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A B S T R A C T

Lavender (Lavandula angustifolia) and lavandin (sterile hybrid of L. angustifolia P. Mill. � Lavandula latifolia
(L.f.) Medikus) are widely cultivated in the Mediterranean area for produce essential oils. In this study,
80 lavandin and 55 lavender essential oil samples from various varieties were analyzed. Firstly, a
chemometric treatment of mid-infrared spectra was used to evaluate the capacity of Partial Least Squares
Discriminant Analysis (PLS-DA) regression to discriminate French lavandin and lavender essential oil
(EO) samples and their varieties (Abrial, Fine, Grosso, Maillette, Matherone, Sumian and Super), and
secondly, to quantify the main compounds such as linalyl acetate, linalool, eucalyptol and camphor by
PLS regression using reference data from gas chromatography. The examination of PLS and PLS-DA
regression coefficients allowed the identification of metabolomic markers. The lavender/lavandin EOs
and their varieties were very well classified (100% for lavender/lavandin EOs and between 98 and 100%
for varieties). The calibration models obtained by PLS regression for the determination of the main
compound contents revealed good correlation (�0.86) between the predicted and reference values. This
method can be used to control the authenticity and traceability of lavender/lavandin and their varieties.
Finally, mid-infrared and Raman spectroscopy results were compared.

ã 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Thirty nine lavandula species plus a number of hybrids and
intraspecific taxa, mostly of Mediterranean origin, compose the
lavandula family (Lamiaceae). Among them, Lavandula angustifolia
(lavender) and its hybrid (lavandin) differ essentially in their
chemical composition. Lavender/lavandin essential oils are
obtained from lavender/lavandin by hydro-distillation. The quality
of the oil depends on three main factors: the quality of the plant,
the time of harvest, and the distillation process.

Lavender essential oils are used in perfumes and aromathe-
raphy. The essential oil produced from L. angustifolia is the most
suitable for use in perfumes, due to it high linalool content [1,2].
Lavandin essential oils are used in soap, detergents and cosmetics,
because of their high camphor content [2–8].

Lavandin is a hybrid between L. angustifolia P. Mill. and
Lavandula latifolia (L.f.) Medikus. Among its varieties (Abrial,
Grosso, Sumian and Super), Grosso is the most famous for its
essential oil yield. Among the main lavender varieties (Fine,
Maillette and Matherone), the Fine lavender is the most famous for
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the same reason, while the Matherone variety is currently less
cultivated.

As has been said, Lavender species differ in their chemical
composition, and logically so do their hybrids and the essential oils
they produce when distilled. Lavender and lavandin oils contain
more than one hundred compounds, including linalyl acetate,
linalool, camphor, borneol, eucalyptol and b-caryophyllene, each
contributing to the chemical and sensory properties of the oil. The
major distinction between the two essential oils lies in their
relative contents of linalyl acetate, linalool, eucalyptol and
camphor.

The chemical composition can be determined using gas
chromatography and gas chromatography-sniffing [9,10]. These
methods are usually applied for the purpose of quality control and
selection of high-quality plants, but they are very time-consuming,
and attempts have been made to find alternative analytical
methods.

In this context, vibrational spectroscopy methods (near-
infrared, mid-infrared (MIR) and Raman spectroscopies) combined
with chemometric treatments have been successfully introduced
for a non-destructive determination of metabolites present in
essential oils [11–22]. Momentarily, it is only by applying statistical
methods that EOs near-infrared spectra can be interpreted,
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whereas the bands that are characteristic of the individual
compounds can easily be seen in the MIR and Raman spectra,
therefore making it possible to discriminate between essential oils.
MIR spectroscopy is a tool for research and data analysis which is
well-known and widely used. During the past ten years, MIR
spectroscopy has increasingly been used in the food industry.
Vegetable oils including olive oil constitute an important group of
food products for which MIR spectroscopy has successfully been
applied to characterize French olives, to authenticate vegetable oils
and to distinguish the geographic origin of extra virgin olive oils
[23–26]. Whatever its acquisition mode, attenuated total reflection
(ATR) or transmission cell accessories for Fourier-transform
infrared (FT-IR) spectroscopy can be used to quantify, authenticate,
identify and classify fats, fatty oils or essential oils.

Currently in various studies, analytical data have been treated
using chemometric methods such as Principal Component Analysis
(PCA) [27,28], Soft Independent Modelling of Class Analogies
(SIMCA) [13] and Partial Least Squares (PLS) Regression [29,30].

The first part of this paper considers the potential of MIR
spectroscopy for discriminating between the two EOs and the
seven varieties. Then in the second part, the combination of MIR
spectroscopy and chemometric methods to quantify terpenoids in
EOs is presented, along with the identification of the metabolomic
markers of the varieties. In the last part, a comparison with
previous results from Raman spectroscopy used to determine the
original varieties of lavender and lavandin OEs [31] is given.

2. Materials and methods

2.1. Essential oil samples

In total, 135 samples were analyzed including 80 lavandin oil
samples and 55 lavender oil samples from several varieties. The
lavender and lavandin were L. angustifolia Miller and its hybrid, i.e.
L. angustifolia Miller � L. latifolia Linnaeus fils Medikus, French
type, which had been harvested in 2012, 2013 and 2014 in various
French collection areas (unknown department (00), Alpes-de-
Haute-Provence (04), Ardèche (07), Drôme (26) and Vaucluse (84)).
Samples were divided into varieties: Fine (FI, n = 19), Maillette (MA,
n = 24) and Matherone (MT, n = 12) varieties for lavender samples
and Abrial (AB, n = 15), Grosso (GR, n = 30), Sumian (SU, n = 16) and
Super (SP, n = 19) varieties for lavandin samples.

