dµ(y).

  (y)|τ -x (1 B(0,r) )(y)ω k (y)dy, (4.17) where τ -x (1 B(0,r) ) denotes the L 2 k (R d )-function with Dunkl transform ξ → E k (-ix, ξ)F k (

Theorem 4 . 3

 43 ) and in the sequel of the paper.Moreover, when dµ(y) = |f (y)|ω k (y)dy, f ∈ L 1 k,loc (R d ), we will use the notation I k,β [|f |] instead of I k,β [|f (y)|ω k (y)dy]. For 0 < β < d+2γ, 1 ≤ p < d+2γβ , there exists constants C = C(d, γ, β, p) > 0 such that for any measurable function f and any x ∈ R d , we haveI k,β [|f |](x) ≤ C∥f ∥ βp d+2γ k,p (M k (f )(x))For every A > 0, by(4.15) where we take dµ(y) = |f (y)|ω k (y)dy, we can writeI k,β [|f |](x) = I k,β [|f |ω k ](x) = C ∫ A 0 t β-1 M t B (|f |)(x)dt + C ∫ +∞ A t β-1 M t B (|f |)(x)dt := I 1 (x) + I 2 (x).

I 2 (

 2 x) ≤ CA β-d+2γ p ∥f ∥ k,p . (4.20) Now, using (4.19), (4.20) and choosingA = A(x) = ( ∥f ∥ k,p M k (f )(x) + ε ) p d+2γ , we obtain I k,β [|f |](x) ≤ C∥f ∥ βp d+2γ k,p (M k (f )(x) + ε) 1-βp d+2γ .

Corollary 4 . 3 1 )( 1 )

 4311 Let 0 < β < d + 2γ, 1 ≤ p < d+2γ β and p * = p(d+2γ) d+2γ-βp . If p = 1, then I k,β is of weak type (1, p * ) i.e. there exists a constant C = C(β, d, γ) such that ∀ λ > 0, ∀ f ∈ L 1 k (R d ), ∫ {x: I k,β [|f |]>λ} ω k (x)dx ≤ C If p > 1, then I k,β is of strong type (p, p * ) i.e. I k,β : L p k (R d ) -→ L p * k (R d ) is bounded.

see for example[START_REF] Armitage | Classical Potential Theory[END_REF],[START_REF] Hayman | Subharmonic functions[END_REF],[START_REF] Helms | Potential theory[END_REF] and[START_REF] Landkof | Foundations of Modern Potential Theory[END_REF].

If ∥x 0 ∥ ≤ 1, we deduce immediately from the previous inequality that (4.2) holds. If ∥x 0 ∥ > 1, using the fact that ∥x 0 ∥ + ∥y∥ ≤ ∥x 0 ∥(1 + ∥y∥) and using again the above inequality, we obtain that (4.2) holds. This finishes the proof.

) and µ = µ + -µ -its Hahn-Jordan decomposition. If µ + and µ - satisfy (4.2), then the ∆ k -Riesz potential of µ is well defined almost everywhere by setting

• Let β, θ > 0 be such that β + θ < d + 2γ. Then using the generalized Riesz composition formula (3.17) and Fubini's theorem we can see that

In the following result we will establish that any measure µ ∈ M + k,β (R d ) doesn't charge the singularities of the function R k,β (x, .) whenever its β-∆ k -Riesz potential valued at x is finite. More precisely, we have

) is l.s.c. at gx, there exists r > 0 such that R k,β (x, y) ≥ n for all y ∈ B(gx, r). This implies that

This proves the first part. Now, since β ≤ d, we know that x is always a singularity of the function R k,β (x, .). Thus the second part follows from the first one. Now, we establish a boundedness principle for the potential of a compactly supported measure which generalizes the known result in the classical case (i.e. k = 0) (see [START_REF] Landkof | Foundations of Modern Potential Theory[END_REF], Theorem 1.5). [START_REF] Hassani | Riesz Potential and fractional maximal function for the Dunkl transform[END_REF] by another proof using interpolation methods and in the particular case when the Coxeter-Weyl group is Z d 2 in [START_REF] Thangavelu | Riesz transform and Riesz potentials for Dunkl transform[END_REF].

Remark 4.2 The previous result has been obtain in