
HAL Id: hal-01451524
https://hal.science/hal-01451524v1

Submitted on 1 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RiseClipse: Why working at the model level is better for
validating data conforming to IEC standards

Dominique Marcadet, Éric Lambert

To cite this version:
Dominique Marcadet, Éric Lambert. RiseClipse: Why working at the model level is better for validat-
ing data conforming to IEC standards. 19th Power Systems Computation Conference (PSCC 2016),
Power Systems Computation Conference, Jun 2016, Gênes, Italy. �10.1109/PSCC.2016.7540901�. �hal-
01451524�

https://hal.science/hal-01451524v1
https://hal.archives-ouvertes.fr

RiseClipse: why Working at the Model Level is Better
for Validating Data Conforming to IEC Standards

Dominique Marcadet
Laboratoire de Recherche en Informatique

Univ. Paris-Sud, CNRS, CentraleSupélec
Université Paris-Saclay
Gif-sur-Yvette, France

dominique.marcadet@lri.fr

Éric Lambert
Département MIRE

EDF Lab

Palaiseau, France
eric.lambert@edf.fr

Abstract— There is a clear move towards the use of UML (Unified
Modeling Language) models for the definition of standards
applying to the electrical domain. This is true for the CIM
(Common Information Model), and it will also soon be true for
the IEC 61850 standard. There are clear advantages to the use of
UML: this semi-formal language is an open standard supported
by several tools and is quickly understood, at least its class
diagram part used in the context of these IEC standards, by
people even if they are not working in the software engineering
domain. However, several XML (eXtensible Markup Language)
based standards are derived from these UML based standards in
particular to enable exchange of data. To validate such data, most
tools work at the XML level. We will show why it is useful to put
back data at the model level for validation or for other purposes.

Index Terms-- data exchange, IEC standards, model driven
engineering, UML, XML.

I. INTRODUCTION
French utility EDF and the engineering institute

CentraleSupélec established in 2012 a joint research institute to
prepare for and support the development of smart grids.
RISEGrid (Research Institute for Smarter Electric Grids) is
dedicated to the study and modeling of smart distribution
networks. The research program of RISEGrid covers four areas:
study of smart electric systems, observability of the electric
system, information systems for smart grids, modeling and
advanced simulation. Exchange of data is key for these four
areas. This need calls for standards on the format and meaning
of data. The electrical domain is highly concerned by this trend,
and the IEC (International Electrotechnical Commission) has a
long activity on standards related to exchange of data ([1]).

The CIM (Common Information Model, [2]) is a well-
known example of such a series of standards. At the top level,
it defines with UML (Unified Modeling Language) the different
elements of electrical networks: this is the semantic level. The
syntactic level is derived from the semantic level using rules to
map UML classes and properties to XML (eXtensible Markup
Language) elements, allowing for the exchange of data.

Another example is the IEC 61850 series of standards:
UML is used, but mainly for documentation purpose, as a way
to present the syntactic level defined in XSD (XML Schema
Definition language).

CIM and 61850 have been recognized as key smartgrid
standards by IEC [3] and are used at different level and different
smartgrid domains as described in Fig. 1. In both cases, correct
exchange of data coming from different participants and
different tools is critical, therefore interoperability tests [4] are
conducted to verify that everyone is conforming to these
standards. There are several level of verification: the basic level
checks that documents are well-formed in respect to XML; the
second level verifies that XML element and attribute names are
valid; the last level is concerned with semantics: presence of
some specific elements, values belonging to some intervals,
right number of elements associated with another etc.

While XML tools are perfect for validating the first two
levels, they are much less adapted to the semantics validation.
The main reason for this is the tree nature of data stored in an
XML document, which contrasts with the graph nature of stored
data; while there are ways to have XML links that cross trees,
theses are fragile compared to the basic containment link
implemented by XML trees. Moreover, these cross-links, and
even XML containment links are unidirectional, thus they
impose complicated algorithms to check some semantics
constraints. We argue that the right tools must be used at the
right places: if XML is used at the syntactic level, XML tools
must be used to validate this level. But when the semantics is
defined by another language, UML in this case, data must be
brought back to this level for effective validation. We will
describe a tool, RiseClipse, dedicated to this task.

