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toads fronts
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Abstract

We study the influence of a mortality trade-off in a nonlocal reaction-diffusion-mutation equation
that we introduce to model the invasion of cane toads in Australia. This model is built off of
one that has attracted attention recently, in which the population of toads is structured by
a phenotypical trait that governs the spatial diffusion. We are concerned with the case when
the diffusivity can take unbounded values and the mortality trade-off depends only on the
trait variable. Depending on the rate of increase of the penalization term, we obtain the rate
of spreading of the population. We identify two regimes, an acceleration regime when the
penalization is weak and a linear spreading regime when the penalization is strong. While the
development of the model comes from biological principles, the bulk of the article is dedicated to
the mathematical analysis of the model, which is very technical. The upper and lower bounds are
proved via the Li-Yau estimates of the fundamental solution of the heat equation with potential
on Riemannian manifolds and a moving ball technique, respectively, and the travelling waves
by a Leray-Schauder fixed point argument. We also present a simple method for a priori L*>
bounds.

Key-Words: Structured populations, reaction-diffusion equations, front acceleration
AMS Class. No: 35Q92, 45K05, 35C07

1 Introduction

1.1 Model and biological background

The invasion of cane toads in Australia has singular features that are much different from standard
spreading observed in most other species. Data from field biologists [32, 33] show that the invasion
speed has steadily increased during the eighty years since the toads were introduced in Australia.
Moreover, they found that toads at the edge of the front have much longer legs. This is just
one example of a non-uniform space-trait distribution (see also the expansion of bush crickets in
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Britain [34]). The current biological literature now states that this is due to "spatial sorting”: the
offspring produced at the edge of the front appear to have higher mean dispersal rate.

It has been demonstrated by biologists that increased dispersal is often associated with reduced
investment in reproduction, for example in populations of the peckled wood butterfly, Pararge
aegeria [24]. Some physiological description of this trade-off between dispersal and fecundity has
been reported in [30]. There, two morphs of the cricket Gryllus rubens (Orthoptera, Gryllidae)
are studied: a fully-winged (flight-capable morph) and a short-winged morph (that cannot fly). It
turns out that the short-winged morph is substantially more fecund than the fully-winged one. This
widespread occurrence of dispersal polymorphisms among insects is consistent with the fact that
fitness costs are associated with flight capability. It is now well documented that for both males
and females (for example for the planthopper Prokelisia dolus) there is a strong trade-off between
flight capability and reproduction [27]. See also [21] where the physiological differences between
the male and female of two morphs of crickets that may lead to such a trade-off are discussed. We
refer to [8] for an extensive review on the different cost types that occur during dispersal in a wide
array of organisms, ranging from micro-organisms to plants and invertebrates to vertebrates.

In view of these biological issues, we are interested in the influence of a mortality trade-off on
the rate of spreading of a structured population. Namely, our goal is to estimate of the effect of this
penalization; that is, depending on the strength of the trade-off, does the population go extinct or
still propagate, and in the latter case, what is the effect on the acceleration seen in [7, 13]?

To answer these questions, we focus on a cane toads equation with mortality trade-off. This
is a nonlocal reaction-diffusion-mutation equation that is a refinement of the now standard cane-
toad equation proposed in [5] and investigated in [7, 9, 12, 13, 35] (see also [3, 14, 15, 26, 31] for
similar studies). We now introduce this model. The population density n is structured by a spatial
variable, € R, and a motility variable § € ©, where © def (8, 00), with a fixed § > 0. The spatial
diffusivity is exactly 6, representing the effect of the variable motility on the spreading rates of the
species. This population may reproduce, with a free growth rate r, in such a way that a parent gives
its trait to its offspring up to phenotypical mutations (that is, mutations on the motility variable),
that are modelled here with a diffusion in the trait variable #, with a variance ¢2. In addition,
each toad competes locally in space with all other individuals for resources. This introduces the
nonlocality in the model. Finally, and this is the specificity of this paper, we take into account a
mortality trade-off, denoted by m, that penalizes high traits for reproduction. We are thus led to
considering the following problem:

ng = Onge + angg +rn (1 —m(0) — p), (t,z,0) e RT xR x O,
ng(t,z,0) = 0, (t,z) € RT x R.

where the total population at time ¢ and position x is
oo
p(t,z) = / n(t,z,0)do.
9

The trait diffusivity is & = ro?. The equation is complemented with Neumann boundary conditions
at 8 = 6, since lower traits should not be reachable. After a suitable rescaling, one can reduce the
problem to studying the equation with & = 1 and r = 1. The resulting equations are

{ntzﬁnm+n99+n(1—m(6)—p), (t,z,0) e RT xR x O, (11)

ng(t,z,6) =0, (t,z) € RT x R.

We now describe the class of trade-off terms m that we consider in this paper.



Hypothesis 1. We assume that m depends only on 0, that m(6) = 0 and that m € C?(©) increases
to +00 as 0 tends to co. Moreover, we suppose that limg_,, m(0)/0 exists and is an element of
RTU{+00} and that if m(6)/0 tends to zero as 0 tends to +oo, then m” € L™ (©) and there exists
04 > 6 such that m(6)/6 is decreasing for all 0 > 0.

Importantly, we point out that the fact that m tends to infinity gives a positive growth rate to
only small values of 6. For the entirety of this work, we assume that m always satisfies Hypothesis 1.
An important class of examples of m satisfying Hypothesis 1 are m(0) = C (0P — 6°) for C,p > 0.

Our main question for the rest of this work is, if n(0,-) = ng is a nonzero, nonnegative initial
condition such that there exists Cy > 0 such that

no < Colljg g+ o) x[~00,Co)» (1.2)

then at what speed does the population n propagate?

A related model for a host-parasite system with mortality trade-off has been discussed numeri-
cally and formally by Chan et al. in [16]. The results there confirm observations made in empirical
and agent-based studies that spatial sorting can still occur with a disadvantage in reproductivity
and/or survival in more motile individuals. Moreover, we find that such a disadvantage in repro-
ductivity and/or survival is unlikely to be large if spatial sorting is to have a noticeable effect on
the rate of range expansion, as it has been observed to have over the last 60 years in northern
Australia. The results of the present paper prove these findings and enlighten them quantitatively.

1.2 Heuristics and main results
A condition for non extinction

In order to expect propagation at any speed, the average growth rate 7., in time should be positive.
This is necessary to expect any positive steady state at the back of a traveling front. In other words,
letting @ and v, be the principal eigenfunction and eigenvalue of the linearized equation

{Q” +(1—m)Q = 7Q, on ©, (13)

Q') =0, Q>0,

we expect propagation only in the case that v, > 0. Notice that, since m > 0 and m Z 0, 75, < 1.
The sign of v, does not depend strongly on the growth of m at oo, but on having sufficiently many
traits with sufficiently large growth rates'. Our expectation above is confirmed by the following:

Proposition 2. Suppose that vo < 0 and supp (ng) is compact. Then

lim sup n(t,z,0)=0.
t=00 (1 0)eERx O

We also note that, when @ is normalized with [y Q(6) df = oo and 7o > 0, this eigenvector is
expected to be the limit of the population density behind the front.

'Indeed, consider the following simple example. When m(8) = (0 — 0)? for any ¢ > 0, one can find the principal
eigenfunction and eigenvalue explicitly: Q(9) = exp{—0c (8 — 0)?/4} and voo = 1 — . Though, for any value of & > 0,
m has quadratic growth, v~ can be positive or negative depending on o.



The linear propagation regime

In the case of non-extinction, i.e. when v, > 0, one may expect propagation of the initial pop-
ulation. A first attempt in this direction is to look for travelling waves. Since the problem is of
Fisher-KPP type, we may expect at first glance that any travelling front is a pulled front. As a
consequence, in order to compute the possible speed of propagation of such a front, we follow the
classical strategy by linearizing (1.1) around 0 and looking for solutions of the form e MEmat)Q A(0).
For any given A > 0, we apply the Krein-Rutman theorem to solve the spectral problem

{Q;’ + [A20 = Aex + (1 — m(6))] Qx =0, 0co, )

Ql)\ (Q) =0, Q)\ >0
when m increases sufficiently quickly. This leads to the following theorem.

Theorem 3. Suppose that m satisfies Hypothesis 1, that Vo > 0 and that limg_,o m(6)/0 is
positive. Then (1.1) admits a travelling wave solution (c*, i), with ¢* defined in Section 3. In other
words n(t,x,0) = u(x — c*t,0) solves (1.1), with ¢* > 0, and

liminfu(€,0) >0  and  lim supp(€,6) = 0. (L5)
E——o0 £—009co
As with the standard Fisher-KPP equation, we expect this speed ¢* to be the minimal speed
in the sense that if ¢ > ¢*, then there is a travelling wave of speed c. Since this is not our main
interest, we do not address it here.
Our main interest is in a spreading result for the Cauchy problem (1.1). We thus ask whether
the travelling wave constructed in Theorem 3 is stable. This is answered by the following theorem.

Theorem 4. Suppose the conditions of Theorem 3 hold. Suppose that n solves (1.1) with initial
conditions satisfying (1.2). Then there exists n > 0 such that for every e > 0, we have

liminf inf n(t,z,0) > n, and lim sup supn(t,x,0)=0.
t—=00 |z|<(c*—e)t E=00 1> (c*4)t 0€O

This type of result is standard going back to [4] in the local Fisher-KPP setting. Since the
dynamics of the solution are so complicated, it would be interesting to obtain more precise estimates
on the propagation speed. We expect a logarithmic delay a la Bramson, see [12] for the delay in
the cane toads equation and references therein for more general settings.

We briefly outline the proofs of Theorem 3 and Theorem 4 and the main difficulties that we have
to face. The construction of a travelling wave solution with minimal speed of Theorem 3 is done
by building a solution to an approximate problem on a finite “slab” by a degree theory fixed point
argument. This construction appears to be a non-trivial extension of the one for the cane toads
equation with bounded traits [9]. In particular, our proof differs from the usual procedure in [9]
because we have both unbounded diffusivity and unbounded growth rates. In this direction, we also
point out connections to [1, 2, 6], where travelling waves for structured models were constructed.
The proof of the spreading result in Theorem 4 proceeds as follows. We directly construct a super-
solution of n using (1.4), which provides the upper bound. The lower bound follows by building a
solution to a related problem on a moving ball to using the intermediate steps of the construction
of the travelling wave and applying a local-in-time Harnack inequality to compare this to n. This
is a simpler version of the kind of procedure described in greater length in the next section.

The proof of Theorem 3 is in Section 3 and the proof of Theorem 4 is in Section 4.



The acceleration regime

The condition for the existence of travelling waves may be roughly re-written as m is at least
linear. On the other hand, when m is sub-linear and 7, > 0, we still expect propagation. Since
the spectral problem (1.4) is not solvable, we may expect an acceleration phenomenon exactly as
for the cane toads equation [10, 13]. Before stating our main result, we give some heuristics that
make it appear naturally. Returning to the linearized equation

iy = Oy + Tgg + (1 — m(6)) (1.6)

and recalling the definition of the pair (7.0, @), We see that a function of the form m oc Q(6)er=!
solves (1.6). This gives a first bound of spreading in the direction 6. Indeed, by writing ¢ =
—1log(Q), one may check that v satisfies —¢” + |[¢//|> 4+ (1 — m) = 7o, and hence?, as 6 — oo,

0
P(0) = /0 vm(s) ds+ o(8y/m(8)). (1.7)
It is thus natural to define what corresponds to a spreading rate in the direction 6 as follows.

Definition 5. For 6 € ©, define ®(0) = fae vm(s)ds. Fix any timet > 0, any constant a > 0, and
define 1, (t) € © to be the unique solution of ®(ny(t)) = at. When a =1, we denote n(t) = m(t).

Returning to 7, above, we see that, heuristically, the spreading in 6 should be at least O(n(t))
since this is where the decay in ) balances the growth of eY=?.
Importantly, when m(6)/6 tends to 0, there exists D,, such that if € is sufficiently large then

B(0) < 0y/m(0) < Dy ®(6). (1.8)

Due to (1.8), we find a constant C, such that when ¢ is sufficiently large then
Ca'n(t) < ma(t) < Can(t). (1.9)

We note that, in the proof of Theorem 6, it is more convenient to deal with the family 7,(¢) than
to look at the scalar multiples of n(¢). Due to (1.9), these approaches are equivalent.

Now, heuristically, knowing the natural scaling between space and trait variables for the stan-
dard cane toads equation, we expect a propagation in space to be O(n(t)%) since we expect prop-
agation in trait to be O(n(t)). Our next result, and the main focus of this work, confirms these
heuristics.

