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Abstract. Stochastic gradient (SG) is the most commonly used optimization
technique for maximum likelihood based approaches to independent component
analysis (ICA). It is in particular the default solver in public implementations of
Infomax and variants. Motivated by experimental findings on electroencephalog-
raphy (EEG) data, we report some caveats which can impact the results and inter-
pretation of neuroscience findings. We investigate issues raised by controlling the
step size in gradient updates combined with early stopping conditions, as well as
initialization choices which can artificially generate biologically plausible brain
sources, so called dipolar sources. We provide experimental evidence that push-
ing the convergence of Infomax using non stochastic solvers can reduce the num-
ber of highly dipolar components and provide a mathematical explanation of this
fact. Results are presented on public EEG data.

Keywords: Independent component analysis (ICA), maximum likelihood, stochas-
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1 Introduction

Independent Component Analysis (ICA) is a multidimensional statistical method that
seeks to uncover hidden latent variables in multivariate and potentially high-dimensional
data. In the ICA model we consider here, the observations x satisfy x = As, where s
are referred to as the sources or independent components, and A is the mixing matrix
considered unknown [12]. In the following, we assume as many sources as sensors: A
is a square matrix. This model is usually described as a latent linear stochastic model,
where x and s are random variables (r.v.) in RN , and A ∈ RN×N is a nonsingular
matrix. The goal of ICA is, given a set of observations of the r.v. x, to estimate the hid-
den sources s and the unknown mixing matrix A. In order to accomplish this task, the
key assumption in ICA is that the components s1, s2, . . . , sN are mutually statistically
independent [6], a plausibe assumption if each individual source signal is thought to be
generated by a process unrelated to any other source signal.

In neuroscience, and in particular when working with Electroencephalography (EEG)
data, ICA is extremely popular. It is used for artifact removal as well as estimation of
brain sources. Linear ICA is justified by the fact that EEG data are linear mixtures
of volume-conducted neural activities [13]. Each brain source is thought to represent
near-synchronous local field activity across a small cortical patch [14], which can be
modeled as an electrical current dipole (ECD) located within the brain [18].
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To solve the ICA estimation problem, we need to estimate a linear operator Ŵ ∈
RN×N , such that ŝ = Ŵx = ŴAs ≈ s, where ŝ is an estimation of the sources. In
the context of EEG, the estimated mixing matrix Â = Ŵ−1 gives us information about
how the estimated sources are seen at the sensor level. Indeed each column of Â can be
visualized as a scalp map (topography). This helps the EEG users to identify plausible
brain sources which correspond to ECDs. For such sources, topographies are spatially
smooth and exhibit a dipolar pattern.

A common approach to tackle the ICA problem is to cast it as a maximum likelihood
estimation problem [16]: given a probability density function (p.d.f.) ps(s), associated
with the sources, and a set X = {x(1),x(2), . . . ,x(T )} = {xj}j=T

j=1 , containing in-
dependent and identically distributed (i.i.d) samples of the r.v. x, one wants to find the
unmixing matrix W that maximizes the log-likelihood function `(W,X ) (for the sake
of simplicity, we make the dependence on X implicit in `):

`(W) =

T∑

j=1

[
N∑

i=1

log psi(w
>
i xj) + log|det W|

]
(1)

where w>i denotes the i-th row of W. One of the most popular algorithm in the EEG
community is Infomax [2] and it can be shown to follow this likelihood approach [5].

In order to maximize the log-likelihood function (1), we have at our disposal two
different families of optimization methods: batch methods, such as gradient descent,
which use at each iteration the entire set of observations X , and stochastic methods
which access at each iteration only one observation xj , or a small group of observa-
tions B = {xj} ⊂ X (also known as mini-batch). When using stochastic gradient (SG)
methods, the gradients used as update directions, with one sample or a mini-batch, are
affected by ‘noise’ [4]. The consequence is that unless so-called step size annealing
strategies are employed, SG will not reach a minimum of the minimized function [17].
On the contrary, gradient descent (GD), which is a non-stochastic batch method, does
guarantee a decay of the minimized function at every iteration and does reach points
with zero gradients (cf. Prop. 1.2.1 in [3]). Convergence rates can be up to linear for
strongly convex functions with Lipschitz gradients. However, one update of the param-
eters by GD requires a full pass on the whole dataset while SG does already reduce the
cost function after accessing a fraction of it. That is why when working with many sam-
ples, which is the case for EEG, SG exhibits a rapid convergence during the early stages
of the optimization procedure, yet this convergence then slows down and the cost func-
tion reaches a plateau well before a point with zero gradient is reached. In other words,
plain SG will stop too early if a high numerical precision solution is needed.

