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ON DISTRIBUTIONS DETERMINED BY THEIR UPWARD,
SPACE-TIME WIENER-HOPF FACTOR

LOÏC CHAUMONT AND RON DONEY

Abstract. According to the Wiener-Hopf factorization, the characteristic function ϕ
of any probability distribution µ on R can be decomposed in a unique way as

1− sϕ(t) = [1− χ−(s, it)][1− χ+(s, it)] , |s| ≤ 1, t ∈ R ,
where χ−(e

iu, it) and χ+(e
iu, it) are the characteristic functions of possibly defective

distributions in Z+ × (−∞, 0) and Z+ × [0,∞), respectively.
We prove that µ can be characterized by the sole data of the upward factor χ+(s, it),

s ∈ [0, 1), t ∈ R in many cases including the cases where:
1) µ has some exponential moments;
2) the function t 7→ µ(t,∞) is completely monotone on (0,∞);
3) the density of µ on [0,∞) admits an analytic continuation on R.
We conjecture that any probability distribution is actually characterized by its upward

factor. This conjecture is equivalent to the following: Any probability measure µ on R
whose support is not included in (−∞, 0) is determined by its convolution powers µ∗n,
n ≥ 1 restricted to [0,∞). We show that in many instances, the sole knowledge of µ and
µ∗2 restricted to [0,∞) is actually sufficient to determine µ. Then we investigate the
analogous problem in the framework of infinitely divisible distributions.

1. Introduction

Let µ be any probability measure on R. Denote by (Sn) a random walk with step
distribution µ, such that S0 = 0, a.s. Define the first ladder times associated to (Sn) by

τ− = inf{n ≥ 1 : Sn < 0} , τ+ = inf{n ≥ 1 : Sn ≥ 0} .
Then the Wiener-Hopf factorization of the characteristic function ϕ(t) =

∫
eitxµ(dx) of µ

can be written as,

(1.1) 1− sϕ(t) = [1− χ−(s, it)][1− χ+(s, it)] , |s| ≤ 1, t ∈ R ,

where χ− and χ+ are the downward and upward space-time Wiener-Hopf factors,

χ−(s, it) = E(sτ−eitSτ−1{τ−<∞}) and χ+(s, it) = E(sτ+eitSτ+1{τ+<∞}) .

To paraphrase W. Feller [3], XVIII.3, the remarkable feature of the factorization (1.1) is
that it represents an arbitrary characteristic function ϕ in terms of two (possibly defec-
tive) distributions, one being concentrated on the half line (−∞, 0) and the other one on
the half line [0,∞). However, this feature only exploits identity (1.1) for fixed s 6= 0 and
reflects the fact that µ is determined by the knowledge of the distributions of both Sτ− and
Sτ+ . But one may wonder about the extra information brought by the joint distributions
(τ−, Sτ−) and (τ+, Sτ+). In particular, is it true in general that µ is determined by only
one of these joint distributions? or equivalently, is it true that ϕ is determined by only
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one of its space-time Wiener-Hopf factors?

The aim of this paper is an attempt to answer the latter question. We will actually
show that µ is determined by χ+(s, it) in some quite large classes of distributions in-
cluding the case where µ has some positive exponential moments, or when t 7→ µ(t,∞)
is completely monotone on (a,∞), for some a ≥ 0, or satisfies some property which is
slightly stronger than analycity. Obviously all these assumptions can be verified from the
sole data of χ+(s, it). These different cases cover a sufficiently large range of distributions
for us to allow ourselves to raise the following conjecture. LetM1 be the set of probability
measures on R.

Conjecture C. Any distribution µ ∈ M1 whose support is not included in (−∞, 0) is
determined by its upward space-time Wiener-Hopf factor χ+(s, it), |s| < 1, t ∈ R.

A crucial step in the proof of (1.1) is the following development of the factor χ+(s, t), for
|s| < 1 and t ∈ R,

(1.2) log
1

1− χ+(s, it)
=
∞∑
n=1

sn

n

∫
[0,∞)

eitxµ∗n(dx) ,

see [3], XVIII.3, where µ∗n is the nth fold convolution product of µ by itself. We will
actually refer to µ∗n, n ≥ 0 as the convolution powers of µ. This identity shows that the
data of χ+ is equivalent to the knowledge of the measures µ∗n, n ≥ 1 on [0,∞) and leads
to the following equivalent conjecture.

Conjecture C’. Any distribution µ ∈ M1 whose support is not included in (−∞, 0) is
determined by its convolution powers µ∗n, n ≥ 1 restricted to [0,∞).

Each of the next sections corresponds to a class of probability distributions for which
Conjecture C holds. For the first one in Section 2, we prove that distributions having
some particular exponential moments satisfy conjecture C. Then in Section 3 we consider
three other classes for which a much stronger result than Conjectures C and C’ is true. We
will see that there are actually many distributions which are determined by the sole data
of µ and µ∗2 on [0,∞). This is the case when the function t 7→ µ(t,∞) is smooth enough.
In Subsection 3.2 we will consider the case where the function t 7→ µ(t,∞) is completely
monotone on (a,∞), for some a ≥ 0 and in Subsection 3.3 we will make a slightly stronger
assumption than analicity on this function. We will also present the discrete counterpart
of the completely monotone case in Subsection 3.4. Finally in Section 4 we will consider
Conjecture C in the restricted class of infinitely divisible distributions and show that if
the upper tail of the Lévy measure is completely monotone, then µ is determined by its
upper Wiener-Hopf factor. Then we end this paper in Section 5 with some important
remarks on the possibility of extending the classes of distributions studied.

In all this paper, we will denote by C the set of distributions satisfying Conjecture C.
Let us give a proper definition of this set.

Definition 1.1. Let C be the set of distributions µ ∈ M1 which are determined by their
upward Wiener-Hopf factor χ+(s, it), for |s| ≤ 1 and t ∈ R or equivalently by the data of
their convolution powers µ∗n, n ≥ 1 restricted to [0,∞). More formally,

C = {µ ∈M1 : if µ1 ∈M1 satifies µ∗n = µ∗n1 , on [0,∞), for all n ≥ 0, then µ = µ1} .
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The problem we investigate here originates from a result in V. Vigon’s PhD thesis
[9], see Section 4.5 therein, where a question equivalent to Conjecture C is raised in
the setting of Lévy processes. Our question is actually more general since it concerns
distributions which are not necessarily infinitely divisible. In particular, a positive answer
to Conjecture C would imply that the law of any Lévy process (Xt, t ≥ 0) is determined by
one of its space-time Wiener-Hopf factors or equivalently by the marginals of the process
(X+

t , t ≥ 0), see Section 4.

