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ABSTRACT. In this paper we study the properties of the Hopf bifurcations obtained for a delayed
predator-prey model with continuous prey harvesting. Considering delay as a parameter, we inves-
tigate the effect of delay on the stability of the coexisting equilibrium. It is observed that there are
stability switches, and Hopf bifurcation occurs when the delay crosses some critical value mp. By
applying the normal form theory and the center manifold theorem, the formulae that determine the
stability and direction of the bifurcating periodic solutions are established. Numerical simulations are
carried out to illustrate different analytical findings. For the considered parameters values, results
indicate that the Hopf bifurcation is supercritical and the bifurcating periodic solution is stable.

RESUME. Dans cet article nous faisons une étude sur les propriétés de la bifurcation de Hopf dans
un modele proie-prédateur retardé prenant en compte une récolte continue. Considérant le retard
comme un parametre de bifurcation, nous analysons I'effet de ce dernier sur la stabilité de I'équilibre
de coexistence. Compte tenu du changement de stabilité et de I'apparition d’une bifurcation de Hopf
lorsque le retard traverse une valeur critique 7o, nous appliquons la théorie des formes normales et
le théoreme de la variété centrale pour étudier la stabilité et la direction des trajectoires périodiques.
Des simulations numériques sont faites afin de confirmer les résultats analytiques obtenus. Pour des
valeurs des parameétres considérés, les résultats indiquent que la bifurcation de Hopf est supercritique
et la solution périodique qui en résulte est stable.

KEYWORDS : Delay; predator-prey; Hopf bifurcation; local bifurcations.
MOTS-CLES : Retard; prédateur-proie; bifurcation de Hopf; bifurcations locales.




2 ARIMA - Volume 28 — 2017

1. Introduction

The combined effects of harvesting and time delay on the dynamics of predator-prey
models have a strong impact on the dynamic evolution of populations subjected to them.
Therefore, many works have been investigated by many authors taking in account time
delay. We refer to [3, 6, 10, 12] for general delay biological systems and to [1, 4, 5, 13,
14, 16] for studies on delay predator-prey system. In general, delay differential equations
exhibit much more complicated dynamics than ordinary differential equations since a time
delay could cause a stable equilibrium to become unstable and cause the populations to
fluctuate.

On the other hand, there are many work on predator-prey models which consider har-
vesting [8, 9, 11, 17]. The problem is that these models consider either constant or linear
harvesting functions which easily leads to the extinction of the populations.

In this paper, we consider a system of delayed differential equations modelling the
predator-prey dynamic with a continuous double threshold harvesting and a Holling re-
sponse function of type III. Recently, Tankam & al. [15] considered the following model:

p(a(t)) —my(t)p(x(t)) — H(x(t)),
y(t) = [=d+emp(a(t —7))ly(t).

where x and y represent the population of preys and predators respectively. d is the
natural mortality rate of the predators. ¢ and m are positive constants. Here, there is a
time delay 7 in the predator response term p(z(t)) in the predator equation. This delay
is introduced in order to take into account the gestation period or reaction time of the
predators. The function
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models the dynamics of prey in absence of predators, r is the growth rate of prey for small
values of x, while K is the capacity of the environment to support the prey. The function
p(x) is the Holling response function of type III given by:
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p(r) =
(where @ > 0 is constant and b is nonnegative constant). This function reflects very small
predation when the amount of prey is small ( p’(0) = 0), and a group of advantages for

preys when the amount of prey is high (p(z) tends to — when z tends to infinity).
a

H (z) is the threshold harvesting function given by:

0 if z < T,
hiz —T
H(z) = % ifTh <z <o, (€]
h if x> Ty,

For this harvesting function, 7% and 75 are the threshold values. In this way, once the
prey population reaches the size z = T , then harvesting starts and increases linearly to
a limit value h that will be the constant value of the harvest from the threshold 75. This
piecewise linear operator policy harvesting has been introduced in [2] in a predator-prey
model without delay, where a Holling response function of type II was considered.



Hopf bifurcation 3

I T
1 T2
0.1 \ /
; i
1 2

o

Figure 1. Harvesting function (T = 0.8, T> = 1.5 and h = 0.9) given by Eq.(4).