The rest of the paper is organized as follows: Section II is
dedicated to the CIM, and section III to IEC 61850. We will
also present relevant aspects of UML and XML in these two
chapters. EMF (Eclipse Modeling Framework) and the
RiseClipse tool, which is based on the former and implements
the model level validation of data, are presented in section IV.
Finally, the paper is summarized and concluded in Section V.

II. COMMON INFORMATION MODEL
The CIM (Common Information Model) was developed in

the context of an EPRI (Electric Power Research Institute)
project named CCAPI (Control Center Application
programming Interface) and was the model of a network
simulator. The need to exchange data between utility
companies has become a major need since the start of the
deregulation of the power industry. Now, the CIM is an IEC
standard, more precisely a set of standards with three of them
defining the core semantic model: IEC 61970-301, IEC 61968-
11 and IEC 62325-301. There are already several well written
descriptions of CIM (see [2] for example), therefore, we will
only highlight points which are important in the context of this
article.

The CIM is now a very big UML model, with thousands of
elements. To enable its effective use, the notion of profile has
been defined by IEC: a profile is a subset of the full CIM model
that retains only elements that are pertinent in a specific use-
case. When several use-case are related, a family of profiles can
be defined. For example, CGMES (Common Grid Model
Exchange Standard) defines seven profiles to cover the needs
in exchange of data at ENTSOE (European Network of
Transmission System Operators for Electricity).

The CIM is a semantic model. A model is a description of a
system made for a specific objective. A model should show
only things that are relevant to this objective and hide the other
characteristics of the system. A semantic model is a model done

for defining and naming
concepts in a domain
and links between them.
A model can be
expressed in natural
language, but a formal
or semi-formal language
is often used to avoid
ambiguities. There are a
lot of such languages
that have been designed
for this purpose, but
UML is not one of them.
UML was initially
designed as a tool for
designing and
developing software.
But its class diagram
part may be used as a
language for defining
semantic models, and as
it is a standard with
several tools available, it
is often used for this
task. An interesting
point in the modeling
domain is that a model,
more precisely the
language used to make
models, is itself a
system, and therefore
can be described by

another model: we call it a meta-model. Of course, one can
imagine meta-meta-models, and so on.

In CIM, kind of elements used in power systems, like Fuse
or Line, are modeled as classes in UML (Fig. 2) and elements
are said to be instances of these classes. These elements have
valued characteristics: attributes of classes are used to describe
them. For example, the ACLineSegment class has a resistance
(named r) attribute. Classes are organized in a specialization
hierarchy: Fuse, Jumper and others are kinds of Switch, all of
them have an open attribute defined in Switch. Finally, UML
associations between classes describe potential links between
elements: for example, every ConductingEquipment is
associated with zero or more Terminal, and all Terminal are
linked to zero or one ConnectivityNode. A special kind of
association may be used to express containment: an
EquipmentContainer contains several Equipment.

In UML, an association is mainly a set of (most often two)
ends, each one holds properties like multiplicity or name (in
Fig. 2, only the names of the two ends of the association
between Terminal and ConnectivityNode are shown). The only
visible property of an association is its name (often as a verb),
but it is very seldom used. An important point is that there is no
order in the ends, that means that an association is bidirectional
at the semantic level.

Using classes and associations defined in CIM, we can
describe a power system with instances and links (Fig. 3), that
is we can have a model that represents this power system.

Figure 1. Smartgrid domains

CIM is the language used to make such models of power
systems. The model of CIM is an UML model, it is the meta-
model of the power system. From the system to UML, we have
four layers (see Table I).

As a semantic model, the CIM defines an ontology, a set of
names (classes, attributes, association ends) and their
relationships. To enable the exchange of data conform to this
model, a syntactic model, derived from the semantic one, have
to be chosen. XML based syntactic formats are now quite
common, and the IEC defines two such XML grammars based
on the CIM model: one (standard IEC 61970-552) is used for
exchanging power system model data and is based on XML
RDF, the other (standard IEC 61968-100) is used in the context
of enterprise application integration and is based on XML XSD.
We will look at the first one because it is the standard used to
exchange network data between utilities and chosen in Europe
by ENTSOE.