2. When µ admits exponential moments.

2.1. Recovering characteristic function and moment generating function. In
this paper, we will always assume that the support of the measure µ is not included in
(−∞, 0). Let us observe that from the data of the upward Wiener-Hopf factor χ+(s, it),
for |s| ≤ 1 and t ∈ R or equivalently from the data of the measures µ∗n, n ≥ 1 restricted
to [0,∞), we know the sequences, P(Sn < 0) and P(Sn ≥ 0), n ≥ 0, as well as the
distributions of both τ− and τ+. In particular we know whether (Sn) oscillates, drifts
to −∞, or drifts to ∞. The next result shows that provided n 7→ P(Sn < 0) tends
to 0 sufficiently fast along some subsequence, it is possible to recover the characteristic
function ϕ of µ on some interval containing 0, from the measures µ∗n restricted to [0,∞).

Lemma 2.1. Assume that there is α > 0 such that, at least for a subsequence,

(2.3) P(Sn < 0) ≤ e−αn .

Then for all t such that |ϕ(t)| > e−α, along this subsequence,

lim
n→+∞

E(eitSn1I{Sn≥0})
1/n = ϕ(t) .

In particular, if (2.3) holds then ϕ can be determined on some neighborhood of 0.

Proof. It suffices to write,

E(eitSn1I{Sn≥0})
1/n =

[
ϕ(t)n − E(eitSn1I{Sn<0})

]1/n
= ϕ(t)[1− ϕ(t)−nE(eitSn1I{Sn<0})]

1/n .(2.4)

Then from the assumption, for all t such that |ϕ(t)| > e−α and for all n such that
P(Sn < 0) < e−αn, ∣∣ϕ(t)−nE(eitSn1I{Sn<0})

∣∣ ≤ |ϕ(t)−nP(Sn < 0)| ,
≤ (|ϕ(t)|eα)−n .

Therefore, the left hand side of the above inequality tends to 0 along a subsequence and
this yields the result thanks to equation (2.4). �

Since, for all n ≥ 0,
P(S1 < 0, S2 − S1 < 0, . . . , Sn − Sn−1 < 0) = P(S1 < 0)n ≤ P(Sn < 0) ,

(2.3) cannot hold for all α > 0, unless P(S1 ≥ 0) = 1. Note also that if (2.3) holds then the
random walk (Sn) cannot drift to −∞. Moreover, if it holds along all subsequences, then
(Sn) necessarily drifts to ∞ thanks to Spitzer’s criterion which asserts that this happens
if and only if

∑
n−1P(Sn < 0) <∞.
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Let us denote the moment generating function of µ by φ(λ) :=
∫
R e

λx µ(dx), λ ∈ R.

Lemma 2.2. For λ < 0,
1. φ(λ) <∞ if and only if E(eλSτ−1I{τ−<∞}) <∞.
2. If φ(λ) < 1, then (2.3) holds.

Proof. Assume that E(eλSτ−1I{τ−<∞}) <∞. Then we derive from the following inequality,

φ(λ) = E(eλS11I{τ−=1}) + E(eλS11I{τ−>1})

≤ E(eλSτ−1I{τ−<∞}) + P(τ− > 1) ,

that φ(λ) <∞. Conversely, assume that φ(λ) <∞, and write for x > 0,

P(−Sτ− > x, τ− <∞) =
∑
k≥1

P(S1 ≥ 0, . . . , Sk−1 ≥ 0,−Xk > x+ Sk−1)

=
∑
k≥1

∫
[0,∞)

P(S1 ≥ 0, . . . , Sk−2 ≥ 0, Sk−1 ∈ dy)P(−S1 > x+ y)

=

∫
[0,∞)

v(dy)P(−S1 > x+ y) ,(2.5)

where v(dy) =
∑

k≥0 P(S1 ≥ 0, . . . , Sk−1 ≥ 0, Sk ∈ dy) is the renewal measure on [0,∞) of
the (weak) upward ladder height process of (Sn), see Chap. XII.2 in [3]. In particular, this
measure satisfies

∫
[0,∞)

eαyv(dy) <∞ for all α < 0. Then from (2.5) and the assumption,
we obtain

E(eλSτ−1I{τ−<∞}) =

∫
[0,∞)

eλyv(dy)

∫ ∞
y

eλzP(S1 ∈ dz)

≤
∫
[0,∞)

eλyv(dy)φ(α) <∞ .

Finally in order to prove assertion 2, it suffices to write,

P(Sn < 0) ≤ E(eλSn1I{Sn<0}) ≤ φ(λ)n ,

so that if φ(λ) < 1, then (2.3) is satisfied.
�

Theorem 2.1. Assume that we know the measures µ∗n restricted to [0,∞). Then we can
determine if (2.3) holds. Moreover if (2.3) holds, then we can determine if

(2.6) there is λ < 0 such that φ(λ) <∞.

When both (2.3) and (2.6) hold, the measure µ belongs to the class C .

Proof. The first assertion is trivial since 1 − µ∗n[0,∞) = P(Sn < 0). Assume that (2.3)
holds. Then from Lemma 2.1, there is ε > 0 such that the characteristic function ϕ(t)
is known for t ∈ [−ε, ε]. Recall from Section 1 that the knowledge of the measures µ∗n,
n ≥ 1 restricted to [0,∞) is equivalent to the knowledge of χ+(s, it), for all |s| ≤ 1 and
t ∈ R.

Therefore, from (1.1), we know χ−(1, it), for t ∈ [−ε, ε]. Note that t 7→ χ−(1, it)/χ−(1, 0)
is the characteristic function of the random variable Sτ− under P( · | τ− <∞). Since this
random variable is negative, the knowledge of its characteristic function on [−ε, ε] allows
us to determine if the moments mn = E((−Sτ−)n | τ− <∞) are finite for all n and if there
is λ < 0 such that E(eλSτ− | τ− <∞) =

∑
n≥0

mn
n!

(−λ)n <∞.
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We have proved that, the knowledge of the characteristic function t 7→ χ−(1, it)/χ−(1, 0)
on [−ε, ε] allows us to determine if E(eλSτ−1I{τ−<∞}) < ∞ for some λ < 0, which is
equivalent to φ(λ) < ∞, from Lemma 2.2. When this is the case, the knowledge of the
characteristic function t 7→ χ−(1, it)/χ−(1, 0) on [−ε, ε] is enough to determine the law of
the random variable Sτ− under P( · | τ− <∞). Then from (1.1) we can determine the law
µ, so that it belongs to class C . �

Remark 2.1. Actually, Lemma 2.1 might be exploited in a better way. Indeed, assume
that µ satisfies (2.3). Then the characteristic function ϕ is known on some neighborhood
of 0. If for instance ϕ is infinitely differentiable around 0, then all the moments of µ
can be recovered. If moreover, µ is determined by these moments, then it belongs to class
C . In particular µ does not need to have exponential moments as in Theorem 2.1. The
question of finding such an example is still open.

Recall that φ is a convex function on the interval {α : φ(α) < ∞}. Moreover, since
the support of µ is not included in (−∞, 0), φ is nondecreasing. If λ ∈ R is such that
λ = inf{α : φ(α) < ∞}, then φ′(λ) will be understood as the right derivative of φ at λ.
Similarly, if λ = sup{α : φ(α) <∞}, then φ′(λ) will be the left derivative of φ at λ.