Tankam et al. [15] have proven that a Hopf bifurcation occurs in the equation (1)
considering the harvesting function (4) but the properties of this bifurcation have not
been established. Yet, analysing properties of this bifurcation ensures us whether the
bifurcating branch of periodic solution exists locally when the delay crosses a critical
value.

The principal aim of this paper is to study the properties of the Hopf bifurcation
obtained by Tankam et al. [15] and stability of bifurcated periodic solutions occurring
through the Hopf bifurcation. The paper is organized as follows. Section 2 summarizes
the results on equilibria and their stability. In Section 3 we determine the stability and di-
rection of the bifurcating periodic solutions. Numerical results to illustrate the analytical
findings are presented in Section 4 and, finally, a summary is presented in Section 5.

2. Results on equilibria and stability [15]
K[’I’(TQ — Tl) — h]

2T(T2 — Tl)
equilibria of the System 1.

d
Let o = and d; = —. The following table summarizes the
cm

Table 1 : Existence conditions of equilibrium points.

Number of | Equilibria Existence conditions Domain
equilibria
1 Fl(.i'l,O) QO(TQ) >h T E]TQ,K],
T > %
1 F(T,0) e(Ty) =hTo > & T €[5, K]
1 E1(71,0) e(Ty) <h, T, > % 7 €Ty, Ty
I Es(%2,0) p(To) <h o(5) <h
and xg <15 < % T2 G]Tl,TQ[
2 F(T3,0), F3(i3,0) o(Ty) = h, T3 €Ty, K|
xo <Th < %
2 E3(%3,0) and F4(%,0) e(To) <h,o(5)=h
and xg <15 < % T3 G]Tl,TQ[
3 E4(24,0), F5(i5,0), F5(%6,0) | o(T2) < h. o(5) > h | &5 €]Th, 51,
and zg < Ty < % Ty E]Tl,TQ[
i'G E] %a K[
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Concerning the stability of equilibria, when 7 = 0 we have the following results.

Theorem 2.1 Let us consider the model system (1) and (4).

(a) Equilibria F5(Zs5,0) and ﬁ’(TQ, 0) are always unstable.

(b) If1—ad; < 0, then equilibria F; (Z1,0), F(Tg, 0), 154(%, 0), and Fﬁ(iﬁ, 0) when
they exist are locally asymptotically stable. When 1—ad; > 0, these equilibria are
unstable if the first coordinate belongs to |x*, K| and stable if the first coordinate
is less than x*.

(¢) The equilibrium E’g(:fg, 0) when it exists is stable if and only if 1 — ady < 0 and
T3 > % and unstable if not.

Theorem 2.2 If 1 — ady < 0 and &; > xo, @ = 1, ..., 4, the equilibria E;(%;,0), i =
1,...,4, are locally asymptotically stable. These equilibria are unstable if the condition is
reversed.

Theorem 2.3 Let
Ap = [¢'(@*) = mp(z*)y* — H'(2*)]* — dmdp'(a*)y*.
The stability of equilibrium E(z*,y*) for 7 = 0 is given as follows:
(@) If Ag > Othen E is anode. The node is stable if o' (x*)—mp' (z*)y*—H'(x*) <

0 and unstable if the inequality is reversed.

(b) If Ag < 0 then E is a focus. The focus is stable if ¢'(z*) — mp'(x*)y* —
H'(x*) < 0 and unstable if the inequality is reversed.

(©) If o' (z*) — mp/(x*)y* — H'(x*) = 0 then E is center-type.
Concerning the stablility of equilibria, when 7 > 0 we have the following theorem.

Theorem 2.4 Suppose that a positive equilibrium E exists and is locally asymptotically
stable for (1) with 7 = 0. Also let ng = wi be a positive root of n* + {g@’(:v*) -

*2

H'(z*) — mp’(a:*)y*} n — dmp'(x*)y** = 0. Then there exists a T = 1° such that

E is locally asymptotically stable for 7 € (0,7°] and unstable for v > 7°. Fur-
thermore, the system undergoes a Hopf bifurcation at E when T = 7°, where 70 =

1 wg
— arccos | ——————
wo dmp’ (z*)y*

The next section deals with the properties of the Hopf Bifurcation.