2.2. Pure standard substances

Pure standard substances � 3-octanone, lavandulyl acetate,
linalyl acetate, linalool, borneol, camphor, b-caryophyllene and
eucalyptol � were purchased from Sigma Aldrich (Steinheim,
Germany), Adrian (Aix-les-Milles, France), Lavender France
(Montguers, France), Fluka (Buchs, Switzerland), Alpha Aesar
(Karlsruhe, Germany), Alpha Aesar (Karlsruhe, Germany), TCI
Europe (Zwijndrecht, Belgium) and Merck (Schuchardt, Germany)
respectively.

2.3. Gas chromatography (GC)

2.3.1. GC–MS analysis
GC–MS analyses were performed on a 7890A GC system

coupled with a 5975C VL mass spectrometer detector (Agilent
Technologies) equipped with a HP-5MS capillary column (J&W
Scientific, 30 m � 0.25 mm, 0.25 mm film thickness). Data acquisi-
tion and processing were performed using the MSD Chemstation
E.01.01.335 (Agilent) software.1 mL of diluted essential oil (80 mL in
1.5 mL of ethanol) was injected. The experimental conditions
developed in the laboratory were: solvent delay, 2 min; pro-
grammed column temperature: 2 min at 80 �C, then 80 �C to 200 �C
(5 �C/min), then 200 �C to 260 �C (20 �C/min), final temperature
held for 5 min; injector (split ratio 60) and detector temperature:
250 �C; carrier gas: helium (flow rate 1.2 mL/min); ionisation
voltage 70 eV; electron multiplier, 1 kV.

2.3.2. GC-FID analysis
GC analyses were performed on a 7890A GC (Agilent

Technologies) system with a flame ionisation detector (FID)
equipped with a HP5 capillary column (J&W Scientific, 30 m � 0.25
mm, 0.25 mm film thickness). Data acquisition and processing
were performed using the Chemstation B.04.03-SP1 (87) (Agilent)
software. The experimental conditions were the same as given for
the GC–MS analyses. Hydrogen was the carrier gas at a flow rate of
1.2 mL/min. Linear retention indices were calculated with refer-
ence to n-alkanes (C8–C28).

2.4. Spectroscopy

2.4.1. MIR spectroscopy
The spectra of each lavender or lavandin oil sample were

recorded within the 1800–650 cm�1 spectral range with 4 cm�1

resolution and 64 scans, on a Nicolet Avatar spectrometer
equipped with a MCT/A detector, an Ever-Glo source, and a
KBr/germanium beam splitter. The MIR spectrometer was situated
in an air-conditioned room (21 �C). Samples were deposited
without preparation on an Attenuated Total Reflection (ATR)
accessory provided with a diamond crystal. Air was taken as
reference for the background spectrum collected before each
sample under the same conditions. After each spectrum, the ATR
plate was cleaned with ethanol solution, allowing the ATR crystal
to dry. Cleanliness was verified by collecting a background
spectrum and comparing it with the previous background
spectrum.

2.4.2. Raman spectroscopy
Spectra were collected with an Almega (Thermo-fisher

Scientific Nicolet) Raman spectrometer equipped with a Nd:
YVO4 diode-pumped solid-state (DPSS) laser (532 nm). The
minimum and maximum powers at the output of the laser head
were 15 and 150 mW, respectively. All spectra were taken using the
180� backscattering geometry. The detector was a charge coupled
device (CCD). Samples were placed in a quartz cell (2 mm) and the
spectra were recorded with 2 cm�1 resolution and two accumu-
lations of 15 s each at full laser power in the range 4000–90 cm�1

using the Omnic 7.2 software (Thermo-fisher Scientific Nicolet).
The Raman spectrometer was situated in an air-conditioned room
(21 �C).

During data preprocessing, the Extended Multiplicative Signal
Correction (EMSC) was used to correct unwanted variation effects,
such as diffusion effect. In this study samples are not filtered. Some
of them contain airborne particles and are very slightly colored.
EMSC contributes to making subsequent calibration model simpler
and statiscally more robust. The number of factors used for
modelling is reduced and RMSEP is slightly improved [32]. All
EMSC-pretreated spectra, constitute the matrix used to perform
PCA and most PLS regressions.

2.5. Chemometric analysis

PCA [33] is an unsupervised modelling method, also known as
projection method, and it is often the first step in exploratory data
analysis aiming to find patterns in the data. The procedure
establishes a linear spectral model which allows original and
correlated variables (absorbance) to be converted into uncorrelat-
ed variables called principal components or loading. These latent
variables contain the main information and are calculated from
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spectral differences and similarities. The procedure also reduces
data with no information loss: generally, a small number of
principal components is sufficient to summarize the available
spectral information. Therefore every EO spectrum can be
considered as a sum of principal components weighted by scores.
The representation of these components appears as a spectral
profile (spectral decomposition model) which is meaningful for a
spectroscopy user. PCA is oriented towards modelling the variance/
covariance structure of the data matrix into a model, which is
based on the significant spectral differences (significant scores)
[34] and considers noise as an error. The number of principal
components depends on the model complexity. Generally, the first
component extracts the largest source of variance and the last one
only extracts noise.