TABLE I. CIM MODELING LAYERS

UML
UML models
Model of the CIM language / metamodel of power systems
CIM models / models of power systems
Power systems

RDF (Resource Description Framework) is a W3C (World
Wide Web Consortium) specification for modeling of
information, one of its serialization format is based on XML.

RDF use so-called triples consisting of the subject (what is
described), the predicate (name of the property) and the object
(value of the property). RDFS (Resource Description
Framework Schema) is another W3C specification used to
define the vocabulary for RDF; it can describe classes with
inheritance and typed properties for these classes. IEC has
defined, in standard IEC 61970-501, a mapping from the CIM
UML model to an RDF Schema.

Here is a simplified extract of the mapping of some classes
and properties in Fig. 2:
<rdfs:class rdf:ID="ConductingEquipment">
 <rdfs:label>ConductingEquipment</rdfs:label>
 <rdfs:subClassOf rdf:resource="rdfs:Equipment"/>
</rdfs:class>

<rdf:Property rdf:ID="Switch.open">
 <rdfs:label>open</rdfs:label>
 <rdfs:domain resource="Switch"/>
 <cims:dataType resource="Boolean"/>
</rdf:Property>

<rdf:Property rdf:ID="Terminal.ConnectivityNode">
 <rdfs:label>ConnectivityNode</rdfs:label>
 <rdfs:domain resource="Terminal"/>
 <rdfs:range resource="ConnectivityNode"/>
 <cims:multiplicity resource="M:0..1"/>
 <cims:inverseRoleName
 resource="ConnectivityNode.Terminals"/>
</rdf:Property>

The mapping is complete for the part of the UML class
diagram notation used for defining CIM, including inheritance
and opposite relationships (using an extension of RDFS as
shown by the use of the cims namespace). It has to be noted that
this RDF schema is at the semantic level (like the UML model),
it defines the vocabulary to be used for exchanging power
system model data in XML, not the XML grammar itself. This
is in part because there are several ways to serialize RDF triples

Figure 3. Some CIM classes and associations

Figure 2. Some CIM instances and links

in XML; the IEC 61970-552 standard defines the so-called CIM
RDF XML format as a subset of the RDF syntax.

Here is an extract of the serialization of some instances
depicted in Fig. 3:
<cim:Line rdf:ID="l"/>
<cim:ACLineSegment rdf:ID="acl">
 <cim:Equipment.EquipmentContainer
 rdf:resource="l"/>
<cim:ACLineSegment/>
<cim:Terminal rdf:ID="t1">
 <cim:Terminal.ConductingEquipment
 rdf:resource="acl"/>
 <cim:Terminal.ConnectivityNode
 rdf:resource="cn"/>
<cim:Terminal/>
<cim:ConnectivityNode rdf:ID="cn"/>

We can see that links are saved in only one way, which
makes sense because, using the schema, one can infer the other
way.

For validating such instance files, standard RDF tools can
be used, but they will not take into account extensions made to
the RDFS language. In the semantic web domain, another
language, which is more expressive than RDFS, is often used:
OWL (Web Ontology Language). However, its main domain of
usage being resources on the web, the directed link problem is
still present: on a web page, it is easy to add a link to another
web page, but it is not possible to find all web pages that have
a link to your page.

For example, one classical tool to validate CIM XML files
is CIMTool ([5]). It uses Apache Jena ([6]), a framework for
reasoning with RDF and OWL data. It is able to check directly
the cardinality of a property; for example, it will verify that a
Terminal is always connected to a ConnectivityNode. But to
check the inverse end of this same association (a
ConnectivityNode is always connected to at least 2 Terminal),
some extensions have been made and the rule is written:
problem("Isolated node" ConnectivityNode
 "expect two or more terminals. Subject "
 ?n " has less.")
<-(?n rdf:type ConnectivityNode)
 countLessThan(2 * Terminal.ConnectivityNode ?n)

It clearly shows that the ConnectivityNode.Terminals
property is unknown.

This example makes evidence that, while a standard for the
syntactic level is needed (and XML and derived standards are
perfect for that), a full validation of data up to the semantic level
is difficult to achieve when the tool works only at this syntactic
level.