3. Properties of Hopf Bifurcation

In this section, we analyse the properties of the Hopf bifurcation using normal forms
theory as in Hassard et al.[7]. The main result is given in Theorem 3.1 after having been
proved by pre-calculations.

Considering the equations (1) and 21 () = x(t) — 2* and z3(t) = y(t) — y*; then system
(1) is equivalent to the following two-dimensional system:



Hopf bifurcation 5

i) = |¢@) = myp @) = B @) o) = mpa®) 22() + fi(21(8),22(0)),
ia(t) = emy (@)1 (t —7) + foz1(t), m2(t), 21 (t — 7). s
where
fi(zi(t),z2(t)) = @(z1(t) + %) — m(z2(t) + y*)p(21(t) + 2*) — H (21 + 2*)

[/ (@) = my(Op' (") = B (z%)] 21(t) + mp(a*) w2(t)
and

fo(z1(t), z2(t), 21 (t — 7)) = { —d+cmp(z(t —7) + :v*)} (z2(t) +y*)
— y*cmp(x*):vl (t—1)

let 7 = T]O + p; then p = 0 is the Hopf bifurcation value of system (1) at the positive
equilibrium G(z*,y*). Since system (1) is equivalent to system (5), in the following
discussion we shall consider mainly system (5).

In system (5), let Z(t) = xx(7t) and drop the bars for simplicity of notation. Then
system (5) can be rewritten as a system of RFDEs in C ( [-1,0], Rz) of the form:

n(t) = (04 |¢ @) = my (@*) = H'(@)] 2 (@) = (7] + pympla®) wa(t)
+ (7 4 ) fr (e (t), z2(1)),
ia(t) = (0 + pemyp (@) ot — 1)+ (70 + ) fa(21(8), 22 (t), 21 (t = 7).
(6)
Let us consider the following lemma proved in Annex 1.
Lemma 1 The system [ 6 ] is equivalent to
x(t) = A(pw)ze + R(p)xs, 7
where A(p) is linear. Besides, there exists an inner product < -,- > and eigenvectors

q(0) and g*(s) respectively of A(0) and A* such as < q*(s), q(0) >= 1, where A* is the
associate operator of A.

Using the same notations as in [7], we first compute the coordinates to describe the center
manifold Cy at ¢+ = 0. Let x4 be the solution of Equation (5) when p = 0. Define

Z(t) = <q* ) xt>
W0) = w(0) - 2Re(2(1)a(6)) ®)
= 2(6) - (=(0a(0) + 2(1)7(0))

On the center manifold Cy we have

W(t,0) =W(zz,0) ©)]
where
22 z2 23
W(z,z,0) = W20(6‘)7 + Wi (0)zz + Woz; + W30(6)F +- (10
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z and Z are local coordinates for center manifold Cj in the direction of ¢* and ¢*. Note
that W is real if x; is real. We only consider real solutions. For solution z; € Cy of (5),
since u = 0, we have

i(t) = iwory 2 + q*(())f(o, W(z,2,0) + 2R, (z(t)q(o))) = iwoty 2z + 7*(0) fo(2, 2)

We rewrite this equation as

2(t) = inTJQz + g(z, 2) (11)
where
22 z2 22z
9(z,2) = 920(9)7 +g11(0)2z + o2 + 921(6’)7 +--- (12)

The following lemma gives the values of the coefficients of g(z, Z) and is proven in Annex
2.

Lemma 2

e 2TJ-OD {— (% +mp (x*)vy + 7’”‘”*’; (m*))
-0

_ * 1 pF e 2IWO TS s 0
+ (y cmp (12)6 —l—cmp’(x*)me zwm-j>:|

gor = 200D | (F +mp/ () + D)

_ * "ok 2iw0‘r;~) _ . 0
+ (y cmp (12 )e +Cmpl(I*)V161onj):|

g = 20D [~ (f +mp/ (@R} + D)
171 (%ﬁ(w*) -+ Cmp'(x*)'Re {VleinTJo})}

g = 70D [~ (W) + 20 (0)
= mp'(@®) (2WP(0) + Wi (0) + 1 (0) + 21 WP (0)