PLS regression [35,36] is a powerful multicomponent analysis
that overcomes the interferences and information overlaps inherent
to any supervised analysis of the relation between signal intensity
and the Y variable. PLS allows a sophisticated statistical approach
using a spectral region rather than unique and isolated analytical
bands [37,38]. The algorithm is based on the ability to mathemati-
cally correlate spectral data to a property matrix of interest, while
simultaneously taking into account all other significant spectral
factors that perturb the spectrum. It is thus a multivariate regression
method that uses a selected spectral region and is based on the use of
latent variables. To construct a model, the first step is to perform a
calibration. This involves collecting a calibration set of reference
samples, which should contain all chemical and physical variations
that are expected to occur in the unknown samples and that will be
used in the prediction set. The purpose of this calibration is to
establish a multiple linear regression between the MIR spectra and
the various parameters of the sample set. The second step consists in
a model validation using a prediction set (different from the
calibration set), i.e., the values obtained from the model are
compared with the values obtained with the reference method.
Table 1
Chemical composition of lavender EO varieties (mass fraction in% as obtained by GC).

RIa Compounds FI (n = 19) MA (n = 24) 

min max mean min max

923 a-Pinene 0.00 0.33 0.16 0.00 0.1
944 Camphene 0.00 0.20 0.10 0.11 0.3
973 Sabinene 0.12 0.66 0.33 0.21 0.6
980 b-Pinene 0.00 0.31 0.07 0.00 0.1
985 3-Octanone 0.30 1.60 0.79 0.75 1.9
989 b-Myrcene 0.17 0.85 0.39 0.15 0.6
1012 Hexyl acetate 0.11 0.41 0.25 0.18 0.6
1030 Limonene 0.16 0.66 0.31 0.06 0.3
1034 Eucalyptolb 2.69 5.88 4.05 0.80 2.9
1044 trans-b-Ocimene 2.18 4.69 2.95 0.38 2.8
1073 Linalool oxide 0.10 0.24 0.17 0.24 0.5
1087 a-Terpinolene 0.00 0.23 0.11 0.00 0.5
1098 Linalool 17.94 31.82 27.07 23.82 50.2
1106 Octen-1-ol acetate 0.46 1.29 0.92 0.39 1.6
1145 Hexyl isobutyrate 0.00 0.17 0.08 0.00 0.1
1150 Camphor 0.19 1.04 0.34 0.26 0.9
1168 Lavandulol 0.48 2.13 0.99 0.00 1.3
1171 Borneol 0.75 1.50 1.12 1.01 2.3
1183 Terpinen-4-ol 2.10 8.11 4.18 0.07 1.0
1193 Hexyl butyrate 0.23 0.47 0.35 0.24 0.7
1197 a-Terpineol 0.17 1.47 0.71 0.09 1.1
1260 Linalyl acetate 34.66 43.18 38.28 31.63 51.6
1293 Lavandulyl acetate 2.58 10.43 4.61 0.24 2.0
1386 Geranyl acetate 0.20 0.86 0.53 0.08 0.7
1429 b-Caryophyllene 3.63 6.11 5.02 2.65 6.5
1460 b-Farnesene 0.49 2.50 1.73 1.38 2.3
1492 Germacren D 0.44 1.55 0.82 0.14 0.5
1594 Caryophyllene oxide 0.29 0.79 0.52 0.29 0.9

a RI: Retention indices on HP-5 capillary column.
b cis-b-ocimene.
As is known, the first PLS loading vector estimates the
covariance vector between the measured spectrum and the
component concentration, as detailed in the past by several
studies [39,40]. The evaluation of errors in calibration and
prediction was carried out by computing the standard error of
calibration (SEC) and the standard error of prediction (SEP).

Another useful parameter is the relative error of prediction
(REP), which shows the predictive ability of the model, calculated
from the equation:

REP ¼ SEP
y

� 100 ð1Þ

where y is mean values of components. SEC,SEP and REP should be
as small as possible.

Partial Least Squares Regression has not previously been
employed in pattern recognition problems such as classification
for this specific application to lavender/lavandin EOs. However,
this technique can be adapted for classification, giving rise to the
Partial Least Squares-Discriminant Analysis (PLS-DA) regression
method [41]. PLS-DA is carried out using an exclusive binary coding
scheme with one bit per class. For the codification of samples, the
two EOs corresponding to lavender and lavandin were arbitrarily
classified in that order. For instance, a lavender sample was
codified by the vector {1; 0}. The sample was then assigned to the
class having the highest membership value. As it is difficult to
calibrate and predict samples with binary variables, it was
necessary to grade the results between the values 0 or 1. Samples
with values lower than 0.5 and higher than 1.5 were identified. as
outside the defined origin and samples with values between
0.5 and 1.5 were identified as belonging to the defined origin. The
same protocol was used to predict varieties. For the codification of
samples, the seven varieties corresponding to AB, GR, SU, SP, FI, MA
and MT were arbitrarily classified in that order. For instance, an AB
sample was codified by the vector {1; 0; 0; 0; 0; 0; 0}.
MT (n = 12) lavender (n = 55)

 mean min max mean min max mean

7 0.07 0.00 0.16 0.07 0.00 0.33 0.10
4 0.20 0.00 0.11 0.08 0.00 0.34 0.13
2 0.39 0.15 0.61 0.31 0.12 0.66 0.34
4 0.03 0.00 0.08 0.02 0.00 0.31 0.04
8 1.31 0.13 0.74 0.35 0.13 1.98 0.82
4 0.33 0.25 0.57 0.42 0.15 0.85 0.38
0 0.35 0.00 0.28 0.09 0.00 0.60 0.23
3 0.14 0.00 0.23 0.10 0.00 0.66 0.18
2 1.44 3.89 8.43 5.94 0.80 8.43 3.81
6 1.00 5.09 10.71 7.32 0.38 10.71 3.76
4 0.40 0.07 0.20 0.12 0.07 0.54 0.23
0 0.20 0.00 0.20 0.08 0.00 0.50 0.13
0 39.56 14.28 25.40 20.38 14.28 50.20 29.00
1 0.66 0.71 1.35 0.91 0.39 1.61 0.83
0 0.06 0.00 0.10 0.03 0.00 0.17 0.06
1 0.55 0.19 0.43 0.29 0.19 1.04 0.39
2 0.16 0.48 4.28 1.62 0.00 4.28 0.92
9 1.72 0.58 1.32 0.89 0.58 2.39 1.24
7 0.35 1.15 2.54 1.77 0.07 8.11 2.10
3 0.53 0.00 0.40 0.13 0.00 0.73 0.34
0 0.70 0.18 1.37 0.82 0.09 1.47 0.74
9 39.79 36.29 45.79 39.87 31.63 51.69 39.31
5 0.71 2.77 7.06 5.14 0.24 10.43 3.49
9 0.52 0.13 0.87 0.48 0.08 0.87 0.51
4 3.70 4.92 7.07 6.06 2.65 7.07 4.93
5 1.84 2.06 3.56 2.94 0.49 3.56 2.17
5 0.27 0.47 0.89 0.67 0.14 1.55 0.59
4 0.48 0.25 0.82 0.46 0.25 0.94 0.49