III. IEC 61850
IEC 61850 is a set of standards for the design of electrical

substation automation and intelligent electronic devices. We
will focus on one of them, IEC 61850-6: Configuration
language for communication in electrical substations. SCL
(Substation Configuration description Language) is the
language and representation format for the configuration of
electrical substation devices. It includes data representation for
substation device entities; its associated functions represented
as logical nodes, communication systems and capabilities. The

interoperability of IEC 61850 devices and systems is an
important goal of this standard, and tests are often conducted to
check correct exchange of data.

The IEC 61850-6 standard specifies the exchange format
using XML Schema. Even if some UML diagrams are present,
they just display some part of the full XML Schema using a
graphical notation; they do not define a semantic model.

To illustrate this point, the Fig. 4 shows an extract of some
UML classes (which are in fact XML Schema types) present in
SCL. The black diamonds used here means composite
relationships, and correspond directly to the inclusion of
elements in XML. tNaming, which is an indirect superclass of
all the others except tTerminal, enforces the presence of the
name attribute.

Like in CIM, equipments are electrically connected using

the concepts of tTerminal and tConnectivityNode. However,
there is no association between these two classes. While CIM
RDF XML uses unique identifiers and references to them to
represent vertices in the graph modeling the power system
resource, SCL use either containment or specific values of
attributes. In the above example, the link between a tTerminal
and its tConnectivityNode is stored in the connectivityNode
attribute of tTerminal which contains the pathname starting
from the tSubstation name, then the tVoltageLevel name, then
the tBay name and finally the tConnectivityNode name. The
tTerminal must also contain as attributes the individual name of
each of these elements; and the tConnectivityNode stores also
its pathName.

A conforming SCL file looks like:
<SCL>
 <Substation name="S12" desc="Baden">
 <VoltageLevel name="D1">
 <Bay name="Q1">
 <ConductingEquipment name="I1" type="CTR">
 <Terminal
 substationName="S12"
 voltageLevelName="D1"

Figure 4. Some SCL classes and associations

 bayName="Q1"
 cNodeName="L1"
 connectivityNode="S12/D1/Q1/L1" />
 </ConductingEquipment>
 <ConnectivityNode
 name="L1"
 pathName="S12/D1/Q1/L1" />
 </Bay>
 </VoltageLevel>
 </Substation>
</SCL>

The classical way to validate such a file is to use an XML
validator that supports XSD, like Xerces ([7]). However, if the
schema can specify some semantic constraints (for example, the
uniqueness of tSubstation names), it cannot go further, and the
validator is for example unable to detect an incoherent value of
the connectivityNode attribute.

In the case of IEC 61850, we have therefore an implicit
semantic level that is not formally expressed in the standard,
and validation above the syntactic level given by XSD is left to
implementers of tools.

IV. ECLIPSE MODELING FRAMEWORK AND RISECLIPSE
We strongly believe that an international standard semantic

model defined in order to exchange data between independent
parties (with clear rules to deduce the syntactic level from the
semantic one) must have operational rules (and therefore tools)
to check the conformance of data against the standard.
Fortunately, the growing usage of UML as a tool to define the
semantic level opens the door for the use of associated
standards for the validation task.

In this context, OCL (Object Constraint Language) is the
main candidate if we can prove that an operational and non-
proprietary tool using this language can be built for this job.

The following sections describe how RiseClipse was
designed to fulfill this task. We start with a description of the
OMG (Object management Group) modeling architecture, then
we present a framework conformed to this architecture, and
finally we give an overview of RiseClipse, our tool that
implements semantic validation.

A. OMG Modeling Architecture
The MDE (Model Driven Engineering) approach focuses

on the use of models for designing systems. It is now
recognized that this is the only way to deal with the growing
complexity of systems. Different models, and thus modeling
languages, are needed depending on the activity in the
development process; such an approach can succeed only if
there are tools to verify some properties in models, to transform
one model to another or to some programing language for the
software parts.

The OMG is the main contributor of standards in this
domain; it is the publisher of the UML standard. To enable an
effective use of an MDE approach, it has defined a four layers
architecture (table II).

The UML language is defined using yet another language,
MOF (Meta Object Facility) which is reflexive (MOF is defined
with itself). MOF can be seen as a subset of UML class
diagrams. The need for this M3 layer comes from the need to

have several modeling languages besides UML; CWM
(Common Warehouse Metamodel) is for example such another
language standardized by the OMG. The existence of MOF
enable the definition of transformations from a model defined
using one language to another model using another language.