= 2 0 4 yy) - 2BED (4w (D (0) + 2w (0))
+ oy (@) (2L (<) + W) (~1)eror? )

+ memp' (%) (mWay) (=1) + Wi 0o + 2w P ) + 2 W) (1))

+ cmp;(z*) (4V1 i 21716—21'71;07']9) :|
(13)
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Since there are Wa () and W11 (8) in go1, we still need to compute them. From (36)
(¢f Annex 1) and (8), we have:

W = &y —iq—%q
AW—QRe{(j*(O)foq(H)}, 0 € [~1;0);
= (14)
AW = 2R {7 (0)foa(®) } + fo, O =0.
=def AW 4 #H(z,2,0)
where
_ 22 _ z2
H(Z,Z,@) 2%20(9)3 +H11(6‘)ZZ+H02(9)?+--- (15)

Substituting the corresponding series into (14) and comparing the coefficients, we
obtain
(A— 2ionJQ)W20(9) = —Ho(0)
(16)
AW1(0) = —Hi11(0)

From (14), we know that for 6 € [—1,0),
H(z,2,0) = —77(0) foq(9) — ¢"(0) /od(0) = —g(z,2)q(0) — 5(2,2)a(0) (A7)
Comparing the coefficient with (15), we get:
—920q(0) — §024(0) = Hao(0) (18)
—9114(0) — 911G(0) = H11(0) (19)
From (16) and (18) and the definition of A, it follows that

W (0) = 2iwor) Wao + g20q(0) + Go2q(6) (20)
T . 0
Notice that ¢(6) = (1, 1/1) e™07;% Hence,

) . 14 . .
W2O (9) _ 9200 q(o)ezworjoe + 3 9020 q(o)e—zworjoé + Ele2zw0‘r;-)9 (21)
j WoTj

woT,

where F; = (E§1),E§2)) € R? is a constant vector. Similarly, from (16) and (19), we
obtain

i . ig _
Wi (0) = — 2 g(0)e™07 4 T g(0)e ™0 + B (22)
’onj onj
where Fy = Eél) , Eéz) € R? is also a constant vector.

In what follows, we will seek appropriate £/; and E5. From the definition of A and
(16), we obtain

0
/ dn(0)Wao (8) = 2iwyr; Wao(0) — Hao(0) (23)
-1
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0
/ dn(0)W1s (6) = —Hys (0) (24)

—1
where 7(0) = (0, ). By (14), we have

* 11

o . — L — ! (¥ )y — D)
H30(0) = —g209(0) — go2q(0) + 27

y*cmgu(m*)efmworf +Cmp/($*)l/1€7iw077(')
(25)
—% —mp! ()R} — LD

Hi1(0) = —¢119(0) — §11g(0) + 27'30 . g 70
%@) + emp’ ()R {Vlezonj }

(26)
Substituting (21) and (25) into (23) and noticing that
(iwor1 = J2 e %dn(6) ) o(0) = 0
(27)
(—ion](-JI— f_ol e’i“’“TJ(‘)Gdn(H)) qg0) = 0
we obtain 0
<2iw07']of — / ) ezm‘”ﬂpedn(ﬁ)) E =
— T ! (2 )y — @)
K 1 2
27';)
y*cmg (m*)e—Qiu}QTJQ + Cmp/(x*)ylefion](‘)
This leads to
2iwg — ¢’ (z*) + my*p' (z*) + H'(z*) mp(z*)
Ey
. 0
y*cmp/(x*)e—%wo‘rj 24w
Tl (%), — D (")
7= — mp'(z*)11 5
=2
y cmg (z )e—2iw0‘r;-) _i_cmp/(x*)yle—iwo‘r;)
Solving this system for E;, we obtain
—% —mp (¥ — 7’”‘”*1)2”@*) mp(x*)
g _ 2
1 o ; * 10 . 0 . 0
y cm12) (z )672171;07']. +Cmpl(.’l,'*)l/1€71w07j 2“1}0
EY =
o | 2iwo — (@) + my*pl (@*) + H'(a*) — L~ () — T
g y*cmp/(x*)efziwoﬁrjp y*cmgu(z*)efmwg‘r}) + cmp’(x*)ulefiwmﬂp
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where
2iwg — @' (x*) + my*p' (z*) + H'(x*) mp(z*)
y*cmp’ (I* )e—2iw07']o