Table 2
Chemical composition of lavandin EO varieties (mass fraction in% as obtained by GC).

RIa Compounds AB (n = 15) GR (n = 30) SP (n = 19) SU (n = 16) lavandin (n = 80)

min max mean min max mean min max mean min max mean min max mean

923 a-Pinene 0.18 0.49 0.31 0.13 0.54 0.33 0.07 0.16 0.11 0.06 0.31 0.21 0.06 0.54 0.24
944 Camphene 0.19 0.38 0.27 0.10 0.33 0.22 0.08 0.19 0.13 0.06 0.28 0.19 0.06 0.38 0.20
973 Sabinene 0.33 0.80 0.59 0.18 0.56 0.36 0.00 0.23 0.12 0.13 0.39 0.25 0.00 0.80 0.33
980 b-Pinene 0.19 0.59 0.35 0.11 0.51 0.31 0.00 0.11 0.04 0.00 0.36 0.15 0.00 0.59 0.21
985 3-Octanone 0.11 0.35 0.21 0.00 0.00 0.00 0.37 1.07 0.67 0.11 1.37 0.86 0.00 1.37 0.43
989 b-Myrcene 0.32 0.53 0.42 0.30 0.68 0.49 0.31 0.83 0.50 0.28 0.58 0.43 0.28 0.83 0.46
1012 Hexyl acetate 0.09 0.25 0.16 0.07 0.22 0.13 0.17 0.82 0.41 0.00 0.13 0.04 0.00 0.82 0.18
1030 Limonene 0.55 0.85 0.68 0.41 0.84 0.63 0.00 1.08 0.64 0.40 1.18 0.88 0.00 1.18 0.71
1034 Eucalyptolb 6.75 10.46 8.44 3.11 7.66 5.31 2.95 4.30 3.51 2.79 10.05 7.28 2.79 10.46 6.13
1044 trans-b-Ocimene 2.25 4.16 2.90 0.16 0.45 0.29 0.97 1.96 1.52 0.42 2.65 1.66 0.16 4.16 1.59
1073 Linalool oxide 0.10 0.18 0.13 0.09 0.18 0.12 0.07 0.20 0.11 0.10 0.16 0.13 0.07 0.20 0.12
1087 a-Terpinolene 0.31 0.45 0.36 0.28 0.41 0.35 0.20 0.34 0.25 0.23 0.41 0.34 0.20 0.45 0.32
1098 Linalool 30.67 37.60 34.69 28.44 39.55 33.79 30.07 39.31 35.54 35.40 49.54 43.33 28.44 49.54 36.84
1106 Octen-1-ol acetate 0.32 0.68 0.48 0.22 0.50 0.32 0.07 0.43 0.27 0.12 0.25 0.18 0.07 0.68 0.31
1145 Hexyl isobutyrate 0.16 0.20 0.18 0.15 0.25 0.19 0.10 0.19 0.14 0.14 0.24 0.19 0.10 0.25 0.17
1150 Camphor 8.23 10.14 9.15 5.81 8.53 6.84 3.97 5.68 4.66 3.17 7.73 5.82 3.17 10.14 6.62
1168 Lavandulol 0.36 1.00 0.69 0.34 1.16 0.65 0.10 0.96 0.39 0.00 1.31 0.21 0.00 1.31 0.48
1171 Borneol 1.94 3.60 2.95 2.31 4.16 3.06 2.09 3.71 2.90 3.62 8.48 6.42 1.94 8.48 3.83
1183 Terpinen-4-ol 0.48 1.49 0.91 1.86 4.93 3.43 0.09 0.86 0.30 0.15 3.59 0.73 0.09 4.93 1.34
1193 Hexyl butyrate 0.30 0.55 0.39 0.30 0.55 0.41 0.43 0.92 0.69 0.31 0.71 0.51 0.30 0.92 0.50
1197 a-Terpineol 0.48 0.97 0.76 0.37 1.65 0.90 0.26 1.86 0.96 0.65 1.23 0.97 0.26 1.86 0.90
1260 Linalyl acetate 22.80 28.56 25.55 26.94 37.33 31.27 34.71 44.09 38.03 17.34 29.72 21.96 17.34 44.09 29.20
1293 Lavandulyl acetate 1.40 1.81 1.55 1.56 2.95 2.36 0.84 2.10 1.47 0.19 1.85 0.58 0.19 2.95 1.49
1386 Geranyl acetate 0.33 0.54 0.43 0.27 0.85 0.49 0.34 1.00 0.62 0.33 0.60 0.46 0.27 1.00 0.50
1429 b-Caryophyllene 2.17 3.19 2.60 1.30 2.12 1.75 1.08 1.71 1.37 1.03 2.01 1.38 1.30 3.19 1.77
1460 b-Farnesene 0.53 1.17 0.83 1.02 1.81 1.38 0.69 1.04 0.85 0.81 1.48 1.02 0.53 1.81 1.02
1492 Germacren D 0.51 0.94 0.72 0.54 1.02 0.74 0.46 0.70 0.56 0.38 0.83 0.53 0.38 0.94 0.64
1594 Caryophyllene oxide 0.08 0.19 0.12 0.00 0.13 0.08 0.05 0.12 0.08 0.00 0.14 0.07 0.00 0.19 0.09