Infomax uses SG to maximize the log-likelihood function (1). In particular, it uses
a mini-batch SG method in combination with a step size annealing policy, which is
applied after one pass on the full data (Infomax considers one iteration as one pass on
the full data). As in any stochastic method, the Infomax solver needs an initial step size.

In the first part of the paper, we explore the impact of algorithm initialization, the
initial value of the step size, jointly with the annealing policy and the stopping criterion
used by the standard Infomax implementation. We explain theoretically why the com-
monly used initialization of Infomax produces highly dipolar sources. We then explain
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the observation that Infomax can eventually waste a lot of computation time without
converging, or worse can report convergence while the norm of the gradient is still high.
Finally, using public EEG data and an alternative optimization strategy we investigate
the impact of convergence on source dipolarity, highlighting specificities of EEG.

2 Infomax: description of the optimization algorithm

The maximum likelihood problem tackled by Infomax can be written as the following
minimization problem:

Ŵ = argmin
W

L(W) (2)

where L(W) = −`(W)/T denotes the normalized negative log-likelihood function.
In order to solve the problem (2), Infomax uses the relative gradient [1,7]

L̃′(W) =
1

T

T∑

j=1

[
φφφ(yj)y

>
j − IN

]
(3)

where yj = Wxj , where φφφ(yj) = [φ1(yj1), . . . , φN (yjN )]
>, and where

φk(yjk) = −p′sk(yjk)/psk(yjk) = tanh (yjk/2)

In order to solve (2), the reference Infomax implementation, included for example
in the EEGLAB software [8], uses a mini-batch stochastic gradient method, whose
iterative expression can be written as follows:

Wk+1 = Wk − α
∑

j∈Bk

[
φφφ(yj)y

>
j − IN

]
Wk (4)

where, before each pass on the full data, the set of samples {xj}j=T
j=1 is randomly per-

muted, and then, during the full pass, each mini-batch Bk is created by taking, se-
quentially, a subset of samples {xj} of size |Bk|. Once the pass on the full data is
completed, the stopping criterion is checked and the annealing policy is applied to de-
termine whether or not the step size α should be decreased. In this policy, the step size is
never increased. Finally, this process is repeated until the stopping criterion is fulfilled
or until the maximum number of iterations is reached.

Let us denote ∆k = Wk+1 −Wk. The stopping criterion used by the standard
Infomax implementation is ‖∆k‖2F < tol, where ‖·‖F is the Frobenius norm, tol is by
default 10−6 if N ≤ 32, and 10−7 otherwise. This implementation uses the following
heuristic for its annealing policy: if the angle between matrices ∆k and ∆k−1 is larger
than 60◦, i.e., arccos (Trace(∆>k ∆k−1)/(‖∆k‖F ‖∆k−1‖F )) > π/3, it decreases the
step size by 10% (α← 0.9α), otherwise the step size remains the same.

Regarding the stopping criterion ‖∆k‖2F < tol, it is important to notice that by
Eq. (4), ∆k is proportional to the step size α so that the algorithm will stop if the
gradient or the step size is small. Even if the stoppping criterion is not met, the step size
may have become small enough (even using the standard default values) to prevent any
significant update. Example of such behaviors on EEG data are given in Section 4.
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3 Assessing the performance of ICA using dipolarity

Dipolarity metric. ICA can be seen an unsupervised learning method, therefore, it is
in general difficult to assess its performance in real life scenarios where the ground truth
is unknown. In order to help to mitigate this issue, when using EEG data, Delorme et
al. [9] proposed to use the physics underlying the propagation of the electromagnetic
field throughout the head. Physics states that the signals measured on the scalp can be
modeled as linear mixtures of the electrical activities generated by ECDs located in-
side the brain. To assess the biological plausibility of ICA sources, Delorme et al. [9]
proposed to take each column of the estimated mixing matrix Â, which can be repre-
sented as a topography, and compute how well it can be modeled by a single ECD. The
following metric is defined by:

dipolarity(Âj) = (1− ‖Âj − Āj‖22/‖Âj‖22)× 100 (5)

where Âj , Āj denote respectively the j-th column of the estimated mixing matrix
and the corresponding topography obtained by fitting a single dipole. Taking into ac-
count (5), the “Near-Dipolar percentage (ND%)” of an ICA decomposition is defined
in [9] as: ND%(Â) = {#j : dipolarity(Âj) > τ}/N , that is, the percentage of re-
turned components whose topographies can be modeled by a single ECD with more
than a specified dipolarity threshold τ (specified as percentage of explained/residual
variance). Following [9], we will consider an ICA source to be biologically plausible
when its dipolarity is larger than τ = 90.