Lemma 2.3. For all λ ∈ R such that φ(λ) <∞ and φ′(λ) > 0,

lim
n→+∞

E(eλSn1I{Sn≥0})
1/n = φ(λ) .

Proof. Let (S
(λ)
n ) be a random walk with step distribution µλ(dx) :=

eλx

φ(λ)
µ(dx). Since

E(S
(λ)
1 ) =

∫
R

xeλx

φ(λ)
µ(dx) =

φ′(λ)

φ(λ)
> 0 ,

the random walk (S
(λ)
n ) drifts to ∞, so that limn→∞ P(S

(λ)
n ≥ 0) = 1. Then the result

follows from the identity

P(S(λ)
n ≥ 0) =

E(eλSn1I{Sn≥0})
φ(λ)n

.

�

The following theorem shows that distributions having some negative exponential mo-
ments less than 1 or some positive exponential moments bigger than 1 belong to class C .

Theorem 2.2. The knowledge of the measures µ∗n, n ≥ 1 restricted to [0,∞) allows us
to determine if φ satisfies one of the two following conditions:

(a) There exists λ < 0 such that φ(λ) < 1.
(b) There exists λ > 0 such that φ(λ) ∈ (1,∞).

When at least one of these two conditions holds, the measure µ belongs to the class C .

Proof. From Lemma 2.2, if (2.3) does not hold, then (a) is not satisfied. Assume that
(2.3) holds. From Theorem 2.1, we can determine if there is λ < 0 such that φ(λ) < ∞.
If this is not the case, then clearly (a) does not hold. Assume that there is λ < 0 such
that φ(λ) < ∞. From Theorem 2.1, the measure µ belongs to class C so that we can
determine if (a) holds.

From our data, for all λ > 0 and n ≥ 1, the expression E(eλSn1I{Sn≥0}) is known. Assume
that there is λ > 0 such that limn→+∞ E(eλSn1I{Sn≥0})1/n > 1. Since E(eλSn1I{Sn≥0})1/n ≤
φ(λ), we have actually φ(λ) > 1. Moreover, our data clearly allows us to know if φ(λ) <
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∞. Then since φ(0) = 1, by convexity of the function λ 7→ φ(λ), it is clear that φ′(λ) > 0,
so that from Lemma 2.3, limn→+∞ E(eλSn1I{Sn≥0})1/n = φ(λ). This means that from
our data, we can determine if there is λ > 0 such that φ(λ) ∈ (1,∞) and in this case
limn→+∞ E(eλSn1I{Sn≥0})1/n = φ(λ), so that φ(λ) is known. Moreover, from the continuity
of φ on the set {x : φ(x) <∞}, there is an interval I containing λ such that for all x ∈ I,
φ(x) ∈ (1,∞) and from the same reasoning as above, φ(x) is known for all x ∈ I, so that
the measure µ is determined and we conclude that it belongs to the class C . �

We can easily check that condition (b) of Theorem 2.2 is satisfied in the two following
situations:

(b1) φ(λ) <∞ for all λ > 0.

(b2) µ is absolutely continuous in [0,∞) and its density f satisfies ln(f(x)) ∼ −λ0x,
as x→∞, for some λ0 ∈ (0,∞).

Indeed, in case (b1), if µ 6= δ0 then since φ is a nondecreasing convex function such that
φ(0) = 1 and since the support of µ is not included in (−∞, 0), limλ→∞ φ(λ) =∞. In case
(b2) it is clear that limλ→λ0− φ(λ) = ∞. Checking condition (a) in Theorem 2.2, and in
particular checking if µ has negative exponential moments under condition (2.3) requires
more work on the behavior of the moments of Sτ− , see the proof of Theorem 2.1.

2.2. Skip free distributions. A distribution µ whose support is included in Z is said
to be downward (resp. upward) skip free if µ(n) = 0 for all n ≤ −2 (resp. for all n ≥ 2).
Clearly skip free distributions possess exponential moments. Moreover, upward skip free
distributions belong to class C from Theorem 2.2 (b) and the note following its proof.
Then in this subsection we shall see that the case of downward skip free distributions
allows us to go a little beyond the cases encompassed by Theorems 2.1 and 2.2. We first
need to make sure that our data allows us determine if the support of a distribution is
included in Z.

Lemma 2.4. The support of the measure µ is included in Z if and only if the support of
the measures µ∗n, n ≥ 1 restricted to [0,∞) is included in Z+.

Proof. The direct implication is obvious. Then assume that the support of µ∗n, n ≥ 1
restricted to [0,∞) is included in Z+, whereas the support of µ restricted to (−∞, 0] is
not included in Z−. Then there is an interval I ⊂ (−∞, 0] \ Z− such that µ(I) > 0. Let
n ∈ Z+ \ {0} such that µ({n}) > 0 and h ∈ Z+ \ {0} such that hn+ inf I > 0. Then

0 < µ(I)µ({n})h = P(S1 ∈ I, Si+1 − Si = n, i = 1, . . . , h) ≤ P(Sn+1 ∈ hn+ I) .

This implies that µ∗(n+1)(hn+ I) > 0, where hn+ I ⊂ [0,∞) \Z+, which contradicts the
assumption. �

Theorem 2.3. Downward skip free distributions belong to class C .

Proof. Let µ ∈ M1 whose convolution powers µ∗n, n ≥ 1 restricted to [0,∞) are known.
Then from Lemma 2.4 we can determine if the support of µ is included in Z or not. Let
us assume that it is the case.

As already noticed at the beginning of this section, we can determine if (Sn) drifts to
∞ or not. Assume first that (Sn) drifts to∞. From Theorem 2.2 (a), we can determine if
there exists λ < 0 such that φ(λ) < 1. If this is not the case, then µ cannot be downward
skip free. To see this, consider for instance the analytic extension of the Wiener-Hopf
factorization (1.1) which is given in (9.3.1), p.99 of [2], for nonnegative arguments and in
the case of upward skip free random walks. On the contrary, if there exists λ < 0 such
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that φ(λ) < 1, then from Theorem 2.2, µ can be determined. In particular, we know if µ
is downward skip free or not.

Now assume that (Sn) does not drift to∞. From the same arguments as those we used
to prove identity (2.5), we obtain for all n ≥ 1,

P(Sτ+ > n) =
∑
r≥1

v(r)P(S1 > n+ r) ,

where v is the renewal measure of the (strict) downward ladder height process of (Sn).
In particular, this renewal measure satisfies v(r) ≤ 1 for all r ≥ 1. Moreover, (Sn) is
downward skip free and does not drift to ∞, if and only if v(r) = 1, for all r ≥ 1. Since
it is the only unknown in the above equation, we can determine if it is the case or not.
Finally, knowing that µ is downward skip free, we immediately determine this distribution
on R from its knowledge on [0,∞). �

It appears in the proof of Theorem 2.3 that downward skip free distributions which drift
to∞ actually satisfy condition (a) of Theorem 2.2. Hence the only additional case in this
subsection is this of downward skip free distributions which does not drift to ∞.