a RI: Retention indices on HP-5 capillary column.
b cis-b-ocimene.
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To build all PLS regression models (PLS R and PLS-DA R),
91 samples were used: (FI, n = 13), (MA, n = 16), (MT, n = 8), (AB,
n = 10), (GR, n = 20), (SU, n = 11) and (SP, n = 13) and the internal
validation step was performed using full cross-validation. To test
the performance of the models, 44 samples were used: (FI, n = 6),
(MA, n = 8), (MT, n = 4), (AB, n = 10), (GR, n = 10), (SU, n = 5) and (SP,
n = 6).

Choice of the number of factors: The Jack-Knife technique [42]
was used to fix the number of factors needed for model
Fig. 1. MIR spectra of lavender 
construction. Full cross-validation was applied in regression, so
that the optimal factor number was determined based on the
prediction for the number of left-out samples from the individual
model.

Pearson coefficient (r): Evaluation of the regression coefficient
was carried out by computing the Pearson coefficient as follows:

r ¼ coyðX; YÞ
yar X � yar Y

ð2Þ
(FI) and lavandin (GR) EOs.
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where cov (X,Y) is the covariance and var is the variance.
Software: Chemometric analysis of the MIR spectra was

performed using a commercial software program (The UNSCRAM-
BLER X version 10.3 from CAMO/Software, Oslo, Norway).

3. Results and discussion

3.1. Gas chromatography

The identification of the compounds was achieved by compar-
ing their mass spectra with those in Wiley275 and NIST05a
libraries, as well as by comparing their retention indices with those
of authentic samples. Tables 1 and 2 list the relative oil
composition determined from the areas of the peaks correspond-
ing to the 28 major compounds, each accounting for more than
0.1% in the EOs. The major compounds identified in lavender
essential oils are linalyl acetate (39.31%), linalool (29.0%),
b-caryophyllene (4.93%), eucalyptol (3.81%), trans-b-ocimene
Fig. 2. Pure spectra of the 8 main compo
(3.76%) and lavandulyl acetate (3.49%). Regarding lavender
varieties, the low linalool content in MT (20.38%) and FI
(27.07%) is characteristic of these varieties as is the high lavandulyl
acetate content (4.61% for MT and 5.14% for FI). The low eucalyptol
content in MA (1.44%) is characteristic of this variety. The high
trans-b-ocimene content in MT (7.32%) is characteristic of this
variety. The high 3-octanone content in MA (1.31%) is characteristic
of the MA variety.

The major compounds identified in lavandin EOs are linalool
(36.84%), linalyl acetate (29.20%), camphor (6.62%), eucalyptol
(6.13%) and borneol (3.83%). Regarding lavandin varieties, the low
linalyl acetate content in SU (21.96%) is characteristic of the SU
variety, whereas the high eucalyptol content in AB (8.44%) is
characteristic of the AB variety. As shown in Tables 1 and 2, there
are significant differences between the lavender and lavandin EOs,
particularly regarding the contents in camphor and b-caryophyl-
lene. The lower camphor content in lavender (0.39%) than in
lavandin (6.62%) justifies that lavender is used in the perfume
unds in lavender and lavandin EOs.
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industry while lavandin is used in the toiletries industry. The high
b-caryophyllene content in lavender (4.93%) compared to lavandin
(1.77%) is characteristic of lavenders. All these differences show the
possibility of discriminating between lavender and lavandin EOs.

3.2. MIR spectroscopy

Fig. 1 shows the characteristic MIR spectra of lavender/lavandin
EOs in the 1800 � 650 cm�1 range. Even though the compositions
of lavender and lavandin EOs differ largely, their spectra are only
slightly different. Two examples can be given: the bands at
1324 and 1082 cm�1, which can be attributed to camphor
(1323 and 1079 cm�1 in Fig. 2). The spectra of the eight pure
terpenoids at high concentrations in lavender/lavandin EOs were
shown in Fig. 2. The assignment of the major bands was carried out
using literature data (see Table 3) [43–46]. Lavandulyl acetate,
camphor, linalyl acetate and 3-octanone showed a nC¼O at 1740,
1738, 1736 and 1713 cm�1, respectively. Lavandulyl acetate, linalyl
acetate, linalool and b-caryophyllene showed a nC¼C at 1647, 1645,
1640 and 1633 cm�1, respectively. The weak bands between 1483
and 1412 cm�1 and between 1390 and 1357 cm�1 could be assigned
to the dCH of methyl and methylene groups. The absorbance
between 1300 and 1000 cm�1 represented the nC��O and included
bands at 1236, 1172, 1109 and 1017 cm�1 for linalyl acetate and
1226 cm�1 for lavandulyl acetate. The weak bands at 1272, 1167,
1079, 920 and 813 cm�1 were attributed to eucalyptol. The weak
bands at 1020 cm�1 and 992 cm�1 for borneol, at 1018 cm�1 for
b-caryophyllene and at 995, 918, 835 and 689 cm�1 for linalool
Table 3
EOs and their corresponding metabolomic markers, GC references data and the most c

EOs and metabolomic markers mass
fraction in% GC

Metabolomic
markers

Mean mass fraction in% 

lavender EOs

MA (1.31) 3-Octanone 0.82 

MA (1.44)
AB (8.44)

Eucalyptol 3.8a

MT (7.32) trans-
b-Ocimene

3.76 

FI (27.07)
MT (20.38)

Linalool 29.00 

Lavandin (6.62) Camphor 0.39 

Borneol 1.24 

SU (21.96) Linalyl acetate 39.31 

FI (4.61)
MT (5.14)

Lavandulyl
acetate

3.49 

Lavender (4.93) b-caryophyllene 4.93 

a cis-b-ocimene. vibrations n: streching; d: deformation and v: wagging.
could be assigned to the dCH. The b-caryophyllene spectrum shows
vCH at 885 and 861 cm�1.