Theorem 6. Suppose that m satisfies Hypothesis 1, Yoo > 0, m(0)/0 tends to zero as 0 tends to
+o00, and n satisfies (1.1)-(1.2). Then there exist positive constants n, ¢, and ¢ such that

liminf inf n(t,z,0) >n and lim sup sup n(t,z,0)=0.
t=00 x| <en(t)3/? E00 1> an(t)3/2 0€©
>To see the lower bound: let R = 1. Then R satisfies R = R* + (1 — Yoo —m) for § > § and R() = 0.
For § < m™'(1 — vx), R is increasing, and thus positive. For § > m™'(1 — 7o), R satisfies R’ = R?> — R, with
Ro=(m—(1- *yoo))%. One can see that R can not cross the curve Rg. Indeed, if it did, R would become decreasing
with R’ tending to —oo, and thus negative for sufficiently large 0, which is impossible since Q is integrable. We thus
1
get that 1(0) > f: [max (0, m(s) — (1 — 7))]Z ds. To see the upper bound: fix € > 0, write R = p+/m, and observe
w/m o= (1% = 1)m+1— oo — pm/ /(2y/m) > (4* —1)m+1—voo —ep?® — Ce(m’ /y/m)?. Choose 6. such that, if § > 0.,
then C:(m'/v/m)? < 1 — e and m > 2(1 4 ). Then if, for any 0 > 0., u(9) > /1 + ¢, after some computation we
see that ' > ep®v/m/(2(1 +¢)) and u blows up at a some 6, > .. This implies that @ has an interior zero at 6.
This is a contradiction, implying that p < /1 + ¢ for all 8 > 6.. The estimate follows.




This result might be surprising at first glance, since populations with very high traits have a
negative growth rate. It turns out that the spatial sorting still gives a strong propagation force to
population with high traits at the edge of the invasion.

To illustrate the result, we discuss two concrete choices of m. First, if m(6) ~ 6P for p € (0,1),
one can check that n(t) ~ t¥(*P). Hence the front is at 7%/2(t) ~ t3/(2+P). We point out that
this is an interpolation between the cases p = 1, when no acceleration occurs (see Theorem 4), and
p = 0, when acceleration is of order t3/2 (see [7, 13])%. Second, if m(6) ~ log()P then it is easy to
check that 7(t) ~ tlog(t)~P/2. Hence the front is at n(t)3/2 = t3/2log(t)~3/*. Notice that with this
weaker trade-off term, the acceleration is almost at the same order as with no trade-off.

Let us now comment on the difficulties of the proof of Theorem 6. In order to obtain the lower
bound, we follow a similar strategy as in [11, 13]. We build a sub-solution on a moving ball using
the principal Dirichlet eigenvalue. There are three main difficulties here. First, the problem is
nonlocal and thus does not have a comparison principle. To overcome this, we relate it to a local
problem by estimating the nonlocal term p using two ingredients: when 6 is small, we may use a
local-in-time Harnack inequality and when 6 is large, we may obtain a priori estimates on the tails
in trait of the solution n. Second, in contrast to [13], the path of this moving “bump” sub-solution
cannot be found explicitly since the ODE system for the optimal path given by the Euler-Lagrange
equation is not explicitly solvable. Instead, we must optimize over rectangular paths. Thirdly, the
trade-off term m is large when 0 is large. Hence, when 0 is large, we add a multiplicative factor to
our super-solution, which exponentially decays in time at a large rate, in order to absorb the high
mortality rate. We make up for this at the end of the trajectory by letting our moving sub-solution
remain unmoving in a favorable area for a long period of time. This strategy, absorbing losses and
then re-growing later while keeping a careful accounting of them, is new in the reaction-diffusion
literature to our knowledge. In contrast, classical results come from settings where an eigenvalue
can be well-posed and O(1) solutions can be built using it.

The strategy of the proof of the upper bound is related in spirit to [13] but is technically com-
pletely different. In order to avoid complications with the nonlocal term, we notice that solutions
to the linearized equation (1.6) are super-solutions to n. As such we seek bounds on 7. Histori-
cally, there are two ways to obtain super-solutions to reaction-diffusion equations: with a travelling
wave solution or with heat kernel estimates. Since a travelling wave moves at a constant speed,
it cannot be used to bound an accelerating front from above. On the other hand, classical heat
kernel estimates on R? require the diffusion operator to be comparable to the Laplacian and require
any zeroth order terms in the operator to be bounded. This is not our setting as 092 + 93 is not
comparable to the Laplacian uniformly in # and m(6) is unbounded by assumption. In any case,
our goal is understanding the precise balance between these two terms, so, even if it were possible
to bound these by constants, this would provide too rough of an estimate for our purposes. As
such, we proceed by considering R x © as a two dimensional Riemannian manifold with boundary
with the appropriate metric g. After removing an integrating factor, we may view the linearized
operator (1.6) as the Laplace-Beltrami operator A, with a potential —m(#). We may then appeal
to the methods of [28] to obtain bounds on the fundamental solution of (1.6). After some careful
modification of this fundamental solution and after reinserting the integrating factor, this provides a
super-solution to n. We note that these heat kernel estimates do not provide the propagation result
immediately. Indeed, the results in [28] give heat kernel estimates in terms of a Lagrangian, and
this Lagrangian is itself difficult to estimate precisely. The use of the estimates coming from [28] is
not common in works investigating propagation, and we believe that this is an important addition

3Strictly speaking [7, 13] does not deal with the general case when m(6) converges to a constant, but instead with
the case m(6) = 0. This particular case corresponds to the growth rate at infinity with p = 0.



to the toolbox for these types of problems.

Finally, we should mention why two other more well-known methods do not work. First, one
might ask if we can construct an explicit super-solution. For example, one might expect functions
of the same form as the upper estimate of the heat kernel in [28] to be super-solutions. We
outline in Section 2 why this is not necessarily the case. Second, one may ask why large deviations
methods, e.g. the probabilistic methods of Friedlin [18, 19] or the thin front limit approach of Evans
and Souganidis [17], do not work. In the construction of the sub-solution, we see that there are
two scales. Indeed, in the case where m(60) ~ 6P, the population that drives the acceleration is at
3/(2=) while the bulk of the population is at ¢3/(2*?). Hence scaling (z,0) in the appropriate way
in order to see the front loses the information about the population which drives the acceleration
as it is lost in the scaling. We should point out that this is an interesting feature of the model: the
population that drives the front is different from the population that is sustained behind the front.

The proof of Theorem 6 is in Section 2.

A Harnack estimate and a uniform upper bound

Two key tools in our analysis are a uniform-in-time upper bound of n and a local-in-time Harnack
inequality that we can deduce from it. We state both now.

Proposition 7. Suppose that m satisfies Hypothesis 1. Suppose that n satisfies (1.1) with initial
condition satisfying (1.2). Then there exists a constant M, depending only on m, such that

ol oo+ xRYs 172l oo+ xRX0) < M.

Lemma 8. Let € > 0, tg > 0, R > 0 and any point xg € R. There exists Cry,, depending only
on g, ty, and R, such that a solution n of (1.1)-(1.2) satisfies

t,xg) <e+C inf n(t,z,0), or all t > ty.
p(t; xo) < Reto, I g (BT0) f > 1o

In general, it is difficult to obtain a uniform upper bound because there is no maximum principle
of (1.1) due to the nonlocal term. The bound must then be obtained by a careful understanding
of the regularity of n given a particular bound on p. Specifically, one must use parabolic regularity
estimates to show that if n is large then p is greater than 1 and no maximum may occur.

Our proof of Proposition 7 is in the same spirit as the proofs in [7, 22, 35] in that it relies on the
natural scaling of the parabolic equation versus that of p, yet significantly simpler in presentation
and technical details. Indeed, by appealing to standard local regularity estimates in Sobolev spaces
and the Gagliardo-Nirenberg interpolation inequality, we are able to avoid the involved technical
details of [7, 35] and obtain a succinct proof.

Lastly, we point out that the weak Harnack inequality referenced above allows us to compare p
and n for bounded 6, and thus, we can compare each solution of (1.1) to the solution of a related
local problem. In order to compare p and n, there are two local-in-time Harnack inequalities which
are useful for this, [12, Theorem 1.2] and [1, Theorem 2.6]. We use the latter because, though less
precise, it is sufficient for our purposes and it is significantly easier to prove.

Proposition 7 and Lemma 8 are used throughout this article. Their proofs, which are indepen-
dent of all other results, may be found in Section 6.



Numerical simulations

We end this introduction by showing numerical simulations that illustrate the different propagation
regimes. For this, we use our typical example where m(0) ~ ” when 6 tends to +00. We present,
for four different values of p (p = 1/3,2/3,1,4/3) some plots of the solutions ”from above” in the
phase space R x © for various values of time. In case of a linear propagation, it is clear from these
plots. In the acceleration regime, we also provide a figure with p for various values of time, which
helps viewing the accelerated propagation.

Figure 1: Numerical simulations of the Cauchy problem of equation (1.1) at a fixed time, in the
phase space R x © at times t = 10, ¢t = 20, t = 30, t = 40, t = 50, t = 60 with the choice 8 = .01.
Left column: p = 1. Right column: p = 4/3. Both exhibit propagation at a linear rate.



Figure 2: Numerical simulations of the Cauchy problem of equation (1.1) at a fixed time, in the
phase space R x © at times (from top to bottom) ¢ = 10, ¢t = 20, t = 30, t = 40, t = 50. Left
column: p = 1/3. Right column: p = 2/3. Last line: evolution of p at times ¢ = 10, ¢t = 20, t = 30,
t = 40, t = 50. Both exhibit propagation at a super-linear rate. The transient dynamics driving
the acceleration are seen in the “head” — the light diagonal line moving and up and to the right of
the front. This can be observed, e.g., in Step 2 of the proof of Proposition 12.



Acknowledgements

EB is very grateful to the University of Sydney, where the present work has been initiated, for
its hospitality. The authors thank the University of Cambridge for its hospitality. The authors
thank warmly Vincent Calvez for early discussions about this problem, and for a careful reading
of the manuscript. CH thanks Alessandro Carlotto, Boaz Haberman, and Otis Chodosh for dis-
cussions about geometry and heat kernel estimates, which, while meant for earlier projects, found
an application in this manuscript. Part of this work was performed within the framework of the
LABEX MILYON (ANR- 10-LABX-0070) of Université de Lyon, within the program “Investisse-
ments d’Avenir” (ANR-11- IDEX-0007) operated by the French National Research Agency (ANR).
In addition, this project has received funding from the European Research Council (ERC) under the
European Unions Horizon 2020 research and innovation programme (grant agreement No 639638)
and under the MATKIT starting grant. MHC and PSK were funded in part by the Australian
Research Council (ARC) Discovery Project (DP160101597). We thank the anonymous referees for
a close reading of the manuscript and very helpful suggestions.

2 Proof of Theorem 6: the acceleration regime

2.1 The upper bound

In this section, we present the proof of the upper bound in Theorem 6, i.e. we show:

Proposition 9. Under the assumptions of Theorem 6, there exists a > 0 such that

lim sup supn(t,z,0)=0.
E700 g (t)3/2 0€0

We may then deduce the upper bound in Theorem 6 by recalling (1.9). To get an upper bound
on the propagation, we use the linearization around zero of (1.1):

My = Oy + Mgy + (1 — m) 7, on RT xR x O,
ng(-,0) =0, on Rt x R.

Indeed, solutions to (1.1) are sub-solutions to 7. Hence, by the comparison principle, n < @
and it suffices to prove Proposition 9 for 7.

In order to bound m, we now introduce a key quantity. It is the action associated to the
Lagrangian corresponding to (1.1):

t 7 12 7 12
g(t,x,a,y,n):inf{/o ('fé'z +|Zj| +m(zg)> ds:Z(O):(y,n),Z(t):(x,ﬁ),ZeCO’l([O,t])}.

In general, we simply write ((t, z, ) to mean ((t, z,0,0,0). We seek a super-solution which asymp-
totically looks like e!~¢.
A brief discussion of ( and previous strategies

We briefly describe why such a super-solution is expected and why the strategy from [13], where
we showed that e!~¢ is a super-solution to the equation without trade-off, does not work in this
setting. When m = 0, one may expect to follow the work of Evans and Souganidis [17] to see that

10



the front should follow the dynamics of the solution of ( due to the fact that it is the solution to
the equation
G+ 0/Cal* + 1Go* = 0.

This is in the thin front limit with the scaling given in [10] (also recalled in [13]). In physical space,
i.e. without scaling, one can check that e/~¢ is a super-solution to (1.1) if and only if

When m = 0, it can be checked that ( satisfies this, see [13].
When the trade-off m is present, it is much harder to check (2.10). Indeed, define the related

Lagrangian by L,,(Z, Z) = 1 (‘2212‘2 + \Zg|2> +m(Zs) and let Z be an optimal trajectory satisfying
the Euler-Lagrange equations. As mentioned above, it is well-known that ¢; +0|C.|* +(¢]? = m(6).

On the other hand, a computation using the Euler-Lagrange equations for Z yields

1 1
o= [ (alt) (D*L)@)uet)ds  and Ga= [ (wnlt)- (D*L)w)un(t))ds,
0 0

where v(t) = (Z(t), Z(t)). One can check that D?L,, = D*Lg + (3;20;2m" (Z2))sj, where Ly is the
Lagrangian with no trade-off term. A straightforward computation shows that Lg is nonnegative
definite and hence, if m” > 0 then L,, is nonnegative definite; however, we expect that m” < 0
holds for large 6 since m is sub-linear. Even though L,, may not be nonnegative definite, one may
still hope that 0(,. + (g9 > 0. However, the term involving m” in 0(.; + (o is

1
/ m"(Zs) [0105Za? + 109 2|7 ds.
0

Since we cannot explicitly solve for Z, this integral is very difficult to estimate. As such, we are
unable to show that there are super-solutions of the form e/~¢. Similar difficulties arise when
looking at e®~% for any choice of a and b.