TABLE II. OMG MODELING LAYERS

M3 MOF
M2 MOF models.

UML (and other modeling languages)
M1 UML models (like CIM)
M0 Systems

UML (and MOF) are semi-formal languages: they are not

mathematically defined, but OCL, a quasi-formal language
([8]) is extensively used to complement their abstract and
concrete syntax definition. An OCL constraint defined at the
M2 layer (the M3 layer is needed for that) applies on elements
in the M1 layer. This possibility is widely used in the definition
of the UML language to specify for example that the inheritance
hierarchy of classes must be an acyclic graph.

Another use of OCL is possible one level down: OCL can
be used on the CIM model to restrict the cardinality of some
association ends:

context Switch inv:
 self.Terminals->size() = 2

self represent any instance of the Switch class. The
Terminals property used here is inherited from the
ConductingEquipment class (the name of this end is not shown
on Fig. 2). This constraint defined at the M1 layer applies to
objects in the M0 layer, but the M2 layer is needed to know that
Switch is an instance of an UML Class, Terminals an instance
of an UML Property…

B. Eclipse Modeling Framework
Eclipse is an IDE (Integrated Development Environment)

which is language neutral (even if it is itself written in Java) and
highly extensible.

EMF (Eclipse Modeling Framework) is one of the most
used frameworks for MDE, it can be considered as an
operational implementation of the OMG Modeling
Architecture. For technical reasons, Ecore replaces MOF at the
M3 layer, but these two languages are very similar. EMF
provides the glue between three worlds: the world of models
(with Ecore, a subset of UML), the world of XML (for
serialization and deserialization of model instances) and the
world of Java (for manipulating model instances). Two of them
are automatically generated from the third, which is often an
Ecore model, but can also be an XML Schema.

Based on EMF, there are UML and OCL components. It is
not possible to use this OCL component to check constraints
defined on models in the M1 layer, because the M0 layer
contains “real things” which are not accessible to the Eclipse
runtime. But constraints defined at the M2 layer can be verified
on M1 elements.

C. RiseClipse
RiseClipse is born as CimClipse with the idea of using

Eclipse OCL to validate CIM XML files. For this to be possible,
we had first to move the CIM model from M1 to M2, it is done
with a model to model transformation: there exists such tools
based on EMF. This transformation has to take care of all kind
of tiny details like setting associations navigable in both
directions if they were not, deciding which end of the
association will be saved… After this step, CIM became a
DSML: a Domain Specific Modeling Language. The standard
serialization and deserialization format of EMF is based on
another OMG standard: XMI (XML Metadata Interchange),
which is not the same as CIM XML. We have therefore adapted
the generated Java routines to be able to read and write CIM
XML files.

This tool allows us to reason at the semantic level, rather
than at the syntactic one. For example, we don’t care which end
of an association is stored in the file, we can access both and
write constraints like:

context Terminal inv:
 self.ConnectivityNode <> null

context ConnectivityNode inv:
 self.Terminals->size() >= 2

We can also take into account the inheritance hierarchy to
verify some rules at the right level: to check that a Line, as an
EquipmentContainer, contains only ACLineSegment and that
an ACLineSegment, if in a container, is contained in a Line, one
can write:

context Line inv:
 self.Equipments->forAll(
 e : Equipment |
 e.oclIsTypeOf(ACLineSegment)

context ACLineSegment inv:
 self.EquipmentContainer <> null implies
 self.EquipmentContainer.oclIsTypeOf(Line)

CimClipse was presented at a CIM User Group meeting in
2010 in Milano, and has been used during CIM transmission
interoperability tests hosted by ENTSOE in 2010 and CIM
distribution interoperability tests hosted by EDF in 2011. It was
also enhanced with support for CIM difference files (a CIM
XML derived IEC standard which allows for exchanging only
the difference between a source and a target model).

The support for CIM profiles and group of profiles has also
been added. In fact, a profile being a restriction of the full model
is evidently implemented by a set of OCL constraints.
However, the need to save data in different files when sub-
profiles of a group are used can only be done if some metadata
is added to elements of the CIM model. This solution was also
used to support extensions to the CIM model like the ones
specified by CGMES.