We will denote by E the set of measures µ satisfying assumptions of Theorem 2.1 or
those of Theorem 2.2 or those of Theorem 2.3, that is the set of measures satisfying both
(2.3) and (2.6) or (a) or (b) or downward skip free distributions. It will be called the
exponential class. From Theorems 2.1, 2.2 and 2.3 , we have E ⊂ C .

3. When µ is characterized by µ and µ∗2 on [0,∞).

3.1. Preliminary results. We will show that in many cases, the sole data of µ and
µ ∗ µ on [0,∞) actually suffices to determine µ. In this subsection, we give a theoretical
condition for this to hold.

We first observe that in Conjectures C and C’, there is no loss of generality in assuming
that µ is absolutely continuous on [0,∞).

Conjecture C”. Any absolutely continuous distribution µ ∈ M1 whose support is not
included in (−∞, 0) is determined by its convolution powers µ∗n, n ≥ 1 restricted to
[0,∞).

Lemma 3.1. Conjectures C, C’ and C” are equivalent.

Proof. We already know from Section 1 that Conjectures C and C’ are equivalent. Then
clearly, it suffices to prove that if Conjecture C” is true, then Conjecture C’ is true.

Let µ, µ1 ∈ M1 be any two distributions such that the measures µ∗n1 and µ∗n agree on
[0,∞), for all n ≥ 1. Let g be any probability density function on [0,∞), i.e.

∫∞
0
g(x) dx =

1 and let µ̄, µ̄1 ∈ M1 be the absolutely continuous measures whose respective densities
are h(x) =

∫
R g(y − x)µ(dy) and h1(x) =

∫
R g(y − x)µ1(dy), x ∈ R.

Denoting by g∗n the n-th convolution product of the function g by itself, it is plain that
for all x ≥ 0,

µ̄∗n[x,∞) =

∫ ∞
0

µ∗n[x+ y,∞)g∗n(y) dy and µ̄∗n1 [x,∞) =

∫ ∞
0

µ∗n1 [x+ y,∞)g∗n(y) dy .

Therefore since the measures µ∗n and µ∗n1 agree on [0,∞), for all n ≥ 1, the measures µ̄∗n
and µ̄∗n1 also agree on [0,∞), for all n ≥ 1 and from the assumption that conjecture C”
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is true, we conclude that the measures µ̄ and µ̄1 agree on R. Then we can identify both
characteristic functions:∫

R
eitx µ̄(dx) =

∫
R
eitx µ(dx)

∫ ∞
0

e−itxg(x) dx and∫
R
eitx µ̄1(dx) =

∫
R
eitx µ1(dx)

∫ ∞
0

e−itxg(x) dx .

This implies that
∫
R e

itx µ(dx) =
∫
R e

itx µ1(dx), for all t ∈ R thanks to the fact that the
characteristic function of g cannot vanish identically in an interval, see Theorem 2 in [8]
and by continuity of characteristic functions. Then we conclude that µ = µ1 on R, from
injectivity of the Fourier transform. �

We derive from Lemma 3.1 that there is no loss of generality in assuming that µ is
absolutely continuous on R. We will sometimes make this assumption and denote the
density of µ by f .

Lemma 3.2. For any probability density function, f on R and for all t ≥ 0,

(3.7)
∫ ∞
0

f(t+ s)f̄(s) ds =
1

2

(
f ∗ f(t)−

∫ t

0

f(t− s)f(s) ds

)
,

where f̄(s) = f(−s).

Proof. It suffices to decompose f ∗ f as

f ∗ f(t) =

∫
R
f(t− s)f(s) ds

=

∫ 0

−∞
f(t− s)f(s) ds+

∫ t

0

f(t− s)f(s) ds+

∫ ∞
t

f(t− s)f(s) ds .

Then from a change of variables, we obtain,
∫∞
t
f(t− s)f(s) ds =

∫ 0

−∞ f(t− s)f(s) ds =∫∞
0
f(t+ s)f̄(s) ds, which proves our identity. �

The main idea of this section is to exploit identity (3.7) in order to characterize the
function f̄ on [0,∞) (or equivalently f on (−∞, 0]) from the sole data of f and f ∗ f
on [0,∞). More specifically, assume that f restricted to [0,∞) fulfills the following
property: for any two nonnegative Borel functions g1 and g2 defined on [0,∞) such that∫∞
0
f(t+ s)g1(s) ds <∞,

∫∞
0
f(t+ s)g2(s) ds <∞, for all t ≥ 0, the following implication

is satisfied,

(3.8)
∫
[0,∞)

f(t+ s)g1(s) ds =

∫
[0,∞)

f(t+ s)g2(s) ds , for all t ≥ 0 ⇒ g1 ≡ g2 , a.e.

Then clearly, the map t 7→
∫
[0,∞)

f(t + s)f̄(s) ds characterizes f̄ on [0,∞) and therefore
from (3.7), µ is determined on R by the sole data of µ and µ∗2 on [0,∞).

Remark 3.1. There are density functions f which do not satisfy (3.8). For instance with
f(s) = 1

2
e−s, the operator t 7→

∫∞
0
f(t + s)f̄(s) ds = 1

2
e−t
∫∞
0
e−sf̄(s) ds provides a very

poor information on f̄ and certainly cannot characterize this function on [0,∞). Also if µ
has a bounded support in [0,∞), then clearly the operator t 7→

∫∞
0
f(t+ s)f̄(s) ds cannot

characterize f̄ outside this support.
Note also that from (3.7), the knowledge of t 7→

∫∞
0
f(t+s)f̄(s) ds and f(t), for t ≥ 0 is

equivalent to this of the functions f and f ∗2 on [0,∞). Therefore, in the above examples,
f is not even determined by the data of f and f ∗2 on [0,∞).
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The following proposition gives a sufficient condition for (3.8) to hold.

Proposition 3.1. Assume that µ is absolutely continuous on R with density f . Let us
introduce the following set of functions defined on [0,∞),

H :=

{
n∑
k=1

αkf(tk + ·) : n ≥ 1, αk ∈ R, tk ≥ 0

}
.

If the restriction of f to [0,∞) belongs to L∞([0,∞)) and if H is dense in L∞([0,∞)),
then for any g ∈ L1([0,∞)), the following implication is satisfied,

(3.9)
∫ ∞
0

f(t+ s)g(s) ds = 0, for all t ≥ 0 ⇒ g ≡ 0, a.e.

When (3.9) holds, the measure µ is determined on R by µ and µ∗2 on [0,∞).

Proof. If
∫∞
0
f(t+s)g(s) ds = 0, for all t ≥ 0, then clearly, since H is dense in L∞([0,∞)),∫∞

0
h(s)g(s) ds = 0 for all h ∈ L∞([0,∞)) and this implies that g ≡ 0, a.e.