3.3. Principal component analysis (PCA)

Principal Component Analysis on the first and third compo-
nents PC1 and PC3, which represent 80% of the total spectral
variance, was carried out on MIR data (Figs. 3 and 4). PC2, which
represents 16% of the total spectral variance, does not provide a
complete separation between lavender and lavandin groups but
intensifies the difference between MA and MT varieties (Fig. 5).

PC3 separates the lavender and lavandin groups, lavender is
negatively projected while lavandin is positively projected (Fig. 3).
The observation of the third component (Fig. 4) reveals a high
positive contribution at 1735 cm�1 and other smaller contributions
at 1415, 1390, 1324, 1274, 1080 and 1049 cm�1, which were
attributed to camphor according to the spectra of the pure
compounds shown in Fig. 2. The bands at 1324 cm�1 and
1082 cm�1 have already been identified in the camphor and
lavandin EO spectra (see 3.2). High camphor content is a
metabolomic marker of lavandin EOs. The third component also
reveals a high negative contribution at 893 cm�1 and other smaller
contributions at 1228 and 1105 cm�1 attributed to b-caryophyl-
lene and correlated with its high concentration in lavender oils
(Fig. 4). b-Caryophyllene is a metabolomic marker of lavender EOs.

Varieties of lavender and lavandin EOs were differentiated on
PC1 and PC3 (Fig. 3). On PC1, we note a high positive contribution at
1737 and 1236 cm�1 and other smaller contributions at 1643, 1432,
haracteristic IR bands [37–40].

in Mean mass fraction
in% in
lavandin EOs

Mean mass fraction
in% in
all EOs

Wavenumbers
(cm�1)

Assignment

0.43 0.62 1713 n (C¼O)
6.13a 4.97a 1374

1272
1214
1167
1079
984
920
843
813

d (CH3(CO))
n (C��O)
n (C��O-C)
n (C��O-C)
n (C��O-C)
v (CH2)
d (CH)
v (CH)
d (CH)

1.59 2.67

36.84 32.92 1640
995
918
835
689

n (C¼C)
d (CH)
d (CH)
d (CH)
d (CH)

6.62 3.50 1738 n (C¼O)
3.83 2.53 1020

992
d (CH)
d (CH)

29.20 34.25 1736
1645
1236
1172
1109
1017

n (C¼O)
n (C¼C)
n (C��O)
n (C��O)
n (C��O)
n (C��O)

1.49 2.49 1740
1647
1226

n (C¼O)
n (C¼C)
n (C��O)

1.77 3.35 1633
1447
1367
1018
885
861

n (C¼C)
d (CH)
d (CH3)
d (CH)
v (CH)
v (CH)



Fig. 3. Score plot (PC1/PC3) of the PCA of MIR spectroscopic data (n = 135). Lavender EOs: Fine (FI), Maillette (MA) and Matherone (MT) and lavandin EOs: Abrial (AB), Grosso
(GR), Super (SP) and Sumian (SU).

Fig. 4. Loading plots (PC1/PC3) of the PCA of MIR data.
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Fig. 5. Score plot (PC1/PC2) of the PCA of MIR data (n = 135). Lavender EOs: Fine (FI), Maillette (MA) and Matherone (MT) and lavandin EOs: Abrial (AB), Grosso (GR), Super (SP)
and Sumian (SU).
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1367, 1040 cm�1 attributed to linalyl acetate and lavandulyl acetate
(Figs. 2 and 4). The bands at 1410, 1171, 1090, 1016, 989 cm�1 are
characteristic of linalyl acetate, while the band at 891 cm�1 is
characteristic of lavandulyl acetate. These bands are correlated
with the higher lavandulyl acetate concentration in the FI and MT
varieties and are anti-correlated with the lower linalyl acetate
concentration in the SU variety. Linalyl acetate is a metabolomic
marker of the SU variety and lavandulyl acetate is a metabolomic
marker of the FI and MT varieties. We note the presence of small
negative contributions at 1080, 1055, 976, 916 and 841 cm�1

attributed to eucalyptol. These bands are correlated with the
higher concentration of eucalyptol in the AB varieties. Eucalyptol is
a metabolomic marker of the AB variety. We also observe the
presence of other small negative contributions at 916 and
683 cm�1 attributed to linalool. These bands are correlated with
the lower concentration of linalool in the FI and MT varieties.
Linalool is a metabolomic marker of the FI and MT varieties.