Relationship between initialization and dipolarity. ICA leads to nonconvex opti-
mization problems: solutions found by algorithms necessarily depend on their initial-
ization. In this section we discuss connections between initialization and dipolarity.

Learning of a separating matrix W starts with some initial value W0. While it
is generally possible to start with the identity matrix W0 = IN , it is a sound and
common practice to start with some whitening matrix, that is, with a matrix W0 such
that W0ΣxW>

0 = IN where Σx = Cov(x) denotes the covariance matrix of x. There
are infinitely many such matrices; two popular choices are ‘PCA’ and ‘sphering’, which
can be defined in terms of the eigen-value decomposition Σx = UDU>:

Wpca = D−1/2U>, Wsph = UD−1/2U>.
The topographies (the columns of matrix A0 = W−1

0 ) associated with the three
aforementioned initializations W0 = IN ,W

sph,Wpca, are displayed on Fig. 1. Of
course, the topographies associated with W0 = IN (Fig. 1(a)) are ‘quasi-dipolar’ in
the sense that activating only one channel could be interpreted as the effect of a single
source located just beneath the scalp. Much more striking is the fact that the sphering
W0 = Wsph produces topographies which all look dipolar. Fig. 1(b)) shows 6 of them,
randomly selected. Nothing similar is observed in Fig. 1(c) after PCA W0 = Wpca.
See also Fig. 4, which shows the dipolarity index for all components after sphering or
PCA, sorted in decreasing order.

If the dipolarity criterion is to be used for assessing the biological plausibility of a
source, one has to understand why a simple sphering would produce dipolar topogra-
phies. An explanation can be provided by the observation that somehow sphering is the
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compute how well it can be modeled by a single ECD. The following metric is used:

dipolarity(bAj) =

 
1� k

bAj � Ājk22
kbAjk22

!
⇥ 100 , (7)

where bAj , Āj denote respectively the j-th column of the estimated mixing matrix and
the corresponding best-fitting topography obtained using a single dipole fit. Taking into
account (7), the “total dipolarity” of an ICA decomposition is defined in [7] as follows:

Total dipolarity(bA) =
n

#j : dipolarity(bAj) > ⌧
o

(8)

that is, the number of returned components whose topographies can be modeled by
a single ECD with less than a specified error threshold ⌧ (specified as percentage of
explained/residual variance). Following [7], we will consider a ICA source biological
plausible when its dipolarity is greater than ⌧ = 90.

3.2 Relationship between initialization and dipolarity

ICA leads to nonconvex optimization problems, therefore solutions necessarily depend
on the initialization used. To illustrate this issue, let us analyze the following scenario.
Let A0 2 RN⇥N denote the mixing matrix at iteration zero. Let A0 be equal to the
identity matrix IN . The topograhies associated to the columns of A0 are shown in
Fig. 1(a). Each column of A0 is putting a value of one at each sensor, and zero in the
other ones.

(a) Identity (b) PCA

(c) Sphering

Fig. 1. Topographies associated to different initialization.
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where bAj , Āj denote respectively the j-th column of the estimated mixing matrix and
the corresponding best-fitting topography obtained using a single dipole fit. Taking into
account (7), the “total dipolarity” of an ICA decomposition is defined in [7] as follows:

Total dipolarity(bA) =
n

#j : dipolarity(bAj) > ⌧
o

(8)

that is, the number of returned components whose topographies can be modeled by
a single ECD with less than a specified error threshold ⌧ (specified as percentage of
explained/residual variance). Following [7], we will consider a ICA source biological
plausible when its dipolarity is greater than ⌧ = 90.

3.2 Relationship between initialization and dipolarity

ICA leads to nonconvex optimization problems, therefore solutions necessarily depend
on the initialization used. To illustrate this issue, let us analyze the following scenario.
Let A0 2 RN⇥N denote the mixing matrix at iteration zero. Let A0 be equal to the
identity matrix IN . The topograhies associated to the columns of A0 are shown in
Fig. 1(a). Each column of A0 is putting a value of one at each sensor, and zero in the
other ones.

(a) Identity (b) PCA

(c) Sphering

Fig. 1. Topographies associated to different initialization.

Title Suppressed Due to Excessive Length 5

compute how well it can be modeled by a single ECD. The following metric is used:

dipolarity(bAj) =

 
1� k

bAj � Ājk22
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Fig. 1. Topographies associated with different initializations (actually a subset of 6 of them).