Assume now that the restriction of the measures µ and µ∗2 are known on [0,∞). Recall
the notation f̄ from Lemma 3.2 and observe that the right hand side of identity (3.7)
is known for all t ≥ 0. From (3.9) this determines f̄ on [0,∞) and the measure µ is
determined. �

Unfortunately we do not know any example of function satisfying the condition of Propo-
sition 3.1 and finding a simple criterion on f for it to satisfy this condition remains an
open problem. More specifically, we may wonder if the converse of Proposition 3.1 holds,
that is if assertion (3.9) implies that H is dense in L∞([0,∞)). The latter problem can
be compared with Wiener’s approximation theorem which asserts that for a function f
in L1(R) the set H (thought as a set of functions defined on R) is dense in L1(R) if and
only if the Fourier transform of f does not vanish, see [6].

In Subsection 3.2, we give a class of density functions such that (3.8) holds and in Sub-
section 3.3, we give a class of density functions which are bounded on [0,∞) and such
that (3.9) holds.

3.2. The completely monotone class. In this subsection, we assume that µ is abso-
lutely continuous with respect to the Lebesgue measure on R and we denote by f its
density.

We will show that if f restricted to (a,∞), for some a ≥ 0 is a completely monotone
function satisfying some mild additional assumption, then µ is characterized from µ and
µ∗2 on [0,∞). Let us first recall that from Bernstein Theorem, the function f is completely
monotone on (a,∞), for a ≥ 0, if and only if there is a positive Borel measure ν on (0,∞)
such that for all t > a,

(3.10) f(t) =

∫ ∞
0

e−utν(du) .

Theorem 3.1. Assume that there is a ≥ 0 such that the restriction of f to (a,∞) is
completely monotone and that the support of the measure ν in (3.10) contains a sequence
(an) such that

∑
n a
−1
n = +∞. Then (3.8) holds and the measure µ is characterized by the

restriction of µ and µ∗2 to [0,∞). In particular, µ belongs to class C .



10 LOÏC CHAUMONT AND RON DONEY

Proof. Let g be any nonnegative Borel function defined on [0,∞) such that
∫∞
0
f(t +

s)g(s) ds <∞, for all t > a. Then from Fubini’s Theorem, for all t > a,∫ ∞
0

f(t+ s)g(s) ds =

∫ ∞
0

∫ ∞
0

e−u(t+s)ν(du)g(s) ds

=

∫ ∞
0

e−ut
∫ ∞
0

e−usg(s) ds ν(du) .

This expression is the Laplace transform of the measure θ(du) :=
∫∞
0
e−usg(s) ds ν(du).

The knowledge of this Laplace transform for all t > a characterizes the measure θ(du)
so that a version of the density function u 7→

∫∞
0
e−usg(s) ds is known on a Borel set

B ⊂ (0,∞) such that ν(B) = 1. Since this density function is continuous, it is known on
B and hence it is known everywhere on the support of ν. Therefore, from the assumption
on ν, we can find a sequence (an) such that

∑
n a
−1
n = +∞ and such that the Laplace

transform
∫∞
0
e−ansg(s) ds of the function g at an is known for each n. From a result in

[4], this is enough to determine the function g and (3.8) holds, see also [3], p.430.
Then we derive from (3.8) and Lemma 3.2 that the function f̄ is determined on [0,∞)

from the restriction on [0,∞) of µ and µ∗2. Therefore the measure µ is determined. �

We will denote by M the set of absolutely continuous measures µ whose density f satisfies
the assumption of Theorem 3.1. This class will be called the completely monotone class.
Theorem 3.1 shows that M ⊂ C .

Remark 3.2. Note that since f is a density function, the measure ν in (3.10) should also
satisfy

(3.11)
∫ ∞
0

f(t) dt =

∫ ∞
0

e−au

u
ν(du) ≤ 1 .

Remark 3.3. Clearly class E is not included in class M . Moreover, it is easy to find an
example of a measure in class M which does not belong to class E . First we readily check
that whenever the support S of ν is such that S ∩ (0, ε) 6= ∅, for all ε > 0, then µ has no
positive exponential moments, so that it cannot belong to class E . Then let us take for
instance the measure ν(du) on [0,∞) with density u21I{u∈[0,1]}. This measure satisfies the
assumption of Theorem 3.1, for a = 0.

Remark 3.4. Theorem 3.1 excludes completely monotone functions of the type f(t) =∑n
k=1 αke

−βkt, t > a, for some αk, βk > 0 and some finite n since in this case the measure
ν(du) =

∑n
k=1 αkδβk(du) does not satisfy the condition required by this theorem. It also

excludes functions f whose support is bounded since completely monotone functions on
(a,∞) are analytic on (a,∞). This remark is consistent with Remark 3.1.

3.3. The analytic class. Let us assume again that µ has density f on R. We will now
exploit the same kind of arguments as in the previous subsection by assuming that f is
the Fourier transform of some complex valued function.
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Theorem 3.2. Assume that there is a complex valued function k such that for all t ≥ 0,

(3.12) f(t) =

∫
R
eiutk(u) du .

Assume moreover that
1. the moments Mn =

∫
R |u|

n|k(u)| du, n ≥ 0 are finite and satisfy

lim sup
n

Mn

n!
<∞ ,

2. the function k does not vanish on any interval of R.
Then f is bounded on [0,∞) and (3.9) holds. In particular, the measure µ is characterized
by the restrictions of µ and µ∗2 to [0,∞) and µ belongs to class C . Moreover f admits
an analytic continuation on R.

Proof. The fact that f is bounded follows directly from (3.12) and 1. Let g ∈ L1([0,∞)),
then from (3.12) and Fubini’s theorem, we can write for all t ≥ 0,∫ ∞

0

f(t+ s)g(s) ds =

∫ ∞
0

∫
R
eiu(t+s)k(u) du g(s) ds

=

∫
R
eiut
∫ ∞
0

eiusg(s) ds k(u) du .

Assume that this expression vanishes for all t ≥ 0 and set ϕ(u) =
∫∞
0
eiusg(s) ds. This

means that the Fourier transform

Ψ(t) :=

∫
R
eiutϕ(u) k(u) du ,

of the function u 7→ ϕ(u)k(u), u ∈ R vanishes for all t ≥ 0. Then let us show that
under our assumptions, the function Ψ is analytic on the whole real axis. First note that
since |ϕ(u)| ≤ 1, u ∈ R and since all the moments Mn are finite, then Ψ is infinitely
differentiable on R and

(3.13) Ψ(n)(t) =

∫
R
(iu)neiutϕ(u) k(u) du , t ∈ R .

Then notice that for all t, u, x ∈ R,∣∣∣∣eiux(eitu − 1 +
itu

1!
− · · · − (itu)n−1

(n− 1)!

)∣∣∣∣ ≤ |tu|nn!
.

We derive from this inequality and (3.13) that

(3.14)
∣∣∣∣Ψ(x+ t)−Ψ(x)− t

1!
Ψ′(x)− · · · − tn−1

(n− 1)!
ψ(n−1)(x)

∣∣∣∣ ≤ Mn

n!
|t|n .