Relating 7 and ¢

We now explain how to relate m and ¢. For this, we use results by Li and Yau [28, Corollary 3.2]
on parabolic equations on Riemannian manifolds. In this paper, the authors derive bounds on the
fundamental solutions of the heat equation with potential on general manifolds. In particular, they
prove an upper bound after proving a suitable Harnack inequality.

We use their analysis to derive an upper bound on the fundamental solution of (1.6). To show
that we can use their results, we view R x © as a Riemannian manifold with an appropriate metric
g so that the second order operator in (1.6) is the Laplace-Beltrami operator on that manifold.

To this end, we need to remove an integrating factor of m. Let r = 1 4+ 02 and define v =
e 9147, Notice that

1 5 1
U = OUgy + Vg — %09 + v <1 —m+ 602 ~ r) < Qugy + vog — %Ug — mu. (2.11)

Let G(t,z,y,0,n) be the fundamental solution to

1
Gy = 0G . + Ggg — %GQ —mG, (2.12)
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on R x © with Neumann boundary conditions in #. In order to obtain bounds on G, we wish to
apply the bounds obtained in [28]. To this end, we define the metric

. (g 0) , (2.13)

and, denoting A, as the Laplace-Beltrami operator associated to g, notice that G satisfies
Gy = AyG —mG.

In addition, one can check that the curvature of the manifold (R x ©, g) is uniformly bounded. For
the help of the reader, we include a discussion of all geometric issues in Appendix A.

If ny were compactly supported, we would take G(t + 1,x,6,0,0) as a super-solution. Since ng
is not compactly supported, we modify this and define w as

o0
w(t,z,0) =CY G(t+1,2+10,0,0), (2.14)
=0
where C' is chosen large enough that w(0,-) > 7. This is essentially the convolution of G with the
initial data, but this formulation is more convenient computationally in the sequel. It follows that
etg—1/ 4w(t,x,0) is a super-solution to 7. We point out that this super-solution is different from
the one appearing in [13]. In that article, because we had an explicit formula for the super-solution,
we could extend the super-solution to the quadrant {z < 0} by “forgetting” the z-dependence in
a way that the solution remained C'. Here, we cannot do that since we have no way of verifying
that such a construction is still a super-solution on the line {x = 0}.
With this set, we recall the following results by Li and Yau [28, Corollary 3.2].

Lemma 10. Lett >ty and x € R. For 6 <n,_1(t), there exists a constant C such that

G(t,,6,0,0) < CeXp{Ct— 4“(152909)}

We refer to Appendix A for a discussion on how Lemma 10 follows from [28, Corollary 3.2] as
it is not immediate. By (2.14) and Lemma 10, a bound on 7@ follows from a bound on (.
A bound on ¢ and the conclusion of the proof of the upper bound

Our goal in this section is to derive a lower bound for ¢ and then to use that to obtain a bound on
w. The first step is to prove the following lemma.

Lemma 11. Fiz any @ > 0. Assume that © > ng(t)3/2. There exists a constant C' > 0 such that

2
-1 inda r T
¢(t,x,0) > C™" min {at S TETEA }

We point out that each term in the minimum above has the correct or super-critical scaling. In
other words, taking = > ﬁa(t)?’/ 2 in each term yields a term which is at least linear in time.

Proof. Thanks to the Euler-Lagrange equations, we know that the infimum defining ( is actually a
minimum and the minimizer satisfies

d Zl d ZQ / |Zl|2
_ _ = —_— —_— = Z - .
ds <222> O s ( 2 ) mZ2) = g
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Hence there exists « depending on ¢,z,6 such that Z1 = 2aZ,. Integrating this, we find o =
x/(2 fg Z5(s)ds). Combining this with the identity Z; = 2aZ, and the definition of {, we obtain

(i
C(t,x,6)4fgz2d8+/0< 1 —i—m(Zg)) ds. (2.15)

We define My = maxye(g ) Z2(s). Set By = {s: Za(s) > 04} and B_ = [0,#] \ By. Recall that
m(0)/0 is decreasing for 6 > 6,. Define also sy such that Z3(sg) = My. There are two cases.
# First case: [, Z(s)ds < fB Zo(s)ds.

In this case, My > 6,. Indeed, if not, B4 is an empty set which would yield a contradiction.
Notice that m(Z2)/Z2 > m(My)/My on B,. Using this and applying Young’s inequality gives

22
)= fo Z2 / it (fB Zo(s)ds + fB+ Z2(8)d8> ! /B+ ()

x? m(Mp) m(Mp)\ 2
- 8 [, Za(s)ds "M /B+ Pals)s = v < 2M, )

We are now ready to bound ¢ when My is small, i.e. when My < nz(t). Recall that when 6 > 6,
m(0)/0 is decreasing. Due to this and (1.8), together with the fact that My > 6,4, we find

1 1 1
at x 2 at  x m(na»(t))) 2 <m(M9)> 2
_ I <gxgl| — <z < ((t,z, 0).
75 ) < Vo <o (o) < (i) <ctemo
This concludes the estimate of ¢ is this sub-case.
Now consider the case when My is large, i.e. My > ng(t). Young’s inequality implies that

(2.16)

S0 7 |12 s0 | S0
C(t,m,@)Z/O ('Zj‘+m(22)> dsz/o ZQ\/m(Zg)d,s:/O 0u(B(Zs(s)))ds = D(My).

(2.17)
Combining (2.16) and (2.17) and Young’s inequality, we obtain, recalling also (1.8),

C(t,x,0)  ((t,x,0) 1 rm(My)\s ®(My)
5 T3 2595(21\49>+ 2

1 1 1
1 2 M2 M, 2
> <x<m(M9)> 2<I>(M9)> > (£ (o)
2M9 2§Dm
From this and the fact that My > ng(t), we conclude that

L 8(s(0)? 2 sy}
il )2 ) (2.18)
23 Dy,

C(t,x,0) =

C(t7 :U’ 9) Z

[NIES

# Second case: [, Zy(s)ds > fB+ Zo(s)ds.
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In this case, it follows that

/Ot Zsy(s)ds < /_ Zs(s)ds —i—/B Zs(s)ds < 2/ Zs(s)ds < 204t.

Hence, we finish by plugging this into (2.15) to obtain the bound ((t, z,0) > x2/(804t). O
With Lemma 11 in hand, we are in a position to finish the proof of the upper bound of 7.

Proof of Proposition 9. Assume first that 6 > 7, _11(t). Proposition 9 follows by combining
(1.7) with the fact that a function of the form Q(6)eY=! is a super-solution to (1.1).

Thus, we may assume that 6 < n,_41(t). Fix x > 1g(£)%/? with @ to be determined. Using the
definition of w along with Lemma 10, we have that

w(t,z,0) < Ce“ N " exp{—((t,z+£,0)} .
/=0

We obtain a very rough bound on w in the following way:

Celt & 1 v+l (z+1)?
w(t,x,d) < exp{——min (at , )}
( ) t ; 2C na(t)3/2 t
2
ct o _at [_xtl o) 3/2 _at z —Z_
< Ce E <6 Y ng()3/2 + 6_(;0? ) < CeCt<7n&(t> e ©Vna®3/? + € )

= = )
t = a“t Vit

(2.19)

For t > 1, it is clear from its definition that 7z(t) > t2/3 and, hence, that z2/t > t. On the other
hand, since z > na(t)g/Q, the exponent of the first term may be bounded below by at/C'. Using this
and choosing @ big enough, we see that the right hand side of (2.19) may be bounded by Cge~(rt1)t,

We now apply this bound to finish the claim. Recalling the definition of v and recalling that w
is a super-solution to v, if 2 > ng(t)3/?,

at,x,0) = 0~V 4emto(t, x,0) < 07V e w(t, x,0) < CO Vet

2.2 The lower bound
In order to finish the proof of Theorem 6, we now need to prove the lower bound, i.e. we show:

Proposition 12. Under the assumptions of Theorem 6, there exists n,a > 0 such that

liminf inf n(t,z,0) > n.
t=00 |z[<nq(t)3/2

The moving Dirichlet ball sub-solution

As we mentioned in the introduction, to prove spreading, the idea is to construct sub-solutions
to the linearized problem with Dirichlet boundary conditions on a moving boundary of a growing
domain £(t). Then we use them to deduce a lower bound on the solution of the nonlinear problem.

When building this solution, the growth/decay rate depends on the speed of £(t) — the faster £
moves, the smaller the growth rate with the growth rate tending to negative infinity as the speed

14



of £ tends to infinity. Thus, the goal is to balance two competing forces: when £ is in the large 8
region the correlation between the speed of £ and the growth rate of £ is weakest, i.e. in the large
0 region, £ can move at a much faster rate in the = direction than if it were in the small 6 region
with the same effect on the growth rate; on the other hand, when £ is in the large 6 region, the
trade-off term m is extremely strong causing the growth rate to be very negative. In view of this,
our goal is to find a trajectory that takes advantage of both the fast movement when &£ is in the
large 0 region and the positive growth rate when & is in the small 0 region.

We thus state a lemma regarding sub-solutions on moving, growing ellipses. This lemma is very
similar to [13, Lemma 4.1]. Before we state the lemma, we define a piece of notation. For any given
trajectory t — (X (t),0(t)) € R x © and A > 0, we denote

|z — X ()

X,0) def =
5t(’A ):{(a:,H)ERx@: o)

+1o-01)? < AQ}. (2.20)
Lemma 13. Let T > Ty and let (X7 (t),0r1(t)) € C*([To, T)) be a trajectory. Fiz constants A, r,

and 0. There exists epn > 0, depending only on A and which is decreasing in A, Ty, depending only
on 6§, and Ay such that if A > Ay, T — Ty > T5 and

1 107(t) Xr(t)
vVt € [Ty, T, — < ep, 2.21
0T |+ 760 | * et < 220
then there exists a function n which satisfies
ny — Ong, —ngg < (1 —17)n, on [T, T) x £57°°7, (2.22)
n=0, on [Ty, T] x 9ELTOT, '
and such that n(Tp,-) <6 on ngf) and
A - | Xr(t)]
n(T, ) >0Cpexps — — max (|Op(t)| + —=
T . o . o o . .
X7 07 | Xr|A | XrOr|A X7A A|O7|
- — 4+ = dt .
/TO[T+4®T+4+ > " aer 10z T2 Jar}

on 5:(F)5\’(/92)’ where Cy is a positive constant depending only on A.
Proof. Since the lemma is very similar to the one in [13], we present a streamlined version of the
proof. We recall that the idea of the proof is to suitably re-scale the equation and then use careful
time-dependent spectral estimates.

First note that, without loss of generality, we may set Ty = 0. To construct the desired sub-
solution n, we first go into the moving frame, and rescale the spatial variable:

~ z—Xr z— X7
t,r,)=n(t,———,0—071], = , d n=60-06r. 2.24
o) =n (15750 0r) y= g wa g=0-er @2
Then plugging this into (2.22) yields
~ Yy GT XT - . n - - ~
_ (2L _ < _ _
nt (2 @T + /7@’]“)@2/ ®Tﬂn >~ (1 + @T)Eyy + Enn + (1 T)Q? on BA7 (225)
n(t,-) =0, on 0B,.
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Here, By def BA(0,0) is a ball of radius A centered at (y,n) = (0,0). As in [13], the next step is to

remove a suitable exponential:

w(t,y,n) = exp { 5

L, —1/2 ¢ _
(yX707"% +6rn) + g(t)}n(t, Y1),
where ¢ is defined below. Using (2.25), we see that w must satisfy the inequality

or X
wy— (y—T — —Zn) wy < (1 + i) Wyy + Wyp
2@’]“ 02 ®T
T ——
ef
0oty = (2.26)
X2 0% X XeOpr\ (X3 by
r- -G (- 22 (o)
tu(i-r o 1 " \Qye; 3 102 T )ty
407 T

We point out that each of the perturbative terms A and D —1 tend to zero as A tends to infinity
by the hypothesis (2.21). We get rid of the supplementary terms in the growth part, by setting
X3 6% | XqlA | [X9Op|A  XFA  AO7]|
+—=+ dt'.
407 2

t
t) = —I 4T
9(t) /0T+4@T+4 2./0; g
102

Returning to the original variables, if w satisfies
(2.27)

wy — Awy < Dwyy + wyy + w,
then v satisfies the desired differential inequality. With this in mind, we seek to construct w

satisfying (2.27) that has the desired bounds.
We define w using the principal eigenfunction of the operator
(2.28)

L: % A0, + Doy + 0y,

To this end, for each ¢ € [0,7], define (A}, ¢') to be the principal Dirichlet eigenelements of £;
(depending on ¢ as a parameter) in the ball By, with the normalization [|¢"||f(s,) = 1. We define

w(t,y,n) = 6¢'(y,n). Then, we have

o t
(8t - ,Ct) w = (t;tbw - )\tw,
and w satisfies (2.27) if we are able to ensure that
3¢’
? - )\t S 17

which follows from [13, Lemmas 5.1 and 5.2] along with (2.21).
Again, due to [13, Lemma 5.1], ¢’ converges uniformly to the principal Dirichlet eigenfunction
of By as € tends to zero. Hence, by choosing ex small enough, we obtain a constant C such that

6Cx < dmin ¢! = minw (T, -).
AJ2 Bay2

By undoing the change of variables and using the relationship between v and w, we are finished. [
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The proof of Proposition 12: moving along a particular trajectory

Proof of Proposition 12. Here, we describe the trajectory on which we apply Lemma 13. It
consists of three steps. First, we move mass upwards. Of course, this mass reaches a place where
the death rate is highly negative due to the strength of the trade-off. This movement is justified
by the second part of our trajectory, where we are able to move forward in space with a very high
velocity, since the space diffusivity is very high in this zone. However, due to the strong trade-off,
the mass at the end of this second step is extremely small. It is thus mandatory to move down to
small traits again, to reach a zone where it is possible for the population to grow. Finally, in this
region, we grow the population to order one in the last step. We show this trajectory in fig. 3.