‘smallest’ whitening transform. Indeed, if a whitening matrix is close to the identity,
then it should not modify much the ‘quasi-dipolar’ patterns of Fig. 1(a) and this is what
seems to happen upon observation of Fig. 1(b). So, in which sense would sphering be
the ‘smallest whitening transform’? An answer is provided by Theorem 1 of Eldar et
al. [10], which implies that, among all whitening matrices W, the sphering matrix is the
one with the minimal mean-squared difference E‖x −Wx‖2. In other words, among
all white random vectors Wx, Wsphx is the closest to x with closeness measured in
the mean-squared sense. In other words, sphering is the whitening transform which
moves the data the least. In terms of matrix norms, we can write the mean-squared
difference E‖x−Wx‖2 as E‖(IN −W) x‖2= Trace

[
(IN −W) Σx (IN −W)

>
]
,

so that, the sphering matrix is the closest to the identity in the matrix norm ‖M‖2Σ=
Trace

[
MΣxM>]. For later reference, we note that sphering is the default initialization

used by the current Infomax implementation in the EEGLAB package [8].

4 Numerical experiments

Comparison of EEGLAB and MNE implementations. Our numerical experiments
were conducted with the Infomax implementation of MNE-Python [11]. We checked
that this implementation matches the reference Infomax implementation in EEGLAB [8]
by reproducing the Infomax results published in [9] based on 13 anonymized EEG
datasets (publicly available at http://sccn.ucsd.edu/wiki/BSSComparison
[9,15]). This comparison is presented in Table 1. It shows the average across the 13 EEG
datasets used in [9]. In this table, “MIR” stands for Mutual Information Reduction [9],
whereas “ND 90%” denotes the percentage of ICA components with dipolarity larger
than τ = 90. In order to fit a single ECD to a topography, we used the same four-sphere
model used in [9] for forward computation. The radius of each sphere was equal to 71,
72, 79 and 85 mm, and their corresponding conductivities relative to the cerebrospinal
fluid were equal to 0.33, 1.0, 0.0042 and 0.33, respectively.

In the course of this comparison, we found that EEGLAB does not constrain the
fitted dipoles to be located inside the brain, whereas MNE-Python does. For this reason,
EEGLAB tends to report an artificially high number of dipolar components as compared
to MNE-Python (second row of Table 1). However, we checked that EEGLAB and
MNE-Python agree in the number of high dipolar components for dipoles located inside
the brain (third row of Table 1). Even better, we checked that they agree on the locations
of those dipoles.

http://sccn.ucsd.edu/wiki/BSSComparison
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Table 1. Comparison of EEGLAB and MNE-Python Infomax implementations.

Metric EEGLAB MNE-Python

MIR 43.092901 43.092938
ND 90% 43.445287 31.744312

EEGLAB loc. in ND 90% 22.751896 22.751896
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Fig. 2. Left: Frobenius norm of the relative gradient vs iterations. Right: Step size α vs iterations.

Evaluation of the stochastic gradient approach. We proceed to evaluate the perfor-
mance of the SG method used by Infomax. We use subject kb77 from the same study
[9,15]. The EEG dataset is composed of 306600 samples of 71 channels sampled at
250 Hz. The algorithm is evaluated by monitoring the step size, as well as the Frobe-
nius norm of the relative gradient after each pass on the full data. We consider the
following scenarios, differing by the initial step size α0 and tolerance tol:

– Infomax a: EEGLAB defaults: α0 = 6.5 × 10−4/log(N) ≈ 1.5 × 10−4 and
tol = 10−7.

– Infomax b: α0 = 10−3 as in [9], and EEGLAB default value for tol = 10−7.
– Infomax c: same α0 as in scenario “Infomax b” and tol = 10−14.

The left panel of Fig. 2 displays the evolution of the relative gradient norm ‖L̃′(W)‖F
across passes on the full data. As we can see in this figure, in none of the scenarios the
relative gradient ever go to zero. Scenarios a and b, which use the default tolerance,
either reach a plateau or stop early. Yet, reducing the tolerance in scenario c, reveals
that it is not sufficient to push convergence compared to b: the trajectory plateaus just
after the stopping point for b. However, the two plateaus of cases a and c are of different
natures, as revealed by the right panel of Fig. 2, which displays the step size trajectories.
For a, the step size remains constant after pass ∼ 83, hence we observe the known
plateau of SG methods with fixed step size, whereas for b and c the annealing policy
drives the step size to zero exponentially fast, therefore preventing the algorithm to
make any further progress.