Similarly, substituting (22) and (26) into (24), we get

@' (z*) —my*p'(z*) — H'(z*) —mp(z*)

Es
—y*emp’ (z*) 0
= mp @R ) - 2
=2
* 10 . 0
Lemg?D) o+ emp (2*)Re {preoi |
and hence
| —F —mp @R} - D —mp(a)
EM =2
* "ok . 0
0 Yy cm127 (z*) —i—cmp'(x*)Re {ylezwm’j} 0
L | ) — ) — B @) —f =@ R i} — D
EY =2
* 1 * . 0
¢ —y*emp/(2) LempZ) 4 ey (2R, {mnet |
where
@' (%) — my*p'(a*) — H'(z*) —mp(z*)
Q =
—y*emp’ (z*) 0

Thus, we can determine W5y and W71 from (21) and (22). Furthermore, go1 in (13) can
be expressed by the parameters and delay. Thus, we can compute the following values:

- Toor - 2 _ M g21
Cl (0) - 2wo‘rjf.) g20911 2|gll| 2 I 2
_ RGO}
Vo — RC{A'(T]Q)}
(28)
B2 = 2R.{C1(0)}
Py _ _Im{01(0)}+y21m{A/(T;))}

0
woT,;
07

which determine the qualities of bifurcating periodic solution in the center manifold at
the critical value 7.

Theorem 3.1 : In Eq. (28), the sign of vo determines the direction of the Hopf bifur-
cation. Thus, if vo > 0, then the Hopf bifurcation is supercritical and the bifurcating



10 ARIMA - Volume 28 - 2017

periodic solution exists for 1 > 10. If va < 0, then the Hopf bifurcation is subcritical
and the bifurcating periodic solution exists for 1y < 1. 32 determines the stability of the
bifurcating periodic solution: The bifurcating periodic solutions are stable if 52 < 0 and
unstable if B2 > 0. P, determines the period of the bifurcating periodic solutions: the
period increases if P> > 0 and decreases if P> < 0.

4. Numerical simulations

In this section, we give some numerical simulations for a special case of system (1)
with harvesting function (4) to support our analytical results. As an example, we consider
systems (1) and (4) with the coefficients r = 1, K = 40; a = 0.1, b = 0.6, m = 0.1,
d=067,c=1,h=01xK,T, = 10, To = 25. From the above discussion, we
may determine the direction of Hopf bifurcation and the direction of bifurcating periodic
solution. So we consider the following systems:

o x(t) 0-1y(t) 2*(t)
@(t) = lxat) (1 - m) T 0.122() +0.62(t) +1
. - 1%0.1% y(t)z2(t —71)
yplt) = —067y(t) + 0.122(t —7) + 0.6 x(t —7) + 1’

— H(z(t)),
(29)

which has a positive equilibrium G(13.67,7.59). When 7 passes through the critical
dBeA(r)) ’ = 0.0959, the equilibrium G losses
A=iwo,T=T0

value 7 = 79 = 1.1807 and e

its stability and the system (1) with (4) experiences Hopf bifurcation. When 7 > 0, the
system satisfies all conditions of the Hopf bifurcation given by [15]. Consequently, the
coexistence equilibrium point G becomes asymptotically stable when 7 = 0.

Figure 2 shows the behaviour of the system (29) when 7 = 1.4 > 7 and Figure3
shows the behaviour of the same system when 7 = 1 < 79 = 1.1807. As in Theorem,
the system (29) becomes conditionally stable around the coexistence equilibrium point G
for 7 € [0,79) (see Fig. 3), and unstable for 7 > 79 (see Figure 2). From the previous
section, we can determine the nature of the stability and direction of the periodic solution
bifurcating from the interior equilibrium at the critical point 7.

Using (28), we can compute C1(0) = —0.0014 — 0.0010¢, v = 0.0146 > 0, f2 =
—0.0028 > 0 and 7> = 0.0106. Since vo > 0 and 85 < 0, the Hopf bifurcation is
supercritical and the bifurcating periodic solutions exist when 7 crosses ¢ from left to
right. Also, the bifurcating periodic solution is stable (as S < 0) and its period increases
with 7 (as P> > 0).