0
Step 2
(0.74(T) + H) I#‘ ................... —o (1a(T)¥/2, 0a(T) + H)
- i
St 1.
n - LR
$ 0T
$ C e
<># Step 0
# Step 3bis
>:1:

Figure 3: The trajectory and the different steps.

This strategy of moving along trajectories in the phase space R x © was used in [13] to prove
a precise estimate on acceleration in the case m = 0. There, it is shown that taking trajectories
that come from a related Hamilton-Jacobi equation gives a sharp bound for the local cane toads
equation. Here, we are not able to explicitly solve the Euler-Lagrange equations to derive the
expression of optimal Hamilton-Jacobi trajectories due to the presence of the trade-off.

Fix any large time T' > 0. We now describe quantitatively the three steps mentioned earlier.

# Step 0: Initialization

By the maximum principle, n must be positive everywhere at time ¢t = 1. As such, we assume
without loss of generality that n is positive everywhere initially.

# Step 1 : Moving up

First, fix constants a, A, A1, and H to be determined later, where we eventually choose a to be
small and A, A1, and H to be large. We move mass upwards. To this end, define the trajectory

(X1(t),01(8)) % (0, (ert)? + H) (2.29)

for t € [0,T1], where we have chosen ¢; = T/An,(T)%? and Ty = An,(T)?/T. We point out
that (1.8) implies that limy o0 1,(7)/T = 0. Hence 77 < T when T is large. Notice that the
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definition of the trajectory (2.29) implies that ©1(71) = 74(T) + H. By choosing H sufficiently
large, depending on Ay, we have
16,

vt € [0,T1], )a‘+ 5@1

% ) < (2.30)

|5
and we have met the conditions of Lemma 13, which we apply in the sequel.

We emphasize two points coming from the definition of the trajectory. First, it is crucial to
make the trajectory start at & = H in order to satisfy that ©1(¢)~! < ej for all t. Second, while
trajectories that are linear in time would be simpler, this is not possible here as we require that
©1(t)/(201(t)) < ex. A linear-in-time trajectory which ends at O(1,(T)) would not satisfy this
inequality for small times.

@1)

We seek a sub-solution of n on the set 8 (X“ To this end, first notice that from Proposition 7,

we know that there exists p such that p < p on R+ x R x ©. In addition, since m is monotonic by

Hypothesis 1, m(0) < m(n.(T) + H 4+ A1) on Et(i&’gl). Hence, any n solving

n, —O0n,, —ngy < (1 —p—m (na(T) + H + Al)) n, on [0,77] x 55\(1’@1),

n=0, on [0, 74] x DELX1OY),

is a sub-solution to n. Define

def .
5?1’}[ = inf n(0,-).
cX1.01)
0,Aq

Then, applying Lemma 13 with starting time 7 = 0 and final time 71, r = p+m(n.(T) + H + A1),
A = Ay, and § = 01, we obtain n; such that ny(0,-) < n(0,-) on 5(X1,61)

We may then use the comparison principle to compare n; and n on S;XX@/IQ) at t = Ty. Us-
ing (2.23), we obtain

T3
n(Ty,z,0) > (5{\1’HCA1 exp {—Alc%Tl — <7"T1 + ci‘?l + Alc%T1> }

3
2MT  An(T)?
Ang(T) T

_ (5A1’HC 2 CZILTI3
=4 Ay €xp S —2AqcefTy — Ty —

zéfl’HCAlexp{— (p+mna(T) + H + A1) — T} (2.31)

3A

2
=t ey, exp{ (3{4 + Azf(l ol A%T(f) (P + m(na(T) +H+A1))>}

Ay H 2 A H
1 1
> ) + — > 5 b ex —71
51 C'A_lexp{ T <GA 3 )} = 0q CA1 p{ 10 }

for all (z,60) € 87(5(}\’16/12) We comment on how we have obtained the second-to-last and last in-
equalities. The second-to-last is due to the following facts. First, since limg_,oo 74(T") = +00, one
can take T sufficiently large depending only on @, and Aj, such that 2A;/n,(7) < 1/3. Second,
since im0 7o (T)/T = 0, if T is sufficiently large, depending only on a, then 1, (T)?p/T? < a/2.

Finally, if T is taken sufficiently large so that 7,(7T") > Ay + H, then we have

a(T)? (T 5 (®(a(T)\?
g 7 Do < 7a(T) >

() + 1+ A1) < " o, 1) < 2 —apigt<
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when a is taken sufficiently small, after using the monotonicity of m and (1.8). The last inequality
of (2.31) follows from choosing A sufficiently large and then g sufficiently small.

# Step 2 : Moving right

We now build a new moving bump sub-solution starting at ¢t = T} and (0,7,(T) + H) which
moves mass to the right at a high speed. It is important to note that n; and ny may not be
concatenated to be a smooth sub-solution. Instead, we “fit” our new sub-solution ns underneath n
at time T3 using the lower bound we obtained from n;.

For t € [T1,2T1], we define the trajectory

(Xa(t), ©2(t) ' (ea(t — T1),ma(T) + H),

where ¢y is chosen so Ay/na(T)co = T. We point out that X5(271) = 1,(T)?/2, by our choice of ¢y
and Tl, and that (XQ(TI), @2(T1)) = (Xl(Tl), @1(T1))

Set Ag = Aj/2. It is easy to check that this trajectory satisfies (2.21) for T sufficiently
large since cong(T) ™32 = T/(Ana(T)?) tends to zero. Letting r be as before, A = Ay, and
do = CAl(Sfl’H exp {—71/10}, we apply Lemma 13 again to obtain ny satisfying (2.22) with

no(Th,x,0) < 0 < n(11,x,0) (2.32)

for all (z,0) € E}fi’?ﬂ. The second inequality above comes from (2.31) and the definition of ds.

Since (2.32) and (2.22) guarantee that ny < n, then (2.23) gives us that, for all (z,6) € 52(;(22’/?22/)2,

n(211,z,0) > ny(2T1, x,0) > (CAI(;{\LHef“f‘;%T) y

(C . {_3A2 T Apna(T)*  Am(na(T) + H + Ajna(T)* T})
Ay €XP 4 AWQ(T) T T 4A ’

Exactly as before, so long as a is sufficiently small and A and T are sufficiently large, we may
estimate the the bottom line of the equation above exactly as in (2.31) to obtain the bound

T T
Yoo Yoo AhH _Wog

n(2Ty,z,0) > C’Aléfl’He_ o e T > Cp 07 e

Here we also used the relationship between A1 and As.
# Step 3: Moving down

The argument here is almost exactly as in the last two steps so we only briefly outline it. Define
(X5(t), ©3(1)) = (na(T)*?, 01 (371 — 1))

for all t € [277,3T1]. We notice a few things. First, (X3(271),03(271)) = (X2(211), ©2(2171)).

Second, up to translation, O3 is the time reversal of ©;. Third, (X3(371),03(371)) = (ng(t)3/2, H).

We recall that we must stop at H because below H, the conditions of Lemma 13 are not met.
Hence, taking A5 = Ag/2, we may argue as before to obtain the lower bound

_ 37001

n(31y,z,0) > C’Al(ﬁh’He 0,

for all (z,0) € 533%7(?\2/2' To be clear, we note that

e ={@0) erRx0:



# Step 3bis: Moving to near § and growing larger
At this point, we know that n is bounded below by a small value far to the right at time 377.

Since T7 < T when T is large, we have a large amount of time left for n to grow to order one.

To begin, we obtain estimates on the growth by using the principal eigenvalue of the cane toads
operator with trade-off on a large enough domain. For r,s > 0, consider the following spectral
problem in both variables (¢, 6):

Opee + poo + (1 —m)p = Vs, on (ng(T) —r,ma(T) + 1) x (0,80 + s),
909('7Q) =0, (P('7Q+3) =0, (P(UQ(T>:ET7') =0.

The eigenvector (up to a multiplicative constant) ¢ is given by

TE- na(T)>

6.0 = cos (55 ) 17,00,

where we have introduced the eigenelements (7, s, V;.s) with normalization ||V, s||cc = 1 by

W7/3+(_%_7T,8+(1_m)) ‘/;",8207 0€(Q7Q+S)7
W}S(Q) = 07 V;‘,S(Q+ S) = 07 ‘/r,s > 0.

One can pass to the limit limg_,o0 limy 00 Yrs = Yoo since limg_yo0 limy 00 V3. s = . Thus we may
fix ro and sg sufficiently large so that v, s, > 8700/10.
Define Uy, 5o = [1a(T) — 70, 1a(T) + 0] X [8,8 + so]. We now apply the Harnack inequality on
(311,311 + 1] X Uy, 5, to obtain
_ 370 T

Ce” 10 < sup n(3711,-,-) < Cry s Uinf n(3Ty +1,-,-), (2.33)

U’l‘o,SO 70:50

where we combined CAlé?l’H into one constant C' above.
We wish to use ¢ and the bound above to create a sub-solution of n. To deal with the nonlocal
term, we use the Harnack inequality given by Lemma 8, to obtain,

p(t,z) < C’;On(t,x, 0) + 71%,
for all (z,0) € Uy, s,. Hence we have that
ng > gy + ngo +n (1 - % —m— Cﬁo7son> . (2.34)

Now define

. Yoo C
t,x,0) =
w( ,.’E7 ) min <10C/ Y CTO7SO + 1

) 67%6/\/(15737“171)@(1‘, ‘9)7

70,50

on 3Ty + 1,T] x Uy, s,, where we set N = (3751)/(10(T — 377 — 1)). We point out that N —
Yro.s0 + Yoo/10 < =700 /10 for T sufficiently large, since then N < 474,/10 and 7y, s, > 87V00/10. In
addition, by the choice of X', we have that C} w < 7s/10 for all ¢ € [3T1 + 1, T]. Our goal is to
compare w and n. This is possible since w satisfies the equation

Wy — OWgy — Wy — W (1 _Jeo _ m) = ()\' — Yro,s0 T %) w < —%w < —C;O?Sow? (2.35)
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Thus (2.35) and (2.34) implies that n is a super-solution to w.

In addition, due to (2.33), we have that w(377 + 1,) < n(3T7 + 1,-) on Uy, s,. Hence, the
maximum principle implies that w < n on [3T1 +1,T] x Uy s,-

Evaluating this at time ¢ = T and position (x,0) = (1,(T)%/2, ) yields

o _ o 3/2 gy _ 3/2 3/2
Vis(8) = o(T ,0) = T, n.(T ,0) < n(T,n. (T ,0).
10Cy4,50Clo 5o O) = Toc_cr—#a(D)"7,0) = w(T,na(T)"7, 8) < n(T,na(T)"7, 0)

70,50 70,50 ~'7r0,S0

Since the left hand side does not depend on T" and V;. s is positive due to the maximum principle,
this provides the desired uniform lower bound. For any z < 7, (T)3/ 2 we may simply decrease ¢
appropriately and argue as above, thus finishing the proof of Proposition 12. O

3 Proof of Theorem 3: construction of travelling waves

We now construct a travelling wave solution for (1.1) when m is not sub-linear. We use these
travelling waves later to obtain the spreading results of Theorem 4. We recall that a function
n solving (1.1) is a travelling wave solution with speed ¢* € R™T if it can be written n(t,z,0) =
(& :=x — c*t,0) where p satisfies

{—c*,u£ = Opee + pog + p(1 —m —v), on R x O, (3.36)

po(+,0) = 0.

where v is the macroscopic density associated to u; that is v = f@ w(-,0)de.

We follow the standard strategy. First, we explain how to compute the minimal speed of
propagation of possible solutions. Then, we solve an approximated problem in a bounded slab
in both directions ¢ and 6. The resolution of the slab problem is mainly a combination of [2, 9].
Finally, we let the slab tend to R x © to obtain a wave that we prove to have the minimal speed.

We split the section into two parts. First, we cover the case where m(0)/0 — oo as 0 —
oo. Second, we discuss the modifications necessary in the case where m(6)/6 tends to a positive
constant.

3.1 Case one: limy, ., m(f)/0 = +o0.
3.1.1 Spectral problems and minimal speeds

We start the construction by defining speeds of propagation for the travelling waves. Recall that
for any A > 0, the spectral problem defining c) is written as follows

QX+ N0 —Aex +(1-m(0)]Qr=0, 00,

accompanied by the Neumann condition Q' (€) = 0. Since limg_, o, m(6)/0 = +o0, this spectral
problem may be solved. We then define \* = minargmin{cy : A > 0} and let ¢* = ¢y« and
Q* = Qx+. We fix the normalization that ||Qx|lec = 1.