Set c = lim supnMn/n!, then from Stirling’s formula, for |t| < 1/(3c), the righthand side
of (3.14) tends to 0, as n→ +∞, hence the Taylor series of Ψ converges in some interval
around x, for all x ∈ R. It follows that Ψ is analytic on R. As a consequence, Ψ is
determined by its expression on the positive half line. Hence the Fourier transform of
the continuous function u 7→ ϕ(u)k(u) vanishes on R, which means that this function
vanishes a.e. on R. Since k does not vanish on any interval of R and ϕ is continuous,
it implies that ϕ(u) = 0, for all u ∈ R and we conclude that g(t) = 0, for almost every
t ∈ [0,∞). We have proved that (3.9) holds and from the second part of Proposition 3.1,
µ is characterized by the restriction of µ and µ∗2 on [0,∞).
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We have proved above that Ψ(t) =
∫
R e

iutϕ(u) k(u) du is analytic on R. It follows from
the same arguments that the continuation of f on R which is defined in a natural way by
f(t) =

∫
R e

iutk(u) du, t ∈ R is analytic, which proves the last assertion of the theorem. �

We will denote by A the class of distributions which satisfy the assumptions of Theo-
rem 3.2. It will be called the analytic class. From Theorem 3.2, A ⊂ C .

It is very easy to construct examples of distributions in class A , simply by choosing
any symmetric function k which satisfies assumptions 1. and 2. in Theorem 3.2. Let us
consider for instance k(u) = e−|u|, for u ∈ R. Then

f(t) =

∫
R
eiute−|u| du =

1

2(1 + t2)
, t ≥ 0 .

Any extension on R of this function into a density function determines a distribution of
A which does not belong to classes E and M . Conversely, none of the classes E and M
is included in A . It is straightforward for E . Then let us consider

f(t) =
1

4

(∫ 1

0

e−ut u1/2du+

∫ ∞
1

e−ut u−1du

)
, t > 0 .

The measure ν(du) =
(
u1/21I[0,1](u) + u−11I[1,∞)(u)

)
du satisfies the condition of Theorem

3.1 so that µ ∈M (here we choose a = 0). However, f is not bounded on (0,∞), hence
it does not admit an analytic continuation on R, so that f does not belong to class A ,
from Theorem 3.2. (Note also that since the support of ν intersects any interval (0, ε),
ε > 0, the measure µ has no positive exponential moments, see Remark 3.3.)

3.4. A class of discrete distributions. In this section, we present the discrete coun-
terpart of class M . More specifically, we will consider distributions whose support is
included in Z.

First we need the following equivalent of Lemma 3.2 for discrete distributions. Its proof
is straightforward so we omit it.

Lemma 3.3. Let (qn)n∈Z be any probability on Z. Define q∗2n =
∑

k∈Z qn−kqk. Then for
all n ≥ 1

(3.15)
0∑

k=−∞

qn−kqk =
1

2

(
q∗2n −

n−1∑
k=1

qn−kqk

)
,

where we set
∑n−1

k=1 qn−kqk = 0 if n = 1.

A sequence (ak)k≥0 of nonnegative real numbers is called completely monotone if for all
k ≥ 0 and n ≥ 1,

∆nak := ∆n−1ak −∆n−1ak+1 ≥ 0 ,

where ∆0a = a. A result from Hausdorff asserts that (ak)k≥0 is completely monotone if
and only if there is a probability measure ν on [0, 1] such that for all k ≥ 0,

(3.16) ak =

∫ 1

0

tk ν(dt) .

Let us set µ({n}) = µn, for n ∈ Z. Then by assuming that (µn)n≥0 is completely
monotone, we obtain a new class of distributions satisfying conjecture C as shows the
following theorem.
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Theorem 3.3. Assume that (µn)n≥0 is completely monotone and that the support of the
measure ν in the representation (3.16) contains a sequence (cn) such that

∑
(− ln cn)−1 =

∞. Then the data of µ and µ∗2 restricted to [0,∞) allows us to determine if the support
of µ is included in Z. Assume that this is the case, then the measure µ is determined by
the restriction of µ and µ∗2 to [0,∞). In particular µ belongs to class C .

Proof. First let us observe that we can derive from the data of of µ and µ∗2 restricted
to [0,∞) that the support of µ is included in Z. Indeed, assume that the support of µ
restricted to (−∞, 0] is not included in Z−. Then there is an interval I ⊂ (−∞, 0] \ Z−
such that µ(I) > 0. From (3.16), µ({n}) > 0 for all n ≥ 1. Let n ∈ Z+ \ {0} such that
n+ inf I > 0, then

0 < µ(I)µ({n}) = P(S1 ∈ I, S2 − S1 = n) ≤ P(S2 ∈ n+ I) .

This implies that µ∗2(n + I) > 0, where n + I ⊂ [0,∞) \ Z+, which contradicts the
assumption.

From the Haussdorff representation recalled above, there is a unique finite measure ν
on [0,1] such that µk =

∫ 1

0
tk ν(dt). Using this representation and Fubini’s theorem, we

can write for all n ≥ 0,
∞∑
k=0

µ−kµn+k =

∫ 1

0

tn

(
∞∑
k=0

µ−kt
k

)
ν(dt) .

From (3.15) in Lemma 3.3 applied to (µk), we derive that this expression is determined
from the knowledge of µ and µ∗2 on [0,∞). This means that we know the moments of
the measure

(∑∞
k=0 µ−kt

k
)
· ν(dt). This measure is finite and its support is included in

[0, 1], hence it is determined by its moments. Then we know the generating function
t 7→

∑∞
k=0 µ−kt

k of the sequence (µ−k)k≥0 on the support of ν, since this function is
continuous. From the assumption, we know this generating function on a sequence (cn)
such that

∑
(− ln cn)−1 = ∞. This is enough to determine the sequence (µ−k)k≥0, from

[4].
We conclude that the measures µ and µ∗2 restricted to [0,∞) allow us to determine µ

on Z. �

The set of measures satisfying the assumptions of Theorem 2.4 will be called the discrete
monotone class and will be denoted by Md. Theorem 2.4 shows that Md ⊂ C . Moreover,
it is clear that none of the classes E , M and A is included in Md and that these classes
do not contain Md.