5. Conclusion

Prey-predator harvesting model has undergone different developments in theoretical
and practical applications in the field of biomathematics.So, in this paper, we have studied
properties of the Hopf bifurcation of a delayed predator-prey system with Holling Type
III response function and continuous harvesting function with two thresholds. In a previ-
ous work, sufficient conditions on the parameters for which the delay-induced system is
asymptotically stable around the positive equilibrium for all values of the delay parameter
had been obtained; and if the conditions were not satisfied, then there existed a critical



Prey population - x(t)

40

351

30

25

20

15

10

100 200 300
Time
30

400

Hopf bifurcation 11

30
—
£
=
.
'5 20
s
>
Q 15
o
o
S

10f]
3
©
Q
a 9

0 ‘ ‘ ‘ ‘

500 0 100 200 300 400

(a) Time

— Delayt=14> T

®  Coexistence equilibrium (13.67, 11.97)
— No delay i

10 15 20 25 30 35 40

X(t) (©)

Figure 2. When r = 1.4 > oy, bifurcating periodic solutions from G(13.67,7.59) occur.
value of the delay parameter below which the system is stable and above which the sys-

tem is unstable. By applying the normal form theory and the center manifold theorem,
we now determined the explicit formulae which determine the stability and direction of
the bifurcating periodic solutions. Our analytical and simulation results show that when
T passes through the critical value 79, the coexisting equilibrium £ losses its stability and
a Hopf bifurcation occurs, that is, a family of periodic solutions bifurcate from E. Also,
the amplitude of oscillations increases with increasing 7. For the considered parameter
values, it is observed that the Hopf bifurcation is supercritical and the bifurcating periodic

solution is stable.
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The other parameter values are given in the previous figure.
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Annex 1: Proof of the Lemma 1

Define the linear operator L(y) : C — R? and the nonlinear operator f(-, 1) : C — R?
by:

@' (@) —my*p'(«*) — H'(z7) —mp(z*) ) ( ¢1(0)

0 0 $2(0)

0 0 $1(—1)
el I
y*emp' (z*) 0 ¢2(—1)

f1(¢1(0), $2(0)) )
)

f2(#1(0), $2(0), ¢1(—1

respectively, where ¢ = (¢1, ¢2)7 € C
By the Riesz representation theorem, there exists a 2 x 2 matrix function 7(6, u),
—1 < 8 < 0 whose elements are of bounded variation such that

(30)
and

f(o,p) = (75 + ) ( 31

0
Lu(¢) = 1 1dn<9,u>¢><9> for ¢ €C([-1,0],R?). 32)

In fact, we can choose

@' (x*) — my*p'(x*) — H'(2*) —mp(x*)
n0,p) = (79 +p) 5(0)
0 0
0 0
+ (0 +p) )6(9+1)
y*emp' (z*) 0
(33)

where ¢ is the Dirac delta function
For ¢ € C([—1,0], R?), define

e, 0 € [~1,0);
A(p)o = . (34)
fl dn(ﬂa S)(b(S), 0 =0.
and
0, 0 e[-1,0);
R(p)o = (35)
fu, @), 6 =0.
Then, the system (6) is equivalent to
i(t) = A(pze + R(p)z (36)
where 2:(0) = 2(t + 6), 0 € [-1,0].
For ¢ € C*([0, 1], R?), define



Hopf bifurcation 15

_dqg(;)a ERS (051]7
A = (37)
Iy dn(t,0)6(~), s=0.
and a bilinear inner product
(1(s),6(6)) = $(0) / 9(E ~ O)dn(0)o(€)de (38)
£=0

where 77(6) = 7(6,0). In addition, by Theorem 2.4 we know that Fiw,7; are eigenvalues
of A(0). Thus, they are also eigenvalues of A*. Let ¢(6) be the eigenvector of A(0)

corresponding to ionJQ and ¢*(s) be the eigenvector of A* corresponding to —ionJQ .