For 7 € [0, 1], define the spatial diffusivity function d™ by d”(0) = 0 + 7 (6 — 0) . In general, we
suppress the dependence on 7 in this section except in Section 3.1.3 where the 7 variable is the
main concern. Since we first construct a travelling wave solution on a bounded slab, for any spatial
decay rate A > 0 and any b > 0, we also introduce the following approximate spectral problems:

i _ 2 1 _ e
{ Yo+ (FAeas + AN+ (1 —m)) Qrp =0, on (6,0 +b), (3.37)

Ao (8) =0, Qxp (@ +0b) =0, Qxp > 0.
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By the Krein-Rutman theorem, there exists a positive solution (cjp, @xp) to this problem. We
now describe the function A — c);. By looking at the limit as b tends to infinity, the principle
eigenvalue of the operator 892 + (1 — m) tends to 7. Hence, when b is sufficiently large, since
d™A% > 0, we have Acy > 7o0/2 > 0, so that ¢, is uniformly bounded away from zero. Moreover,
we have that Acy — 700 as A tends to zero. Using the Rayleigh quotient, it is easy to check that
Ay = Orst00 ()\2). As a result, since A — ¢, is continuous, it admits a global minimum on (0, 00).
This minimum defines the minimal speed ¢j* := miny>gcyp. The smallest minimizer is denoted
AL

We also introduce the family of eigenvectors Qg , that appears naturally as boundary conditions
at the back for the slab problem below. For any 6 > 0 and b € (0, oo, let us define Qg by solving
the following eigenvalue problem

(@) +(1—(1-0m)@Q=2Q),  onbe(80+Dh)
(@) @) =0,  QEO+b) =0,  [yppn@O)do=17, Q>0

We denote by Q) the particular case of Q‘gzo. The positivity of the eigenvalue 71‘)5 is ensured when
b is sufficiently large as q/g > 4.

(3.38)

3.1.2 The problem in a slab

Given a,b,d,e > 0 and 7 € [0, 1], we define the problems on the slab (—a,a) x (8,60 + b) as follows:

~Cab (/‘;,b)g —dr (Mz,b)gg - (Mg,b) 00 — [F”Z,b]+(1 —m-— y;b), on (—a,a) x (6,0 +1b),
(Mo p)g(0) =0, pl,(-0+b) =0, (3.39)
Hoy(—a) = Qp W@ ) =0 7,(0.0) =<

where v, 1= f(9,6+b) pg (-, 0)dd and where we use the “positive” part notation z := zl1;>9. We
are, momentarily, suppressing the dependence of y on € and §.

We note that we seek positive travelling waves. This is a consequence of the maximum principle.
Indeed, suppose that ] , attains a negative minimum at some point (§o,6y) € [—a,a] x [#,0 + b].
Necessarily, & # *a due to the Dirichlet boundary conditions and 6y # 6,0 + b due to the
Neumann and Dirichlet boundary conditions, respectively. Hence, (§y,00) € (—a,a) x (8,0 +b), so,
by continuity, we can find an open set V C (—a,a) x (8,0 +b) containing (&y, fp) such that we have,

_cg,b (N’;—,b)g —d’ (N’;—,b)gg - (:U’;b)ag = 0, on V.

By the maximum principle, this would imply that p is a negative constant, which is impossible.

We now comment on the problem (3.39). The unknowns are the speed Cap and the profile fif, .
Without the supplementary renormalization condition p] ,(0,6) = €, the problem is underdeter-
mined. Indeed, this additional condition is needed to ensure compactness of the family (c;b, u;b)
when a tends to oo, since the limit problem is translationally invariant. The boundary condition in
—a is chosen this way since we heuristically expect that the distribution of the population converges
towards @ at the back of an invasion front. Although we fix this boundary condition in the slab,
let us recall again that in general the behavior at the back of the wave for the limit problem is not
easy to determine due to possible Turing instabilities. Lastly, we note that, due to the nonlocal
term, the equation for u, (3.39), does not admit a comparison principle.

We follow the standard construction — obtaining a priori bounds on the slab, using Leray-
Schauder degree theory to obtain a solution on the slab, and then carefully taking the limit as
the slab approximates R x [#, c0). For notational convenience, we omit the subscript a,b and the
superscript T in fig and Cab:
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An upper bound on ¢

We first obtain a general upper bound on ¢, which comes from the linearized problem.

Lemma 14. For any € > 0, there exists ao(g,b) such that if a > ag(g,b), then any solution (c, p)
of the slab problem (3.39) satisfies ¢ < cj.

Proof. We follow the classical approach: we find a super-solution for a related problem. Since
u >0, pis a sub-solution to the linearized problem. In other words,

et < dpge + g + (L —m) i, on (—a,a) x (6,6 +0). (3.40)

Let us assume by contradiction that ¢ > ¢, then the family of functions 4 (&, 0) := Ae=¢Q;(0)
is indeed a family of super-solutions to the linear problem:

_C(@DA)g = cA\pha > Nycyha = 0 (¢A)g§ + (Ya)gg + (1 —m)ha (3.41)
2 d(wA)gf + (¢A)99 + (1 — m)i/}A, on (*CL,CL) X (Q5Q+ b)

Since @) is positive and p is bounded and since both functions are C?, we have u < 14 for A
sufficiently large. Hence, define

Ap=inf{A|Ya > pon [—a,a] x [0,0 + b} .

Necessarily, Ag > 0 and there exists a point (£, 6p) in [—a,a] x [0,0 + b] where 14, touches p:
(&0, 00) = a,(&o,60). This point minimizes 4, — p but cannot be in (—a,a) x (6,6 + b) if the
normalization ¢ is well chosen. Indeed, combining (3.40) and (3.41), we have

—C (¢Ao - :u)g —d (on - u)££ - (on - M)BG - (1 - m) (¢A0 - M) > 07 on (_av (L) X (Q:Q“‘ b)

But, if (&p,00) is in the interior, this inequality cannot hold since at (§p,y) we have

Yap = =0, (a,—p)e=0, and d(¥a, — mg + (a, — 1)gg > 0.

Next we rule out the boundaries. First, {y # a since 14,(a,6p) > 0. Moreover, (o, 6p) cannot
lie where both 14, and p satisfy Neumann boundary conditions thanks to the Hopf maximum
principle. Next, we exclude the left boundary {¢ = —a} due to the normalization. Indeed, if
o = —a, then Y 4,(£0,00) = Qu(fp) and thus Ag = e 2Qy(6p)/Q; (6o). Using the definition of Ay,

we have
Qp(00)
Q; (6o)

We thus define ag(e, b) to be sufficiently large that this inequality cannot hold when a > ag(g, b).

From above, it follows that 8y = b and £y # +a. By our choice of Ay, we may assume without
loss of generality that (¢4, — it)¢ (€0, b) = 0 since otherwise we could lower Ay further, contradicting
its definition. However, the Hopf maximum principle implies that (14, — p)¢(0,b) < 0. This is a
contradiction, finishing the proof.

e=p(0,0) < e Q;(0).

O]
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A uniform bound on the trait tails, for ¢ € [0,c" + 1].

Since the trait space is unbounded, we must prove the following lemma about the tails of n in 6.

Lemma 15 (The tails of u). Assume c € [0,c* + 1], 7 € [0,1], § > 0, and recall that Q°, is defined
in (3.38). Then there exists a constant Cyyy; depending on 0 such that on [—a,a] X [8,0 + b] we have

1t < Crait (14 (|2l oo ((—aa] x 0.0-00)) ) @

Remark 16. We point out that it is in this proof that we see the importance of modifying the
trade-off function with the parameter 6. Without this, a uniform bound in b would be impossible.

Proof. Our strategy is to find a relevant super-solution using spectral problems. To do this, define,
for 65 to be chosen later, the function

Qv
Q%

We have p < 1) on [—a,a] x [0, 6s5] by construction. It satisfies

)

HMHL"O([fa a]x[0,6+b])
:=max ( 1, - e
v ( mingg g,) Q%

) Q%, on(—a,a)x (6,0+0).
Loo

—cthe — dipee — g9 — (L —m) P = (=% +0m)e, on (—a,a) x (6,0 +D).

Define 65 := m™! (5‘17&). This definition is possible by Hypothesis 1. The function %) is then
a super-solution of the linearized problem on (—a,a) x (65,0 +b). On (—a,a) x {0+ b} and
{a} x (05,0 +b), we see that u < 1 since u satisfies Dirichlet boundary conditions and 1) is positive
there. The only boundary that remains to be checked is {—a} x (05,6 + b). There, it is true by
construction.
We point out that, using similar reasoning, there exists ¢, independent of b, such that @y is
a sub-solution of ng on [#5,b]. Further, using elliptic regularity, @ is uniformly bounded above
independent of b, and, by the maximum principle ng is uniformly bounded below on [f, #}]. Taken
together these facts imply that we may bound ||Qy/Q%, |ls by a constant that is independent of b.
O

A uniform bound over the steady states, for c € [0,c¢* + 1].

We now come to the crucial part of the procedure, that is, deriving uniform bounds on steady
states for (3.39). We assume a priori that the speed is nonnegative, since we prove later that the
problem (3.39) does not admit any solution with ¢ = 0. We extend a similar argument used in [9]

Lemma 17 (A priori estimates for bounded c). Assume ¢ € [0,¢*+1], 7 € [0,1], a > 1 and b
is sufficiently large. Then there exists a constant Cy, depending only on 8 and m, such that any
solution (c,p) of (3.39) satisfies

[ 1ell oo ((—a,a x[g,048) < Co -

Proof. We define My = ||pl| oo ([—a,a)x[0,6+5) @and want to prove that M,y is in fact bounded
uniformly in a and b. We can assume that M, ; > 1 because, if not, we are finished. As ng tends
to zero as @ tends to infinity, choose @ such that, if § > 6, Q2_(0) < 1/(4C}as), where Ciqy is as in
Lemma 15. As a consequence of this, along with the bound M, ; > 1, we have, for all § > 9,

11(-,0) < Crait(1+ My p) Q2 (0) < 2C;00 My p Q5 (0) < Myp/2.
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Hence, the maximum of 4 can only be attained by points (Zmax, @max) With Omax < 8. Then we may
interpret “sufficiently large” in the assumptions to mean b > @ + 1. In addition, we assume that
Omax + 1 > 6 in order to avoid complications due to the boundary; however, such complications
may be easily dealt with by a simple reflection procedure outlined in [7, 35]. Finally, we assume
that xmax 7# ta, since the maxima here are controlled independent of a and b.

Fix any p € (1,00), and we use local elliptic regularity results to obtain a Holder bound on p.
Indeed, by, e.g. [20, Theorem 9.13],

||ILLHW;3(B1 (xmaxﬁmax))
S Cp (HIU'HLP(B2(xmaX79max)) + Hlu'(l —-—m — Z/)HLP(BQ(xmaxﬁmax)) + HQb|’Wp2(B2($max76n]ax)))

S Cp (H/’LHLP(B2(:'EH\&X79]’]’]&X)) + H/’LmHLP(BQ(Z'maX76max)) + ||/‘LV”LP(B2($maX19max)) + 1)
S Op (H/"[’HLOO(BZ(xmax,emax)) + ||ll’Lm||Loo(B2($maX7€max)) + ||HVHLOO(B2(xmax,9max)) + 1) :

Above, the constant C), changes line-by-line but is uniform in @ and b. Indeed, the operator in (3.39)
is bounded and coercive independently of b on Ba(Zmax, Omax) since Omax < 6. Notice that

1m0 220 (Ba (@mas Omax)) = 172220 Onar—2,0max+2) < 1Ml poo(g.512) < €,

since Omax < 0. In addition, Lemma 15 implies that ||v||feo(—q,q) < C(14 Mqp). These two bounds,
along with the elliptic regularity bound above, imply that

11l W2 (B (e ) S C(L+ Map + Mgy) < 3C Mgy,

where C' is a constant independent of a and b that will change line-by-line in the sequel. Choosing
p large enough, we obtain via Sobolev embedding that for any fixed o € (0,1),

(1] (B (eman ) < ClEW2 (81 (@ma b)) < CM et (3.42)

Applying the Gagliardo-Nirenberg interpolation inequality for the function  — p (zmax, 0) yields

lta L
I (maes ) |32 (=1 1)) = Ol @rmass Vg1, 01y [ Fmass Mt g1 ey

Using (3.42), |1 (Zamaxs ) |3 (@10t 1)) = Mas a1l |1 (Zanaes ) | 3 (e 1 s 1) < V(o).
we obtain that

o« 2
My < CU(Tmax) 7o M (3.43)

Since (ZTmax, fmax) is the location of a maximum, then at this point we have that

0< —Clby — dT,U/x:r: — Moo = M(l —-—m-— V)' (3'44)

2
Thus, v(Zmax) < 1. Using this along with (3.43), we obtain M,; < CM? . This gives a bound
on Mgy since 2/(2+ o) < 1. O

Non-existence of solutions of the slab problem when ¢ = 0.