4. When µ is infinitely divisible

The aim of this section is to present a problem equivalent to conjecture C in the
framework of infinitely divisible distributions. When µ is infinitely divisible, the Wiener-
Hopf factorization can be understood in two different ways: we can either factorize the
characteristic function ϕ as in (1.1), or we can factorize the characteristic exponent ψ,
which is defined by

ϕ(t) = eψ(t) , t ∈ R .
Then let us recall the Wiener-Hopf factorization in the latter context. Let (Xt, t ≥ 0) be a
real Lévy process issued from 0 under the probability P and such that X1 has law µ under
this probability, that is E(eiuXt) = e−tψ(u), for all t ≥ 0. The characteristic exponent of µ
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is given explicitly according to the Lévy-Khintchine formula by

ψ(u) = iau+
σ2

2
u2 +

∫
R\{0}

(1− eiux + iux1{|x|≤1}) Π(dx) ,

where a ∈ R, σ ≥ 0 and Π is a measure on R \ {0}, such that
∫

(x2∧ 1) Π(dx) <∞. Then
the Wiener-Hopf factorization of ψ has the following form:

(4.17) s+ ψ(u) = κ+(s,−iu)κ−(s, iu) , u ∈ R , s ≥ 0 ,

where κ+ and κ− are the Laplace exponents of the upward and downward ladder processes
(τ+, H+) and (τ−, H−) of X, that is E(e−ατ

+/−
t −iβH+/−

t ) = e−tκ+/−(α,β). These exponents
are given explicitly for α, β ≥ 0 by the identities,

κ−(α, β) = k− exp

(∫ ∞
0

∫
(−∞,0)

(e−t − e−αt−βx)1

t
P(Xt ∈ dx) dt

)
(4.18)

κ+(α, β) = k+ exp

(∫ ∞
0

∫
[0,∞)

(e−t − e−αt−βx)1

t
P(Xt ∈ dx) dt

)
,(4.19)

where k− and k+ are positive constants depending on the normalization of the local times
at the infimum and at the supremum of X. The joint law of (τ+1 , H

+
1 ) is the continuous

time counterpart of the joint law (τ+, Sτ+) defined in Section 1, in the setup of random
walks. We refer to Chap. VI of [1], Chap. IV of [5] or Chap. of [2] for complete
definitions of these notions. Note that our formulation of the Wiener-Hopf factorization
(4.17) includes compound Poisson processes since expression (4.19) takes account of a
possible mass at 0 for the measure P(Xt ∈ dx). This slight extension can be derived from
p. 24 and 25 of [9], see also the end of Section 6.4, p.183 in [5].

Set Π(t) = Π(t,∞), t > 0 and let µt be the law of Xt.

Lemma 4.1. The data of κ+ is equivalent to this of µt on [0,∞), for all t ≥ 0. Moreover,
the knowledge of κ+ allows us to determine the function Π(t), t > 0.

Proof. From identity

(4.20)
1

t
P(Xt ∈ dx) dt =

∫ ∞
0

P(τu ∈ dt,Hu ∈ dx)
du

u
, x ≥ 0, t > 0 ,

which can be found in Section 5.2 of [2], we see that the law of Xt in [0,∞), for all t ≥ 0
is determined by the law of (τ,H) and hence by κ+. (Note that equation (4.20) is also
valid for compound Poisson processes.) Conversely, it follows directly from formula (4.19)
that κ+ is determined by the data of the measure µt on [0,∞), for all t ≥ 0.

The second assertion is a consequence of the first one and Exercise 1 of chap.I in [1],
which asserts that the family of measures 1

t
P(Xt ∈ dx) converges vaguely toward Π, as

t→ 0. �

The above lemma enables us to make the connection between the two Wiener-Hopf fac-
torizations (1.1) and (4.17). Let us state it more specifically in the following proposition.

Proposition 4.1. The Wiener-Hopf factor κ+ allows us to determine the Wiener-Hopf
factor χ+.

Proof. The result is straightforward from Lemma 4.1. Indeed, knowing κ+ we can deter-
mine µn = µ∗n restricted to [0,∞), for all n ≥ 1 and from Section 1 that this data is
equivalent to that of χ+. �
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Definition 4.1. We will denote by Ci the class of infinitely divisible distributions µ which
are determined by the data of their upward Wiener-Hopf factor κ+(s, t), for s, t ≥ 0 or
equivalently by the data of the measures µt, t > 0 restricted to [0,∞).

Let us denote by I the set of infinitely divisible distributions. Then it is straightforward
that I ∩ C ⊂ Ci. In particular if Conjecture C is true, then Ci = I . It was proved in
Chapter 4 of [9] that infinitely divisible distributions having some exponential moments
belong to class Ci, which is a consequence of our results. The latter work uses a different
technique based on the analytical continuation of the Wiener-Hopf factors κ+ and κ−.

Let k−, δ−, γ− and k+, δ+, γ+ be the killing rate, the drift and the Lévy measure of the
subordinators H− and H+, respectively and let us set γ̄+(x) = γ+(x,∞) and γ̄−(x) =
γ−(x,∞). Let also U− be the renewal measure of the downward ladder height process
H−, that is U−(dx) =

∫∞
0

P(H−t ∈ dx).

Theorem 4.1. Assume that the function t ∈ (a,∞) 7→ Π(t) is completely monotone, for
some a ≥ 0, that is there exists a Borel measure ν on (0,∞) such that for all t > a,

(4.21) Π(t) =

∫ ∞
0

e−ut ν(du) .

Assume moreover that the support of ν contains a sequence (an) such that
∑

n a
−1
n = +∞.

Then the measure µ belongs to the class Ci.

Proof. The proof relies on Vigon’s équation amicale inversée, see [9], p.71, or (5.3.4) p.44
in [2] which can be written as

(4.22) γ̄+(x) =

∫
[0,∞)

U−(dy)Π(x+ y) , x > 0 .

From Lemma 4.1, given κ+, we know both γ̄+(x), for x > 0 and Π(t), for t > 0. Then we
will show that under our assumption, equation (4.22) allows us to determine the renewal
measure U−(dy), so that the law of X will be entirely determined, thanks to the relation:

Û−(z) =

∫
R+

e−yzU−(dy)

=
1

κ−(0, z)
, z > 0 ,(4.23)

and the Wiener-Hopf factorization (4.17).
From (4.21), (4.22) and Fubini’s Theorem, we can write for all x > 0,

γ̄+(x) =

∫
[0,∞)

U−(dy)

∫ ∞
0

e−(x+y)z ν(dz)

=

∫ ∞
0

e−xzÛ−(z) ν(dz) .(4.24)

Then the left hand side of equation (4.24) determines the measure Û−(z) ν(dz). Since
z 7→ Û−(z) is a continuous function, then it is determined on the support of ν. From our as-
sumption on this support and [4] we derive that Û− (and hence κ−(0, z) = − logE(e−zH

−
1 ))

for z > 0, is determined. �

Note that an analogous result to Theorem 4.1 holds when µ has support in Z and the
sequence Π(n), n ≥ 1 satisfies the same assumptions as (µn)n≥0 in Theorem 3.3. One
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may also wonder if an assumption such as (3.12) for Π(t) would lead to a similar result to
Theorem 3.2. However, in order to use the same argument as in the proof of this theorem
together with equation (4.22), we need Û−(z) to be bounded, which is not the case in
general.

Remark 4.1. As already observed above, the class Ci contains at least all probability
measures in the set I ∩ (E ∪M ∪A ∪Md) but Theorem 4.1 shows that there are other
distributions in Ci. Indeed, it is easy to construct an example of a compound Poisson
process (Xt, t ≥ 0) with intensity 1, whose Lévy measure Π satisfies conditions of Theorem
4.1 but such that the law µ(dx) = e−1

∑
n≥0 Π∗n(dx)/n! of X1 does not belong to any of

the classes E , M , A and Md.