Let ¢(0) = ( 1, vy )Temm-;?e and ¢*(s) = D ( 1, vy )Te“””:(')s. From
the above discussion, it is easy to know that A(0)¢(0) = iwo7)q(0) and A*(0)g*(0) =
—iwoT ¢*(0). That is

@' (%) — my*p(«*) — H'(z7) —mp(z*)
7} q(0)
0 0
0 0
+77 q(=1) = iwor}q(0)
y*remp' (z*) 0
and
o' (x*) —my*p'(a*) — H'(z*) 0
7} q*(0)
—mp(z*) 0
0 yremp' (x¥)
+7’JO q*(—1) = —iwor¢*(0)
0 0
Thus, we can easily obtain
*em, /(x*)e—iworo T
J X 0
q(0) = <17 vy ) eiwors? (39
Wy
o\ T
¢'(s) =D (1, M) ey (40)
1Wo

In order to assure (g*(s), q(f)) = 1, we need to determine the value of D. From (38), we
have

(0 (s),0(0)) = 7 (0)q(0) = [, [{_, 7" (& — O)dn(0)q()dE i
_ q*(O)q(O) J"Olft‘) D(l )—zwo‘r (&— O)dn(g)(L ’/1) eionJode
= ¢*(0)q(0) — g*(0) [, ™07 dn(9)q(0)
= 7"(0)q(0)
¢ (x*) — my*p'(x*) — H'(z*) —mp(z*)
—7°(0)7}
0 0

( — ety )Q(O)

= D [1 + i+ Tjoe_iwoﬁf')’jfy*cmp’(x*)}
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So, we have
1

]l
Il

g 20
14 o470 07 pry*emp’ (x*)
’ 1 (41)

n 0
_ w0
1+l/1vi‘+7'?e 07y viy*emp’ (x*)

That ends our proof.

Annex 2: Proof of the Lemma 2

We have 2,(0) = (1,(8), 22:(6)) and ¢(6) = (1,11)" €7, So, from (8) and
(10), it follows that

w(0) = Wt 0)+2R ( ()q (9))

= Wao(8)Z + Wii(8)22 + Woe o + (1,01) " €075 02(8) + (1,01) e ™07 05 (t) + - - -
(42)
and then we have
eu(0) = 24 z+W0)2 + W 022+ WH(0)Z + -
22(0) = mz4nz+ W05 +WP(0)22+ WD (0)5 +- -
Ilt(_l) — e zon] _"_Ze’LUJOTJ + W2(1)( ) 22 + Wl(%)(—l)zz—l— Wé?(—l)% + -
To(—1) = —iwoT) iwo Ty (2) (2) (2)_1y22 o ...
2t = 1ze i+1viZe + Woo' (=1)% +W11( D2z +Wo'(-1)%5 +
(43)
It follows together with (31) that
g(Z,Z) = §{2770D|:_ (% +mp/( )y + my*pzll(;ﬂ*))
* ,,( *) 721'11;07'? . 0
+ Dl (y cmp z2 e + Cmp/(x*)ule—zwo‘rj ):|}

2

+ %{27?1_)[— (% +mp'(z )m—f—M)
* 11 %y 2iwg TS .
+ Dl(y cmp (12 e 0Ty + Cmp/(x*)ﬂlelwonp)}}

+ ZE{QTJOD[— (% +mp/ (2*)Refin } + 2 102 (z*))

+ i (77’ emp”(z?) 4 emp/ (z )Re{l/leiwfﬂf})}}

_|_
M

22 {700 - £ (1w (0) + 2w (0))
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— /(@) (217 (0) + WD (0) + 7 Wiy (0) + 2 WP (0))

— D (90 + duy) - 2B (4w (D (0) + 2W4)(0))
U *o (1> 1) (1) iwoT?

+ oy (@) (2WI (<1) + Wi (- 1)eien)

+  Dremp'(z*) (Dlwz%)(—l) + WQ(S) (O)eion})
2w P ) + 2 W} (1))

+ cmp;(x*) (41/1 + 2516—2iw071(~)):| }
Where f and D are given in the proof of the lemma 1 respectively by (31) and (41).

Comparing the coefficients with (12), we obtain the coefficients of g(z, z).
That ends our proof.