On PC3, we note a high positive contribution at 1164, 1080 and
1049 cm�1 and other smaller contributions at 1467, 1446, 1373,
1274 and 1020 cm�1 attributed both to camphor and eucalyptol.
Fig. 6. Loading plot (PC2) o
The bands at 1745, 1735, 1415, 1390, 1324, 1196, 949, 935, 914 and
750 cm�1 are characteristic of camphor, which is the metabolomic
marker of lavandin EOs while the bands at 1355, 1305, 1215,
982 and 842 cm�1 are characteristic of eucalyptol. The bands
characteristic of eucalyptol are correlated with the higher
eucalyptol concentration in the AB variety. To provide a separation
between AB and other varieties, PC1 and PC3 use the same
metabolomic marker. We also note a high negative contribution at
1228 cm�1 attributed to both lavandulyl acetate and b-caryophyl-
lene. The band found at 893 cm�1 is characteristic of lavandulyl
acetate while the bands at 1105 and 823 cm�1 are characteristic of
b-caryophyllene, which is the metabolomic marker of lavender
EOs. Lavandulyl acetate is in higher concentration in the FI and MT
varieties. We confirm that lavandulyl acetate is a metabolomic
marker of the FI and MT varieties.

On PC2 we note a high positive contribution at 1742 cm�1 and
889 cm�1 and other smaller contributions at 1646, 1444, 1226,
844 and 789 cm�1 attributed to lavandulyl acetate (Fig. 6). These
bands are correlated with a higher lavandulyl acetate concentra-
tion in the MT variety. Lavandulyl acetate is a metabolomic marker
f the PCA of MIR data.



Table 4
Classification matrix obtained in prediction (PLS-DA regression) of lavender and lavandin EO varieties established from MIR data.

EOs Variety Number of latent
variables

AB
(n = 5)

GR (n
= 10)

SP
(n = 6)

SU
(n = 5)

FI
(n = 6)

MA
(n = 8)

MT
(n = 4)

False negative
samples

False positive
samples

MIR
models

lavandin AB 14 5 0 0 0 0 0 0 0 0

GR 15 0 10 0 1 0 0 0 0 1
SP 14 0 0 6 0 0 0 0 0 0
SU 7 0 0 0 4 0 0 0 1 0

lavender FI 13 0 0 0 0 6 0 1 0 1
MA 11 0 0 0 0 0 7 0 1 0
MT 10 0 0 0 0 0 0 3 1 0
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of the MT variety. We note a high positive contribution at 889 cm�1

and other smaller contributions at 1467, 1444, 1390, 1356, 1301,
1216, 1078, 1052, 985, 862, 844, 789 and 764 cm�1 attributed to
eucalyptol. These bands are correlated with a lower eucalyptol
concentration in the MA variety. Eucalyptol is a metabolomic
marker of the MA variety. We also note a high negative
contribution at 1715 cm�1 and other smaller at 1456, 1410,
1367 and 1203 cm�1 attributed to 3-octanone. These bands are
correlated with a higher 3-octanone concentration in the MA
variety. 3-Octanone is a metabolomic marker of the MA variety. We
also note a high negative contribution at 916 cm�1 and other
smaller contributions at 1456, 1410, 1367, 1342, 1263, 1203, 1115,
997, 831, 804, 739 and 688 cm�1 attributed to linalool. These bands
are correlated with a lower linalool concentration in the MT
variety. Linalool is a metabolomic marker of the MT variety.

3.4. Partial least square regression (PLS-DA r and PLS R)

The geographic origins of the samples were determined using
PLS-DA regression. Table 4 gives the prediction results for the
recognition of the origins of 44 lavender/lavandin EO samples. In a
first step, the discrimination between the lavender and lavandin
EOs was tested. The results were excellent with a 100% correct
classification. Then in a second step, the seven varieties were
discriminated and well-predicted with a percentage of correct
classification between 98 and 100%, as shown in Table 4.
Classification was 100% correct for the AB and SP varieties.
Concerning lavender varieties, there was one false positive sample
of the FI variety, one false negative sample for the MA variety as
Table 5
Statistics of the PLS regression models for the 14 main compounds in the lavender and

Compounds RIa Lavender/Lavandin
(Mean mass fraction in%)

R2

Linalool 1098 32.92 0.99
Linalyl acetate 1260 34.25 0.99
Camphor 1150 3.50 0.99

Eucalyptolb 1034 4.97 0.98
a-Terpineol 1197 0.82 0.99
Lavandulyl acetate 1293 2.49 0.99
b-Caryophyllene 1429 3.35 0.99

3-Octanone 985 0.62 0.99
trans-b-Ocimene 1044 2.67 0.99
Lavandulol 1168 0.70 0.99
Borneol 1171 2.53 0.99
Terpinen-4-ol 1183 1.72 0.99
b-Farnesene 1460 1.59 0.99

Limonene 1030 0.44 0.87

a RI: Retention indices on HP-5 capillary column.
b cis-b-ocimene. Prediction model (PLS regression) established from EMSC pretreated

prediction, SEC: Standard error of calibration, SEP: Standard error or prediction, LV: Lat
well as for the MT variety. For the SU variety, there was one false-
negative. MIR spectroscopy was used as a recognition method. As it
is possible to classify samples depending on whether they are
samples of lavender/lavandin EOs and their varieties, it is
interesting to understand how these classifications are established.

The determination of essential oil compositions by chemo-
metric analysis of MIR data was achieved using PLS regression
algorithms. The reference data were gas chromatographic data.
Table 5 gives the statistics of the PLS regression models for the
14 quantified compounds (accounting for more than 0.4%). For best
results, all the PLS regression models were built from EMSC
pretreated data.

As shown in Table 5, compounds can be classified into four
groups according to their relative error of prediction (REP). In the
first group, very good results were obtained compounds present at
high concentrations such as linalool, linalyl acetate (Fig. 7) and
camphor (REP � 5%). In the second group, four compounds were
correctly predicted since their relative error of prediction was
between 5 and 10%: eucalyptol, a-terpineol, lavandulyl acetate and
b-caryophyllene. In the third group, six compounds were correctly
predicted since their relative error of prediction was between 10
and 15%: 3-octanone, trans-b-ocimene, borneol, lavandulol,
terpinen-4-ol and b-farnesene. In the last group, a very bad result
was obtained for limonene, whose content is the lowest. The
performance of the PLS prediction models was directly related to
the compound contents.