Lemma 18 (Lower bound for 1(0, ) when ¢ = 0). There exists gy > 0 such that if a and b are large
enough and T € [0, 1], then any nonnegative solution of the slab problem (0, ) satisfies 1(0,8) > €.
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Proof. The idea of the proof is to build a sub-solution. Since the full problem does not enjoy the
comparison principle, we use the Harnack inequality to compare with a local equation.
For r,s > 0, consider the following spectral problem in both variables (¢, 6):

{dsoss g+ (L—m)e="msp,  on(—rr)x (6,0 +s), (3.45)

SDG(HQ) :07 ()0(7Q+3) :07 gD(i?",) =0.
The eigenvector (up to a multiplicative constant) ¢ is given by

T

52 ) Vesl0),

where we have introduced the eigenelements (7, s, V;.s) with normalization ||V, s||cc = 1 by

V(£,0) € (—r,m) X (0,0+5), (& 0) = cos (

VIt (= Ed = s+ (1—m))Vis =0, 0 (8,0+s5),
VXS(Q) = 07 ‘/r,s(Q"i_ 3) = 07 V;",s > 0.

Since lim, o0 Vi s = Qs, then limg oo lim, o0 ¥r s = Voo Thus we may fix s and r sufficiently large
so that v, s > v0/2. Notice that we require r < a and s < b for ¢ to be a sub-solution.
In order to compare ¢ and p, we must first estimate v. We decompose it as follows

v = / u(-0)d0 + / (-, 0)do,
(0,0+s) (0+s,0+b)

and then estimate the two terms separately. First, due to the Harnack inequality there exists a
constant C, s, depending only on r and s, such that

Crsp(0,0) > sup  p(§,0).
(=) % (0,0+5)

Moreover, due to Lemma 15,

[ 08 < Cuanit ) [ @hlo)an < T,
(0+s5,0+b) (0+s,+00)

when s is chosen sufficiently large. To compare (3.39) to (3.45) on (—r,7) x (8,6 + s), we write
dpge + poo + (1 —m)u = pv < 1 (Crs5p1(0,0) + Y00 /4) -
We deduce from this computation that if 1(0,0) < 75 /(4C}.s5), we have
(Crs511(0,8) + Yoo /4) (&, 0) < (Yoo /2)1(&,0) < yrspu(€,0),  on (=r,1) x (0,0 + 5).

Hence, if 11(0,60) < 700/(4C'ss), then p is a super-solution of (3.45). If 1(0,0) < 75/ (4C). ss) does
not hold, we are finished. As such, we assume that it does not for the sake of contradiction.
We now use the same arguments as in the proof of Lemma 14. Indeed, we define

ap =max{a € R" : ap < pon [-r,r] x[0,0+ s},
so that u := p — app has a zero minimum at some (§p,0y) € [—7,7] x [0,0 + s| and satisfies

duge + ugg + (1 — m)u < v su, on (—r,r) x (8,0 + s),
ug(+,0) =0, u(-,0+s)>0, u(—r,:)>0, u(r-)>0.

As in Lemma 14 this cannot hold. This contradiction implies that p(0,0) > ;&
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3.1.3 The homotopy argument

Proposition 19 (Existence of a solution in the slab). There are positive constants g, and by
such that if ¢ < gy and b > by then there exists ag(b,e) such that if a > ao(b,e) then the slab
problem (3.39) with the normalization condition py(0,0) = € has a solution (c, ).

Proof. Fix B € (0,1). Given u € C#((—a,a) x (8,0 + b)), we consider the problem

{—czg —d"Z = Zjg = pe(l=m—wvy),  on(=a,a)x (6,0+b), (3.46)

Z;(,0)=0, Z7(,0+0b)=0, Z(-a,-)=Qy, Z7(a,)=0.
Here we have introduced the notation v, to emphasize that it corresponds to the density asso-
ciated to p (i.e. v,(-) == f(e 0+s) u(+,6)dh) and not to Z™. We introduce the map

Kr:(e,p) = (&= p(0,8) +¢,27),

where Z; is the solution of the previous linear system (3.46). Since (3.46) is elliptic the map
K, : X — X is a compact map where X := R x C"? ((—a,a) x (8,6 + b)) with the norm ||(c, )| :=
max (||, ||pellcr.6). Moreover, it depends continuously on the parameter 7 € [0,1]. Solving the
problem (3.39) is equivalent to proving that the kernel of Id — K; is non-trivial. We can now apply
the Leray-Schauder theory.

Fix Cp from Lemma 17, ¢ < g, and a > ag(g,b). We define the open set

B = {(Cyﬂ) [0 <ce<c +1, [lpllevs—aa)x@otb) < Co+ 1} :

The a priori estimates of Lemmas 14 and 17, give that for all 7 € [0, 1] and sufficiently large a, the
operator Id — I cannot vanish on the boundary of B. The Leray-Schauder degree theory yields
the homotopy invariance

deg (Id — K1, B,0) = deg (Id — Ky, B,0) .

To compute deg (Id — Ky, ,0), we investigate the problem corresponding to 7 = 0. This problem
is equivalent to solving the following symmetrized equation on (—a,a) x (—b,b):

—cZQ =07 — Zgy = (1 —m(l0 — 0] + ) — v,),  on (~a,a) x (=b,b),
ZO(': _b) = Zg(7b> = 07 ZO(_a7 ) = Qb(‘ : ‘ +Q)7 ZO(a’ ) = 0.

Using this formulation, that —1 = deg (Id — Ky, BB, 0) is exactly the purpose of [2, Proposition 3.9].
Since —1 = deg(Id — Ky, B,0), then K; has a fixed point. This finishes the proof. O

3.1.4 Construction of a spatial travelling wave in R x (6,60 + b)

We now use the solution of the slab problem (3.39) given by Proposition 19 to construct a travelling
wave solution. For this purpose, we first pass to the limit a — oo to obtain a profile in R x (6, 0+0).
Then we prove that this profile has speed ¢; and the correct asymptotics as § — F-o0.

Lemma 20. Let ¢ < gy. There exists c € [0, c;] such that the system

(3.47)

—copte — Ouee — up = (1 —m — ), on R x (6,0+b),
MG('?Q) 207 M(7Q+b) 207

has a nonnegative solution pu € C2 (R x (0,0 + b)) satisfying n(0,0) = ¢.

Proof. Using the uniform bounds above, along with classical elliptic regularity theory, and applying
the Arzela-Ascoli theorem, we take the limit a — 0o to obtain the lemma. O
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The profile is travelling with the minimal speed c;.

In this section, we present the arguments showing that the constructed front has the minimal speed
¢y It roughly goes as follows. First, any solution with ¢ < ¢ that is bounded away from zero at
{6 = 0} is, in fact, bounded from below on {6 = 8} by a constant w > 0 that is independent of p.
Contrasting this lower bound with the choice of normalization, we argue that lime_,o p£(§,6) = 0.
Finally, by building oscillating sub-solutions, we show that this limit holds only when ¢ > ¢, which,
in view of Lemma 14 implies that ¢ = ¢;. The ideas used here are similar to those in [2, 9].

Lemma 21. There exists w > 0 such that any solution (c, ) constructed in Proposition 19 with
c € [0,c;] and infecr (€, 8) > 0 satisfies infecr (€, 6) > w.

Proof. Fix ¢ as in Lemma 18 and fix any point &. Let ¢(§,-) = ¢(& — &,-). We construct a
sub-solution of u using ¢ to obtain a bound on u at & independent of &;. Recall that we fix r and
s < b sufficiently large that v, s > vo0/2.

By the Harnack inequality, there exists Cs sufficiently large that u(€,6) < Csu(€,0) for any
0,0 € (0,0 + s) and any £. When s is large enough, we may estimate v as above to obtain,

V(E0) ERX (0,0+5),  v(€) < Cunlé.0) + 1.

From the L* estimate on p and the construction of ¢, there exists @ such that @@(&o,8) >
infp p(-,0)
— 5= >0

s

1(&o,8). On the other hand, by the Harnack inequality, we have a¢ < p where o :=
where V; 5 is defined in Lemma 18 and ||V} s[lcc = 1. As a consequence, we can define

ag:=sup{a >0 : ap < pon [—r+&,r+ &) x[0,0+ s|}.

As usual, there exists (&max, Omax) such that p — apé has a minimum of zero at this point. It is
easy to check that this point must occur in the interior of (—r 4 &o, 7 + &) x (8,60 + s). Hence,

0> —Onmax(it — aP)ee — (10— pP)gs — c(p — and)e,

> (1—m—Csp— %)M + 0 (OmaxPee + oo + co¢),
o max 3.48
> (1*m*CsM*%>N*O‘O(( )¢ ’7rs¢) 077-‘-bln (gg , &])V (emax) ( )
Yoo cTm ngax 50
> ('77“,5 - T - CS#)M - OZO? sin (2 ” )V;",s(emax)-

From the Harnack inequality, we deduce that Csu(&max, Omax) > t(Emax, @) Recalling also the
inequalities infg p(-,0) > 0, ¢ < ¢, g <A, Vs > Yoo /2, We get

Yoo oy,
Xy Ymax Z .
#{Emos o) 4G, 2rsp(éo,0)

Taking r sufficiently large we have that p(&max, Omax) > Yoo/ (8Cs). Since p and agp¢ coincide at
(€max; Omax), we have o > é%‘;. We are finished by noting that

(&0, 0) > (&, 0) > g—g;w,s@-
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Next we show that the front has the required limits at infinity. The second part of this propo-
sition is crucial in the sequel in showing that our front moves with speed ¢ > cj.

Proposition 22. Any solution (c, i) of (3.47) with ¢ € [0,¢;], and pu(0,8) = € satisfies
(i) For all sufficiently large s < b, there exists as > 0 such that p > asQs on (—o00,0) x (8,0+s);

Proof. We start with the proof of (i). Recall from the proof of Lemma 21 that p satisfies

V(,0)eRx(0,0+s), —cpe — Oge — oo > (1—m—Cs,u— 7%) e (3.49)

Let r be sufficiently large so that, for s sufficiently large, v, s > Vo0/2. For any r > r, define

Or = QL COS (”—5> V;.s(0), as above, with ov = min ( £ QT":S), where Cj is defined below.

2r ﬁ’
We first show that ¢, < pon [—r,0] x [8,0 + s]. We have ¢, =0 < pon {—r} x [0, + s]. The
Harnack inequality, applied on [—r,0] x [0, 8 + s], yields a postive constant Cs such that

Cs  inf > 1(0,0) = ¢. 3.50
rolkpary ™ = MO =2 (3.50)
Recall that ||V, s||cc = 1. Thus, on [—r,0] x [6,8 + s], using (3.50), we have that ¢, < p.

As a consequence we can define

ro :=sup{r >r : ¢, <pon (=r0]x [0,0+ s]}.

We now prove that rg = oo by contradiction. Suppose that rg < co. Then, as usual, there exists
(€0, 60) € (—00,0]x[8, 0 + s] such that —¢,, has a zero minimum at this point. Note that 6y # 6+s
and &y # ro since p, vanishes at those points. Moreover, &, cannot be 0 since ¢,.(0,6) < ©(0,60) on
(8,8 + ), by our choice of a and by (3.50). Thus, (o, 00) € (—70,0) x (8,0 +s) or 6y = 0. In either
case, the maximum principle and Hopf maximum principle along with (3.48) and (3.49) imply that

ot cr . (7o ot
02 (T~ Con) p—ag-sin (20> Veno(0) 2 (T = Cont) .

Above, we used that s and r are large enough that 7, s > 7/2. Thus,

47(;:3 < 11(&0,60) = ¥re (60, 00) < v,
which contradicts the definition of a. As a consequence, 79 = co. Since V. — @, as 7 tends to oo,
then we have that a@Qs < u, as claimed.
We now prove (ii). By the Harnack inequality and Lemma 15, it is sufficient to prove that
lime o0 1(€,60) = 0. Suppose that there exists 6 > 0 and a sequence &, — +oo such that for all
n €N, u(&,,0) > d. Adapting the proof of (i), we find a5 > 0 that for all n € N,

M(fag) > as,éQs(Q)7 V(ﬁ, 9) € (_Ooagn] X [Q7Q+ S]- (3'51)

Hence (3.51) holds for all £ € R. This contradicts Lemma 21, lowering € so that ¢ < w if necessary.
O

Proposition 23 (The front speed is c¢j). Any nonzero, nonnegative solution (c,p) given by
Lemma 20 satisfying infecr (€, 0) = 0 satisfies ¢ > cj.
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Note that, due to Lemma 14, Proposition 22, and Proposition 23, the solution given by Lemma 20
travels with the speed ¢ = c;.

Proof. Assume that ¢ < ¢j. By analogy with the Fisher-KPP equation, we use oscillating fronts to
“push” solutions of (3.47) up to the speed c;.

Fix €1 > 0 to be determined. By choosing s = b — €1/(1 + ||p|l) and applying the Harnack
inequality for any 6,60’ € [6,0 + s|, we have that u(&,0") < Csu(€,0). Note that Cy and s depend
only on b and ;. Recall that ||;t]|~ is bounded above by Lemma 17. Hence, we have

0-+b 0+s 0+b
v = [ ue.on < [ Cule.0n+ [ ot = Clale0) + =1
0 0 0+s
where C! = sCs. As a result, u satisfies
V(£ 60) eRx (6,0 +s), —cpe — Opee — poo > (1 —m — Clp— 1) p.