An infinitely divisible distribution is said to be downward skip free (respectively upward
skip free) if the support of the measure Π is included in (−∞, 0] (respectively in [0,∞)).
Here is a counterpart of Theorem 2.3.

Theorem 4.2. Skip free infinitely divisible distributions belong to the class Ci.

Proof. The proof relies on Vigon’s équation amicale, p.71 in [9]. See also equation (5.3.3),
p.44 in [2]. If δ− > 0, then from [9], the Lévy measure γ+ is absolutely continuous and
we will denote by γ+(x) its density. Then Vigon’s équation amicale can be written as

Π(x) =

∫ ∞
0

γ+(x+ du)γ̄−(u) + δ−γ+(x) + k−γ̄+(x) , x > 0 .

It is plain that in the right hand side, the term
∫∞
0
γ+(x + du)γ̄−(u) is identically 0 if

and only if the Lévy process X is spectrally positive, that is µ is downward skip free.
Moreover, (4.17) for u = 0 entails that the knowledge of κ+ implies that of κ−(s, 0), for
all s ≥ 0. In particular, we know the killing rate of the subordinator (τ−t , t ≥ 0), and this
killing rate is the same as this of (H−t , t ≥ 0), that is k−. Then we conclude that X is
spectrally positive if and only if there is a constant δ− such that

Π(x) = δ−γ+(x) + k−γ̄+(x) , x > 0 ,

and this can be determined, since from our data, we know k−, Π(x) and γ̄+(x), for
x > 0. �

5. More classes of distributions

In the previous sections, we have highlighted the subclasses E , M , Md and A of C
and proved that these sets of distributions are distinct from each other. More specifically,
none of them is included into another one. Then the aim of this section is to show that
some of these classes can be substantially enlarged through simple arguments.

Actually for most of the subclasses investigated in this paper, we imposed conditions
bearing only on µ restricted to [0,∞), but one is also allowed to make assumptions on
µ∗n restricted to [0,∞). In order to move in this direction, let us mention the following
straightforward extension of results of Section 3.

Proposition 5.1. Let µ ∈M1 be absolutely continuous with density f . If there is n ≥ 1
such that the density function f ∗n satisfies the same conditions as f in Theorems 3.1 or
in Theorem 3.2, then µ is determined by µ∗n and µ∗2n restricted to [0,∞). In particular
µ belongs to class C .
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It is plain that an analogous extension of Theorem 3.3 is satisfied. Then here is a more
powerful result allowing us to extend our classes of distributions.

Theorem 5.1. Let µ ∈ M1. If there is ν ∈ M1 whose support is included in (−∞, 0]
and such that µ ∗ ν ∈ C , then µ ∈ C .

Proof. Let µ, µ1 ∈ M1 such that for each n ≥ 1, the measures µ∗n and µ∗n1 restricted
to [0,∞) coincide. Set µ̄ = µ ∗ ν and µ̄1 = µ1 ∗ ν. Then from commutativity of the
convolution product, µ̄∗n = µ∗n ∗ ν∗n and µ̄∗n1 = µ∗n1 ∗ ν∗n. Since the support of ν∗n is
included in (−∞, 0] and µ∗n and µ∗n1 restricted to [0,∞) are known and coincide, the
measures µ̄∗n and µ̄∗n1 restricted to [0,∞) and known coincide. Since µ̄ ∈ C , the measures
µ̄ and µ̄1 are equal. Finally, since the characteristic function of ν does not vanish on any
interval of R, see Theorem 2 in [8], we obtain the identity µ = µ1 from injectivity of the
Fourier transform. �

Theorem 5.1 entails in particular that Conjecture C’ is equivalent to the following one:
Any distribution µ ∈ M1 whose support is not included in (−∞, 0) is determined by its
convolution powers µ∗n, n ≥ 1 restricted to [a,∞), for some a ≥ 0. Indeed, it suffices to
choose ν = δ−a in Theorem 5.1. Finding more general examples illustrating this result is
an open problem. In order to do so, one needs for instance to find the characteristic func-
tion ϕ of a random variable which belongs to class C and the characteristic function ϕY
of a nonnegative random variable Y such that the ratio ϕ(t)/ϕY (−t) is the characteristic
function of some random variable X. Then since the law of X − Y belongs to class C , so
does the law of X from Theorem 5.1.

Note that neither Proposition 5.1 nor Theorem 5.1 allows us to enlarge class E . In
order to do so in the same spirit as in Theorem 5.1, one needs to find an invertible trans-
formation T (µ) ∈ M1 of a distribution µ ∈ M1 \ E , such that T (µ)∗n, n ≥ 1 restricted
to [0,∞) would be known and such that T (µ) belongs to class E .

Let us end this paper with an example of a distribution which satisfies conjecture C,
although it does not belong to any of the classes studied here. Assume that the support
of µ is included in Z and recall that according to Lemma 2.4, this assumption can be
checked from the data of the measures µ∗n, n ≥ 0 restricted to [0,∞). Assume moreover
that there are positive integers a and b such that µ(n) > 0, for all n ≥ a+ b and µ(n) = 0, for all n = 0, . . . , a+ b− 1,

µ∗2(n) = 0, for all n = 0, . . . , a.
(5.25)

Then we can determine µ on Z−, so that µ ∈ C . Let us first show that µ(n) = 0, for all
n ≤ −b. Assume that there is n ≤ −b such that µ(n) > 0. Then let k = 0, . . . , a such
that k − n ≥ a+ b. By definition of the convolution product 0 ≤ µ(k − n)µ(n) ≤ µ∗2(k),
but from our assumptions µ(k−n)µ(n) > 0 and µ∗2(k) = 0, which is contradictory, hence
µ(n) = 0, for all n ≤ −b. On the other hand, assumptions (5.25) entail that for all
k = a+ 1, . . . , a+ b− 1,

µ∗2(k) =
k+b−1∑
i=a+b

µ(k − i)µ(i) ,

that is µ∗2(a+1) = µ(−b+1)µ(a+b), µ∗2(a+2) = µ(−b+2)µ(a+b)+µ(−b+1)µ(a+b+1),...
Therefore, this system allows us to determine µ(n), for n = −b + 1,−b + 2, . . . ,−1 and
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the conclusion follows.

Let us consider for instance a = 1, b = 3 and

µ(−2) = µ(−1) =
1− c

2
and µ(n) =

1

n3
, n ≥ 4 ,

where c =
∑

n≥4 n
−3. Clearly, such a distribution does not belong to any of the classes A ,

M or Md. Then let us check that it does not belong to class E . The mean of µ satisfies∑
k≥−2

kµ(k) = −3

2
(1− c) +

∑
n≥4

1

n2
< 0 ,

so that (2.3) does not hold. Moreover µ has no positive exponential moments. Therefore
conditions of Theorems 2.1 and 2.2 are not satisfied and since µ is not downward skip
free, we obtain the conclusion. Finally it cannot be proved that µ belongs class C by
applying Proposition 5.1 or Theorem 5.1. However, from the above arguments, µ does
belong to class C .
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