In 2013, we thought that the same approach could be used
to validate SCL files. We first started with the XML Schema,
letting EMF generate an Ecore model and the corresponding
Java code. We were able to load SCL files, and write some OCL
constraints, but we were limited by the missing links between
objects resulting from the low level of semantic information in
the schema: the inclusion of XML elements was represented by

directed links from the parent to the children, and implicit links
(those represented by values of attributes) were not accessible.

In 2014, we decided to refactor the tool, so that any
language like CIM or SCL can be added to the core
functionality, and named it RiseClipse because its development
is done inside the RISEGrid institute. We also restarted the SCL
support by making a clean Ecore model for it with all the
semantic information that was missing in our first try: inclusion
links were navigable in both directions, and explicit links were
added to make the model more navigable. Fig. 5 shows in red
some of these new explicit associations that have been added to
our SCL model.

As we were working at the model level, we were able to use
some EMF standard metadata, like the transient characteristics
of a property that, if true, means that its value must not be saved
when serialization is done. The properties added by these new
explicit links had therefore no consequences on the serialization
step. Indeed, the construction of these links, which is done when
the SCL instance file is loaded, is part of the validation goal
because an element identified by some specific value of an
attribute must be found for the link to be created.

RiseClipse was successfully used during the IEC 61850 IOP
(interoperability testing) in Brussels, September 2015. It was
able to detect errors that other XSD based tools cannot detect.
An example of such an error is the number of tTerminal in a
tConductingEquipment: this number depends on the kind of the
equipment, which is given by an enumeration. For a circuit
breaker, the OCL constraint can be:

context ConductingEquipment inv:
 self.type = ‘CBR’ implies
 self.Terminals->size() = 2

Figure 5. Some SCL classes and associations

This kind of validation cannot be done with XSD based
validators because such tools are unable to specify a constraint
that depends on the value of an attribute. This is however an
effective semantic rule given by the IEC 61850-6 standard.

RiseClipse (and CimClipse before) is partly developed by
students of the French engineering school CentraleSupélec. The
tool can be used either in the Eclipse environment, for
navigation in the model and interactive validation, or in a
command line context for batch validation. We expect to be
able to release it as open source soon, it will be available at
http://riseclipse.foundry.supelec.fr.

V. CONCLUSION
We have demonstrated that, when an information model is

used to defined standards for exchange of data, validation of
such data is better done at the semantic level. We have shown
that, when UML is used as the language to define the
information model, OCL is the perfect companion for
expressing these constraints. We have described RiseClipse, an
open source tool that can be used to validate such constraints
without being bound to a specific standard.

Future works on RiseClipse are planned such as using it to
validate new network data sets related to CIM distribution
profiles and adding new models to support EDF internal needs.
A graphical display of networks (Diagram Layout profile of
CGMES) was also developed on CimClipse, and will have to
be re-integrated into RiseClipse.

RiseClipse is also a complementary tool of MODSARUS
which is an Enterprise Architect add-in which allows to define
profiles from any UML model. The way to automate the
generation of OCL rules from MODSARUS that could be used
by RiseClipse is also foreseen.

Concerning the IEC standards, an ongoing work is done for
the so-called CIM-61850 harmonization, it includes the
definition of an UML model for the whole IEC 61850 set of
standards. MultiSpeak – CIM Harmonization have also been
initiated by IEC. As RiseClipse is able to work simultaneously
with models from these different standards, we have an
interesting challenge for providing solutions to help for
maintaining coherency between all these models that partially
represent the same system.

REFERENCES
[1] IEC 62357-1 Reference Architecture for Power System Information

Exchange
[2] EPRI Common Information Model Primer Third Edition 2015 Technical

Report
[3] IEC Smart Grids Standardization Roadmap, IEC Smart Grids Strategy

Group (SG3), 2010
[4] https://www.entsoe.eu/major-projects/common-information-model-

cim/interoperability-tests/Pages/default.aspx
[5] http://www.cimtool.org
[6] https://jena.apache.org
[7] https://xerces.apache.org
[8] Achim D. Brucker, Frédéric Tuong, and Burkhart Wolff. Featherweight

OCL: A Proposal for a Machine-Checked Formal Semantics for OCL
2.5. In Archive of Formal Proofs, 2014. http://afp.sf.net/entries/Feather
weight_OCL.shtml, Formal proof development