We explain below how to construct a compactly supported sub-solution using a relevant spectral
problem in the complex plane, see also [9] for a related argument.
Recall from (3.37) that for any A\,e € RT, @, 5 solves the spectral problem

{Ql)(’s—i- (—/\c>\7375+9/\2+(1—51 —a—m)) Qrs =0, 0ec(0,0+s), (3.52)

Q/)\,s (Q) = Oa Q/\,s (Q + 8) = 07 Q/\,S > 07

with ¢y sc = cxs — (€1 +¢)/A. Let ¢; . be the minimum, occurring at A5 ., of ¢y 5. over all A € RT.

From the explicit expression of ¢y 5., we obtain ¢g . < ¢§ < ¢j. By fixing &1 sufficiently small, we

can ensure ¢ < ¢; ._, < ¢;. Thus, there exists e, > 0 such that
P - €1+ ¢ec
¢= 05756 - C}\;EC,S,EC - C)‘Z,Egvs - * :

S,Ec

Now consider (3.52) for complex values of A. Perturbation theory, see [25, Chapter 7, §1, §2,
§3], yields that the map A — c) 5. is analytic in A at least in a neighborhood of the real axis.

Our aim is now to find € and A := A g + @A 1 (With A1 # 0) such that ¢y, . = c. We note
that A\ ; # 0 allows us to construct compactly supported sub-solutions; see below. We argue using
Rouch’s theorem (around A, ).

Define f(A) = ¢y 5., — c. From above, we have that f(A;. ) = 0. Since A — Q) s is continuous,
Qs ., (8 + s) < 0 due to the Hopf lemma, and Q)+ ., > 0in (0,0 + s), then Re(Q»s) > 0 for
A sufﬁ’ciently close to A . . Moreover, since the zeros of analytic functions are separated, for any
sufficiently small r € (0, \; . ) thereis § > 0 such that | f(9B,(\;..))| = 0 > 0. Thus fixr € (0,5 .,)
sufficiently small so that [f(90B,(\;.,))| = 0 > 0 and Re(Qx ) > 0 for any A € B,(A;.,).

Define g(A\) = cxsc — ¢ Fix € < e, close enough to e, such that 0 < [e. —¢|/(A;., — 1) < 0.
Then, on 0B,();..), we have that

eo—el _ lec—¢]
Al T AL -

$,Ec

[fN) —g(N)| =

<SS TN gV

Hence the hypotheses of Rouché’s theorem are met. Thus, f and g have the same number of zeros
in Br(A;., ). Since f()\;. ) =0 then g has at least one zero, A.. Using the definition of g, we have
that ¢y, s = c¢. Moreover, since € < €., we have necessarily c;’s > c;‘ﬁc = c and thus A € R.
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We now let

¥(£,0) == Re(e Qx5 (0)) = e 78 [Re (Qn,5(0)) cos(Ar€) + Im (Qn,s(0)) sin(Af€)] .

Notice that (0,6) > 0 > w(i/\;}w,ﬁ) for all 0 € [0,0 + s). Hence, by the continuity of v, there

exists an open subdomain D C [~A_jm, A ;7] x [0,60 + s] such that ¢ > 0 on D and vanishes on
0D, except possibly where D intersects {6 = 8} where 1 satisfies Neumann boundary conditions.
By construction of 1, we have

—ctpe — Ohee — Yoo — (1 — &1 —m)Y = —eh, on D.
Thus, for all o > 0, the function v := p — o) satisfies
—cvg — Ovge —vgg — (1 —e1 —m)v > aecyp — (Cyp) p= (e — Cop) p — ev. (3.53)

Arguing as Lemma 21, there exists g such that v attains a zero minimum at (£, 6y) € D. The
minimum point is in the interior due to the boundary conditions. From (3.53) evaluated at (o, 6p),
we deduce u(&o,00) > & . Applying the Harnack inequality on D, we conclude that 1(0,0) > &
after possibly changing the constant Cl. ’

We emphasize that the renormalization p(0,60) = g, which is the only reason for which (3.39)
is not invariant by translation in &, is not used here. Hence, we note that our argument did not
depend on the spatial variable {. As such, we can conclude that u(§,8) > & for all {. We then
obtain infecp p(§,6) > Oig This contradicts the property infecr (€, 0) = 0. ) O

Taking the limit b — o

Since we have uniform bounds on pup, we may take locally uniform limits pp — peo as b tends to
infinity. Since the speed associated with s is ¢j and since ¢; — ¢* then o satisfies equation (3.36).
We need only check that the limit is non-trivial. Proposition 22.(i) gives that liminfe_, o vo0 (&) >
0. On the other hand, we may argue exactly as in Proposition 22.(ii) in order to show that
lim sup,_, o too(§,0) = 0. Hence ps is our traveling wave with speed ¢*, finishing the proof of
Proposition 3 in the case when m is super-linear.

3.2 Case two (the critical case): limg_o, m(6)/0 = k? > 0

In this section, we show the differences appearing in the critical case. We now assume that the
trade-off function takes the following form

m() = k20 + m(9),

where £ > 0 and m(0)/0 — 0.

We start by constructing the speeds of propagation for the travelling waves. This is where the
assumption on m plays the main role. For any spatial decay rate A > 0, we re-introduce the spectral
problem on [0, 6 + b] for b sufficiently large and possibly infinite:

Not (FAens + (A2 =r%) 0+ 1-m(0) Qrp =0,  0€(6,0+D),
@y (@) =Quap(@+0) =0, Qxp>0.

We may observe that as long as either A < k or b < oo, the previous spectral problem
has a unique solution cy; as in the previous sub-section. Moreover, one can prove again that
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limy_0 Acyp = 7{)510 < Xcyp. However, the unique issue of this case is that when A > x and b = oo
this spectral problem does not have any solution since, denoting c) = ¢ oo,

lim (=Acy + 60X + (1 —m(0))) = +oo.

0—+o00

We point out that, the borderline case A = k need not have a solution but it does if m(0) — oo.
Hence, the function A — ¢y has an infimum on (0, ) but may not have a minimum. We define
the minimal speeds ¢j := infycr+ cxp, if b < 00, and ¢* := inf)¢ (g x) cx otherwise. Note that

¢y = inf eyp < inf cyp < inf ¢y =c".
AERT AE(0,1) Ae(0,p)

Moreover limy_, o ¢; = c*, since limy_, 4 crp = +00 when A > k. As a consequence, the entire
proof of case one can be reproduced in this case to prove Theorem 3.

4 Proof of Theorem 4: linear spreading for the Cauchy problem

We first prove the following lower bound on the propagation speed of any initial data.

Lemma 24. Under the assumptions of Theorem 4, there exists n > 0 such that if ¢ < c¢* then

liminf inf n(t,z,0) > n.

=00 |z|<ct
Proof. Fix ¢ < c*, fix large constants a,b > 0, and fix & < 1 to be determined. Let y be the
solution to the slab problem on (—a,a) x (6,0 + b) given in Section 3.1.2 solving

—Caplte — Opige — pog = pp(a —m —v),

with the boundary conditions used above. We point out that while Section 3.1.2 only proves the
existence of p for a = 1, the general case may obtained similarly. From the work above, it follows
that we may choose a and b sufficiently large and 1 — « sufficiently small that its speed ¢, € (¢, ¢*].
Set n(t,z,0) = A~ u(x — capt, ), where A is a positive constant to be determined.

With this definition, using the elliptic Harnack inequality for u, we have that n satisfies

ny < Ongy + ngg + nla —m — AC; 'n).

On the other hand, arguing as in the proof of Theorem 6, we use Lemma 8 along with the decay of
n to obtain that, for ¢t > 1,

ng > Onge + ngg +n(l —ep —m — Cyn),

where ¢ is a parameter which tends to zero as b tends to co. We take b sufficiently large so
that 1 — ¢, > «. Choosing A > Cg, we see that n is a sub-solution to n for all ¢ > 1. Since
n(l,z,0) > 0 for all (z,0), we may choose A sufficiently large that n(0,z,0) < n(1,x,0). As a
result, the maximum principle implies that n(t,z,0) < n(t + 1,z,60) for all £ > 0 and all (z,6).
Recalling the definition of n, we have that, for all (z,0) € (—a,a) x (6,0 +b),

A (2, 0) < n(t+ 1,2 + copt, 0).

Arguing as in Step #3bis in Theorem 6, we may “wait” to remove the dependence on n(1,-,).
Namely, we may find a constant z19 > 0, independent of n(1, -, -), such that po < n(t+to, z+cqpt,0)
for all (z,0) € (—1,1) x (0,68 + 1)and ¢ sufficiently large. Evaluating at 6 = @ finishes the claim. [
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In addition, we obtain a matching upper bound.

Lemma 25. Under the assumptions of Theorem 4, if ¢ > ¢* then

lim sup n(tx,0)=0.
=00 g>ct, HO

Proof. Fix ¢ > ¢* and ¢y € (¢*,¢). Then there exists A\g > 0 such that ¢y, = ¢o. Let @), solve (1.4)
with ¢p and Ao as above. Let n(t, z,0) = Coe)‘ocO*AO(m*COt)QAO(H), where Cj is the constant in (1.2).
Then, by construction, ng < 7(0,-,-) and 7 satisfies

iy = 0Ty + Tigg + (1 — m).
The maximum principle implies that n <n. Thus,

lim sup n(t,z,0) < lim sup n(t,z,0)= lim Coe)‘oco_’\‘)(c_co)tHQ/\o||oo =0,
=00 2> 01,00 1—00 2>ct,0€0 t—o0

as desired. This concludes the proof.

The combination of Lemma 24 and Lemma 25 yields Theorem 4.

5 Proof of Proposition 2: Extinction of n when v, <0

Proof of Proposition 2. Recall that the eigenvector () is a natural super-solution for n. Indeed,
let 7a(t, x,0) = AQ()e’>=*, where the constant A is chosen such that ng < n(0,,-). Then

{nt = gy + Tige + (1 — m) 7, (5.54)

ﬁg(-, Q) =0.
By the comparison principle, since n is a sub-solution to (5.54), we have n < 7, and the conclusion

of the proposition follows from the negativity of vo, when v, < 0.
When 7 is zero, we argue as follows. Define v = n/@Q and notice that v satisfies

52(622@9)0 — vp.

Multiplying by Q?v and integrating the equation above, we have that

v = Ovgy +

Ld

5 /Q%ﬂ dxdf = —/Q2 (6]vz|® + vg|?) dxde—/cg?v?pdxde. (5.55)

It is enough to show that v tends uniformly to zero for bounded 6. If not, then there are positive
constants € and H and a sequence of times t,, — 0o, places x,, and traits 6,, € (6, H) such that

V(tn, Tn, On) > 2e.

Using parabolic regularity along with the uniform bound on n, Proposition 7, we can find a ~,
depending only on ug, H, and m, such that v > € holds on [ty t,+7] X [Tn—7, Tn+7] X [0n—", On+7].
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We point out that this clearly implies that p(t,xz) > 2ve for (t,x) € [tn,tn + 7] X [Tn — 7, Zn + 7]
The combination of these two facts gives us that

tnty
/ /Q2v2p dxdfds > C'H7%m7263-
tn

Since this inequality is true for all ¢ € [t,, t, + 7] for every n, we may conclude that

t 0 tn+y
lim / Q*v*pdxdhds > Z/ /Q2U2,0 dzdfds = oo.
0 n=1"tn

t—o0

Integrating (5.55) in time and using the inequality above, we have that

t
lim / Q*v? dzdd < / Q*v2 dzdf — lim / / Q*v?pdzdhds = —cc.
t—o00 t—o00 0
This is clearly a contradiction since the left hand side is non negative. O

A natural way to obtain a more precise estimate of the rates of decay when ., = 0 is to derive
a dedicated Nash-type inequality, as in the case for the heat equation. This is out of the scope of
the present paper, we do not go further in that direction.

6 A priori bounds for the Cauchy problem and a Harnack inequal-
ity
6.1 The uniform bound on n

In this section, we prove a uniform upper bound of n in L. Before beginning the technical work,
we set some notation that is necessary in the sequel. First, we define the parabolic cylinder

def
CR(Z()) = (to — Rz,to) X {(1’,0) : ‘l’ — .%0‘2 < R2, |0 — 90’2 < R2} s

where 29 = (to, zo,00) and R is any positive constant. In general, we may simply refer to Cr(zp) as
Cr when no confusion arises. Fixing § > 0, we recall, on this cylinder, the norms

|n(t7 x, 9) B TL(S, Y, 77)’
[n]s 26Cr = sup , and
[20Cn T oy msgmecn (1T — yl + 10 — 1| + [t — s[1/2)?

(n)115/2,2+50n = [Ntls/2,80n + Z [31;;35”]5/2,5,CR~
k+0=2

We also define the parabolic Sobolev spaces: for any p € [1,00] and Q@ C RT x R x O, let

1,2 def ) . i ak 9l ¢£|p
W,*(Q) {f : Q—>R.2j$réi>ecgz/ﬂ|8§8x89f\ dtdzdf <oo}.