Fig. 3 shows the evolution of dipolarity of the components across passes on the full
data. One can see in Fig. 3(a) that when starting with sphering most of the lines are
red which means that they exceed at some point the value of 90. This is due to ini-
tialization as explained previously. When initializing Infomax with PCA, see Fig. 3(c),
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(b) Sphering LBFGS
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(d) PCA LBFGS

Fig. 3. Evolution for scenario c of dipolarity during Infomax (left) followed by LBFGS (right).
Initialization with Sphering (top row) and PCA (bottow row). A line is colored red if it exceeds
the value of 90% during the iterations.

much less components reach this high dipolarity threshold. In both cases, we observe
that the dipolarity stops evolving after approximately 70 passes on the dataset, which
is consistent with the plateaus of Fig. 2. The two plots on the right column show the
same dipolarity metrics, but this time using the quasi-Newton method known as LBFGS
(Limited-memory Broyden-Fletcher-Goldfarb-Shanno), taking as initialization the un-
mixing matrices estimated by Infomax. In Fig. 3(b), we can see that two highly dipolar
sources according to Infomax leave the region of high dipolarity. In other words, push-
ing the convergence with LBFGS reduces here the number of highly dipolar compo-
nents as quantified in [9]. To evaluate the convergence of LBFGS towards a stationary
point, we computed the Frobenius norm of the relative gradient at the end of the itera-
tions. While this norm was about 10−4 after SG, it is about 10−7 after LBFGS, which
confirms that LBFGS does push significantly the convergence.

The dipolarity of the components after sphering or PCA, as well as following Info-
max and LBFGS in the same four cases as Fig. 3 is presented in Fig. 4. This plot is an
extra evidence that simple sphering already yields almost only highly dipolar sources.
PCA, on the contrary, contains far less dipolar sources. This is also in line with Fig. 1.
This plot also reveals that Infomax followed by LBFGS reaches almost identical dipo-
larities. This suggests that LBFGS manages to wash out the effect of initialization by
converging to the same local minimum.

To gain further evidence, we ran a number of checks. Fig. 5 quantifies how close
the unmixing matrix estimated after LBFGS is to the inverse of the mixing matrix ob-
tained by SG. The multiplication of these matrices should be close to the identity (up
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Fig. 4. Dipolarity of the components sorted in decreasing order. Plain lines correspond to sphering
initialization while dashed lines correspond to PCA initialization.

to permutation). Fig. 5 reports that it is far from it, demonstrating that LBFGS deviates
non-trivially from the output of Infomax. One can also see that the change operated by
LBFGS is larger in the PCA case. In other words, Infomax following PCA brings the
estimate further away from a stationary point than the sphering initialization. This con-
clusion only holds if the same stationary point is reached in both settings. Evidence for
this is presented in Fig. 6, where one can see that for this subject (kb77) the estimated
unmixing matrix obtained in the PCA condition is close to the inverse of the mixing
matrix obtained following sphering (up to a permutation). To assess if there is conver-
gence to the same local minimum when SG is followed by LBFGS, we ran the same
computation on all the subjects. Fig. 6 shows that for 8 out of 13 subjects the result
perfectly replicates.
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Fig. 5. LBFGS further transforms the Infomax components by a matrix T . Left shows log10(|T |)
using sphering initialization (for display, the sources are sorted to have the largest Tij in the lower
left corner). Middle shows the update following PCA initialization. Right plots the rows of the
same matrices after sorting each row (red is sphering and black is PCA).

5 Conclusion

We explored the annealing policy, the initial step size and the stopping criterion used
by the SG Infomax. We reported results where this algorithmic choices lead Infomax
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Fig. 6. Changing the initialization changes the local minimum otherwise the transform T linking
the sources obtained with the two initializing whiteners (PCA and sphering) would be the identity.
Each plot shows log10|T |. Left: Infomax, right: LBFGS. By completing the convergence process,
we find that in 8 cases out of 13, the resulting sources do not depend on initialization.
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to stop before reaching an accurate stationary point, despite a high number of iterations
and long computation times. We explained theoretically why the sphering initialization
used by Infomax produces highly dipolar sources. By further pushing the convergence
using a quasi-Newton method, we showed that the initialization influences the output of
Infomax, hence overestimating the number of highly dipolar sources. This observation
could explain why practitioners tend to avoid dimensionality reduction when Infomax
is used on EEG. Indeed sphering cannot be used in this case. This paper should be seen
as an instantaneous picture on current usage of ICA for EEG data. Given the massive
use of such techniques, we hope that it will motivate the development and dissemination
of better optimization schemes in this scientific community.
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