As Haaland and Thomas explained, the first coefficient of
regression (noted vector B) was a good approximation of the pure
compound spectrum [47] in the case of PLS regression. Thus, the
 lavandin EOs established from MIR data.

SEC LV Q2 SEP REP (%)

 0.915 2 0.99 0.824 2.50
 0.858 4 0.99 0.732 2.14
 0.129 9 0.99 0.184 5.26

 0.461 6 0.99 0.376 7.56
 0.049 16 0.98 0.072 8.78
 0.214 7 0.99 0.202 8.11
 0.276 10 0.98 0.295 8.80

 0.066 11 0.99 0.087 14.03
 0.240 11 0.98 0.342 12.81
 0.071 16 0.99 0.099 14.14
 0.263 7 0.99 0.270 10.67
 0.154 11 0.99 0.217 12.61
 0.111 16 0.95 0.201 12.64

 0.153 5 0.86 0.154 35.00

 MIR data. R2: Coefficients correlation in calibration, Q2: Coefficients correlation in
ent variables and REP: Relative error of prediction.



Fig. 7. Linalyl acetate PLS validation results.
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first coefficients of regression obtained for quantification of
individual compounds were an approximation of the original
feature of the lavender/lavandin EOs and their varieties. For
spectroscopists, those regression coefficients B were very useful to
discriminate between metabolomic markers of lavender and
lavandin essential oils. The B-coefficients obtained for the lavender
and lavandin EOs (varieties) and those obtained for the quantita-
tive analysis were compared. Fig. 8 presents the superposition of
the B-coefficients obtained for the MT variety and its correspond-
ing metabolomic marker (trans-b-ocimene). The MT B-coefficients
presents high similarities and is correlated with that obtained for
Fig. 8. Superposition of the first regression vec
trans-b-ocimene quantitative analysis, with a Pearson coefficient
of 0.99. This high positive value shows that the MT variety was
characterized by a high amount of trans-b-ocimene: a mean
content of 7.32%. This high content could be considered as a
metabolomic marker of the variety. Fig. 9 presents the superposi-
tion of the B-coefficients obtained for the SU variety and its
corresponding metabolomic marker (linalyl acetate). The SU
B-coefficients present high similarities and are anti-correlated
with the regression coefficient obtained for linalyl acetate
quantitative analysis, with a Pearson coefficient of � 0.98. The
SU variety presented a mean content in linalyl acetate of 21.96%.
tors obtained for MT and trans-b-ocimene.



Fig. 9. Superposition of the first regression vectors obtained for SU and linalyl acetate.
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This low amount could be considered as a metabolomic marker of
the variety. No metabolomic markers were found for the FI, GR and
SP varieties.

3.5. Comparison of MIR and raman spectroscopy

In a previously published work [31], 104 samples, including
62 lavandin oil samples and 42 lavender oil samples, had been
analyzed by Raman spectroscopy. The results are slightly different
from the present results, because only two harvested crops were
used for Raman analysis. MIR quantification is better than Raman
spectroscopy quantification except for terpinen-4-ol. Raman and
MIR spectroscopies combined with chemometric analysis were
used to discriminate between the lavender/lavandin EOs studied
and their varieties (AB, GR, SU, SP, FI, MA and MT). Prediction with
MIR is better than with Raman spectroscopy (100% for lavaender
EOs as well as for lavandin EOs, and between 98–100% and 91–
100% for varieties respectively). Metabolomic markers could be
identified upon examination of the B-coefficients (for four varieties
with MIR data and five varieties with Raman data). Raman and MIR
spectroscopies confirm that eucalyptol is a metabolomic marker
for the AB and MA varieties. Raman spectroscopy reveals that
lavandulyl acetate, linalool and lavandulol are metabolomic
markers for FI, MT and SP, respectively, whereas MIR spectroscopy
reveals that trans-b-ocimene and linalyl acetate are metabolomic
markers for the MT and SU varieties, respectively. The band
corresponding to the trans-b-ocimene C¼C bond is more intensive
in MIR than in Raman spectra. For this reason, trans-b-ocimene can
be detected as a metabolomic marker by MIR spectroscopy. No
metabolomic marker was found for the SU variety with Raman
spectroscopy, and no metabolomic markers were found for the FI
and SP varieties with MIR spectroscopy. Furthermore, these two
methods did not reveal any metabolomic marker for the GR variety.
4. Conclusion

Mid-infrared spectroscopy combined with chemometric analy-
sis was used to quantify the main compounds in lavender and
lavandin EOs. The results quite accurately matched the prediction
for compounds present at high concentrations, but much less so for
minor compounds. Yet camphor, although minor, which may serve
to detect adulteration, is correctly predicted. In addition, MIR
spectroscopy combined with chemometric analysis was used to
discriminate the studied EOs (lavender and lavandin) and their
varieties (Abrial, Grosso, Sumian, Super, Fine, Maillette and
Matherone). The lavender/lavandin EOs and their varieties were
very well predicted (100% for lavender/lavandin EOs and between
98 and 100% for varieties). Metabolomic markers could be
identified through PCA (for lavender/lavandin EOs and varieties)
and using examination of first regression B-coefficients (for four
varieties). Mid-infrared spectroscopy or/and Raman spectroscopy
associated with chemometric analysis thus demonstrated to be a
powerful tool for the assessment of the lavender authenticity. This
approach could be applied to other essential oils commonly used in
the perfume industry, in medicine as well as in other fields.
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