We endow these with the obvious norm.
Our starting point for obtaining an L°* bound on n is the following bound on the tails of the
solution, which is very similar to Lemma 15 for the travelling waves.

Lemma 26. Denote, for any T > 0, My = supscjo)[[n(t; -, )L ®mxe)- For any & > 0, there
exists Cs, depending only on & such that n(t,z,0) < CsMrQ?.. In addition, p(t,z) < CMry.
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Proof. To find a super-solution, define, for 65 to be chosen later, the function

w::max<1 M)Q on R x ©.

mingg g1 Q°

We have n <1 on [0,7] x R x [6,0s] by construction. It satisfies
WYy — Otbee — 1hgg — (1 — m) ¢ = (_fygo +(5m) ¥, on[0,T] xR x ©.

Define 65 such that 85 > m~! (5_1720) and ng(x,0) = 0 for § > 5. This definition is possible by
Hypothesis 1. The function ¢ is then a super-solution of the linearized problem on [0,7] x R x
[0s,+00). Hence the comparison principle implies that ¢» > n on [0,7] x R x ©. This finishes the
proof of the first claim. The second claim follows by simply integrating the inequality in 6. O

With Lemma 26, we are now in a position to prove the L> bound on n (Proposition 7).

Proof. We recall the notation that Mr = supco py [|n(t, -, -)|| L (rx0) and point out that My must
be finite since a basic upper bound for the equation is given by the super-solution e My. Hence, we
have that, at worst, My < e My. Our goal is to obtain a bound on M7 independent of T.

A consequence of Lemma 26 is that the supremum of n can only be approached by points
(t,z,0) with 0 sufficiently small. Hence, by parabolic regularity and translation, we may assume
that My is achieved at some point (tp, xp, O7) with t7 € [0, T], similarly to [35, Section 2] and [7,
Section 7]. In addition, we assume that 67 + 4 > 6 in order to avoid complications due to the
boundary; however, such complications may be easily dealt with by a simple reflection procedure
outlined in [7, 35].

We assume without loss of generality that t7 > 5. Then

0 <ng—Opnge —ngg = n(l —m(fr) — p) < n(l —p).

at the point (¢, z7,07), since this is the location of a maximum. Thus, p(t7, z7) < 1.
Fix any p € (1,00), and local parabolic regularity results, see e.g. [29, Theorem 7.22], give

It s ony < C (llneaery) + 100 = m = Pllinieaery) < CMr + M3),

where we used Lemma 26 to bound p. We point out that the constant C', above, depends only on
p and m. With p large enough, we obtain via Sobolev embedding that for any § > 0,

[Mleatozivsey < C(Mr+ M?2).
Applying the Gagliardo-Nirenberg interpolation inequality to 6 — n (tp,z7, ), we obtain
1445 1

I iz, 27, Y g ory < CllnCtr, 22, ) e, o) [0 (75 27, N nts e, g,

Since [|n (tr, 27, ) |l Lso (e (67)) = Mr and || (b7, z, -) HL})(Cl(@T)) < p(tp,xzr) < 1, we obtain that

MTSC(MTJFM%)ﬁ.

This clearly gives a bound on My since 2/(2+3§) < 1. The bound on p follows from the combination
of this bound and Lemma 26. U
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6.2 Comparing p and n via a local-in-time Harnack inequality

With Lemma 26 and Proposition 7 in hand, we may now state the following Harnack inequality
which allows us to compare solutions of the local and nonlocal problems.

Proof of Lemma 8. First, using Lemma 26 along with the uniform bound from Proposition 7,
we note that n < CMQ?,. Fix R; > R such that fg; CMQ°.df < /2. Now, by arguing as in [1,
Theorem 2.6], we may find Cg, .+, such that, for all ¢t > ¢,

sup n(t,z,0) < CRr, et inf n(t,z,0) +¢/(2Ry).
lz—zo|,0—0<R1 lz—wol,0—0<R1

Since the proof in our setting is a straightforward adaptation, we omit it. Then,

[e.o]

Ry
p(t o) S/ sup n(t,m,@)d@—i—/ n(t,x,0)do
[ |I7I0|,97Q<R1 Ry

€ o
<R C inf n(t,xz,0) + = + CMQ? do < R,C inf n(t,z,0) +¢.
= T Re |lx—x0|,0—0<R1 ( ) 2 Ry QOO = T Rie |x—x0],0—0<R ( )

This concludes the proof. O

A Appendix: Applying the results of Li-Yau

Obtaining the bound used in Lemma 10

In this section, we briefly describe how to apply the heat kernel bounds of Li-Yau. To begin, we
compute the scalar curvature of R x © endowed with the metric g given by (2.13). The scalar
curvature, R, is defined to be

R=g" (&crfj — Ol + Ffjf’ée - Ffﬁ?z) ;

where we use Einstein summation notation, i.e. repeated indices are implicitly summed over. Here
g is the (i, j) entry in g~ ! and I'¢, is the Christoffel symbol given by the formula

C

1
ab = 596k (Ov9ka + Ougrb — OkGab) -

It is straightforward to compute that T'1; = I'y, = I'3, = '3, = 0, that I'l, = '}, = —1/26 and that
', = 1/260%. Plugging this into the equation for R, we see that R = —2/6%. For surfaces, the Ricci
and scalar curvatures are equivalent up to a multiplicative factor. Hence, the above computations
bound the Ricci curvature from below. Hence, R is bounded uniformly below by a constant —R,
where we set R = 2/Q2.

We now show how to obtain Lemma 10 from the results of [28]. In our setting, the statement
of [28, Corollary 3.2]* is that, for any @ > 0, there exists a positive constant Cp, depending only on
|/ |loos [|m”]|c0, R, and a, such that

Co

Gtv aevoaQ < Cot —
(tz ) /Nol(Sut (£, . 0)) Vol(Sui(£, 0.0)) exp{ 0

4
5C(t,x,0)}. (A.1)

4Strictly speaking, this result is only valid for a complete Riemannian manifold without boundary. See below for
a discussion of the adaptations to the proof to obtain the result in our setting.
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Here, for any z, n, and s, Sa(s,2z,n) :== {(Z,7) € Rx O :((s,2,1,2,7) < a}. To arrive at this,
we take, in their notation, ¢ = 1/4, a = 2, § = max{||m/||ec, ||m” ||}, and a = at. In addition,
what we refer to as (, G, R, and m, they refer to as p, H, K, and ¢, respectively. To finish, we
need only show that Vol(Sz(x,0,t)) Vol(Sz:(0,6,t)) is uniformly bounded from below.

Lemma 27. There exists a and ty > 0 such that for any t > to, v € R and 6 < ny_41(%),
Vol(Sz(t, z,8)) and Vol(Sz(t,0,8)) are bounded away from zero.

Proof. Let B1(0,0) = {(z,0) € Rx O : 22 + (§ — §)®> < 1}. For any @ > 1 and any ¢ sufficiently
large, we have that® B;(0,0) C Sz (t,0,8). Hence we have that Vol(Sz(t,0,6)) > Vol(B1(0,0)).
Since Vol(B1(0,8)) > 0, Vol(Sz:(t,0,8)) is uniformly bounded from below for all ¢ sufficiently large.

We now obtain the bound on Vol(Sz(t, z,0)). Fix 6; to be determined. If § € [,60; + 1), then
we argue as in the previous paragraph to obtain a lower bound on Vol(Sz(t,x,0)). Hence, we may
assume that 6 > 0;+1. The claim now follows by showing that (x—t,x+t)x (01,014+1) C Sa(t, z,0),
for 0, sufficiently large, though independent of ¢.

Indeed, fix (2/,60") € (x —t,z +t) x (61,01 + 1), and let Z(s) = (Z1(s), Z2(s)) where

Zi(s) =o'+ S(a —a),
and Zs solves

Zy = 2v/m(Zs(s)),

if s € [sy,4].
Zo(t) = 0, Zo(s) =0, [5¢,

Zy(s) =0, if s€]0,s] and {
Such a trajectory is reasonable since it solves the Euler-Lagrange equations on [s¢,t]. However, it
is not the optimal trajectory in # since we cannot ensure that s; = ¢, but this is not a problem for
our purposes. We note that s; > 0 exists since

O ml) L Bl ()

/t N /9 L s
st 2\/7@ / 2«/777,(77) —Jo 2m(01) B 2m(91)

where we have used the restriction § < 7, 41(t) and where the last inequality follows by possibly
increasing 0. We also used that Z is increasing on [sy, t].
We now estimate ¢ to show that (2/,6") € Sz (t, x,0). Indeed,

O+ Dt (49)

S omy) S

t—St:

t '2 ZQ
C(t,x,G,m’,G’)S/ L+ 22 4 m(Zy) | ds
o |42, T 4
Pl /- o\ 2 t[ 52 ¢ t [ 2 (A-3)
§A40<t >“+AS+W%>“<M+/5+W%>“

It remains to estimate the second term in (A.3):

/Ot [Zf+m(22)}ds:/Ostm(e/)dsm/sjm(zg)ds:/OS m(®') ds+/0 Do /m(Za) ds

0
=s;m(0) + | /m(s)ds <m0 + 1)t + Py, (1) = (M(01 4+ 1) + Yoo + 1) .
9/
Choosing @ = m(f; + 1) + Yoo + 1 + (40)~!, we conclude that (2,60") C Sa(t,=,0). Hence, (x —
t,x +t) x (01,01 + 1) C Sa(t,z,0), implying that Vol(Sz: (¢, z,0)) > O(1). O

5To see this fix any (x,0) € B1(0,0) and define Z(s) = (zmax{l — 5,0}, max{0,0(1 — s) + s0}). Notice that
[(Z23 )42y + Z3 /A + m(Za))ds < 2® /40 + (0 — 0)* /4 + maxp, (0.9) M < GL.
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Plugging this into (A.1) yields the bound in Lemma 10.

Discussion of the role of the boundary in [28, Corollary 3.2]

While the effect of having a boundary is quite well-understood (see, for example, [36]), since the
analogue of [28, Corollary 3.2] is not explicitly stated in [36], we briefly outline how to modify the
arguments of Li and Yau to obtain it in our setting. In this discussion only, we adopt their notation
(the notable changes are that n is denoted u, m is denoted ¢, and ( is denoted p).

We begin by noticing that, since we are seeking an upper bound on the propagation in terms
of f; q(s)ds, we may assume, without loss of generality, that gy(6) = 0. Indeed, if this is not the
case, we may replace ¢ with ¢ = yq where x is any smooth function satisfying x(8) = 1if 6 > +1,
x(0) € (0,1] if @ > 0, and x(f) = 0. Since this only increases the Oth order coefficient (1 — ¢), an
upper bound for solutions of the equation with ¢ in place of ¢ provides an upper bound for solutions
of the equation with ¢g. Further, gy(6) = 0 and f(f q(s)ds = f: q(s)ds + O(1).

The first step in obtaining their Corollary 3.2 in our setting is their Theorem 1.3, which gives
a differential inequality for u when there is no boundary. The proof follows from the work in their
Theorem 1.2, which we discuss now. The key idea is to define a function F' in terms of logu and
apply the maximum principle to it. If the maximum of F' is in the interior of the manifold, their
argument applies directly; that is, after choosing a parameter o > 0 carefully, the upper bound
comes directly from the fact that, at the maximum, F; — AF < 0, along with some computations.
On the other hand, we rule out the maximum occuring on the boundary with the following proof by
contradiction. The Hopf maximum principle implies that, if the maximum were on the boundary,
OnF' > 0, where n is the outward normal vector. Then, following the computation in their Theorem
1.1, we obtain 9, F = —211(Vlogu,Vlogu) — atd,q, where IT is the second fundamental form.
This is the equation below (1.6) in [28], where the J,¢ term is an additional term arising in our
setting. In view of paragraph above, 9,q = 0. Also, as in their setting, we observe that /11 > 0. To
see this, we point out that our domain is geodesically convex, i.e. all geodesics remain within the
domain. This is a consequence of [23, Lemma A.2.(iii)], which shows that the geodesics, denoted
v, have positive second coordinate; heuristically, it is true since the metric g rewards paths with
large 6. A consequence of the geodesic convexity is that I1 > 0. We conclude that 0, F < 0, which
is a contradiction. Hence, the conclusion of Theorem 1.3 holds in our setting.

The second step is in obtaining Theorem 2.2, a Harnack inequality, from Theorem 1.3. Since
the proof does not “see” the boundary and uses only Theorem 1.3, which we have outlined how to
obtain in our setting, it follows that Theorem 2.2 holds in our setting as well.

The third step is to obtain Lemma 3.1, an equation for the action . This is standard in the
Hamilton-Jacobi and physics literature. Since gy = 0 and since the metric g rewards paths with
larger 0, it is easy to check that any minimizing path of the action, {, does not touch the boundary
R x {#}. Hence, the standard arguments apply and the identity in Lemma 3.1 holds.

From here, they use Lemma 3.1 to obtain Lemma 3.2. Then they apply all the above-mentioned
results to obtain Theorem 3.1, from which the result that we use, Corollary 3.2, follows. In each of
these steps, the boundary plays no role. Hence, the conclusion of Corollary 3.2 holds in our setting.
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