Israël Tankam 
email: israeltankam@gmail.com
  
-M P Tchinda 
  
J J Tewa 
  
  
Properties of the Hopf bifurcation in a delayed predator-prey model with continuous prey harvesting

Keywords: Delay, predator-prey, Hopf bifurcation, local bifurcations. MOTS-CLÉS : Retard, prédateur-proie, bifurcation de Hopf, bifurcations locales

In this paper we study the properties of the Hopf bifurcations obtained for a delayed predator-prey model with continuous prey harvesting. Considering delay as a parameter, we investigate the effect of delay on the stability of the coexisting equilibrium. It is observed that there are stability switches, and Hopf bifurcation occurs when the delay crosses some critical value τ 0 . By applying the normal form theory and the center manifold theorem, the formulae that determine the stability and direction of the bifurcating periodic solutions are established. Numerical simulations are carried out to illustrate different analytical findings. For the considered parameters values, results indicate that the Hopf bifurcation is supercritical and the bifurcating periodic solution is stable.

RÉSUMÉ.

Dans cet article nous faisons une étude sur les propriétés de la bifurcation de Hopf dans un modèle proie-prédateur retardé prenant en compte une récolte continue. Considérant le retard comme un paramètre de bifurcation, nous analysons l'effet de ce dernier sur la stabilité de l'équilibre de coexistence. Compte tenu du changement de stabilité et de l'apparition d'une bifurcation de Hopf lorsque le retard traverse une valeur critique τ 0 , nous appliquons la théorie des formes normales et le théorème de la variété centrale pour étudier la stabilité et la direction des trajectoires périodiques. Des simulations numériques sont faites afin de confirmer les résultats analytiques obtenus. Pour des valeurs des paramètres considérés, les résultats indiquent que la bifurcation de Hopf est supercritique et la solution périodique qui en résulte est stable.

Introduction

The combined effects of harvesting and time delay on the dynamics of predator-prey models have a strong impact on the dynamic evolution of populations subjected to them. Therefore, many works have been investigated by many authors taking in account time delay. We refer to [START_REF] Cushing | Integro differential Equations and Delay Models in Population Dynamics[END_REF][START_REF] Gopalsamy | Stability and Oscillations in Delay Differential Equations of Population Dynamics[END_REF][START_REF] Kuang | Delay Differential Equations with Applications in Population Dynamics[END_REF][START_REF] Macdonald | Time Lags in Biological Models[END_REF] for general delay biological systems and to [START_REF] Beretta | Convergence results in a well-known delayed predator-prey system[END_REF][START_REF] Gopalsamy | Harmless delay in model systems[END_REF][START_REF] Gopalsamy | Delayed responses and stability in two-species systems[END_REF][START_REF] May | Time delay versus stability in population models with two and three trophic levels[END_REF][START_REF] Ruan | Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays[END_REF][START_REF] Tchinda | Bifurcation Analysis and Optimal Harvesting of a delayed predator-prey model[END_REF] for studies on delay predator-prey system. In general, delay differential equations exhibit much more complicated dynamics than ordinary differential equations since a time delay could cause a stable equilibrium to become unstable and cause the populations to fluctuate.

On the other hand, there are many work on predator-prey models which consider harvesting [START_REF] Wu | Qualitative analysis of a predator-prey model with constant rate prey harvesting incorporating a constant prey refuge[END_REF][START_REF] Kar | Modelling and analysis of a harvested prey-predator system incorporating a prey refuge[END_REF][START_REF] Leard | Dynamics of ratio-dependent of predator-prey models with nonconstant harvesting[END_REF][START_REF] Li | Dynamics in a ratio-dependent predatorprey model with predator harvesting[END_REF]. The problem is that these models consider either constant or linear harvesting functions which easily leads to the extinction of the populations.

In this paper, we consider a system of delayed differential equations modelling the predator-prey dynamic with a continuous double threshold harvesting and a Holling response function of type III. Recently, Tankam & al. [START_REF] Tankam | Local Bifurcations and Optimal Theory in a Delayed Predator-Prey Model with Threshold Prey Harvesting[END_REF] considered the following model:

ẋ(t) = ϕ(x(t)) -my(t)p(x(t)) -H(x(t)), ẏ(t) = [-d + cmp(x(t -τ ))]y(t). (1) 
where x and y represent the population of preys and predators respectively. d is the natural mortality rate of the predators. c and m are positive constants. Here, there is a time delay τ in the predator response term p(x(t)) in the predator equation. This delay is introduced in order to take into account the gestation period or reaction time of the predators. The function

ϕ(x) = rx 1 - x K , (2) 
models the dynamics of prey in absence of predators, r is the growth rate of prey for small values of x, while K is the capacity of the environment to support the prey. The function p(x) is the Holling response function of type III given by:

p(x) = x 2 a x 2 + b x + 1 , (3) 
(where a > 0 is constant and b is nonnegative constant). This function reflects very small predation when the amount of prey is small ( p ′ (0) = 0), and a group of advantages for preys when the amount of prey is high (p(x) tends to 1 a when x tends to infinity).

H(x) is the threshold harvesting function given by:

H(x) =        0 if x < T 1 , h(x -T 1 ) T 2 -T 1 if T 1 ≤ x ≤ T 2 , h if x ≥ T 2 , (4) 
For this harvesting function, T 1 and T 2 are the threshold values. In this way, once the prey population reaches the size x = T 1 , then harvesting starts and increases linearly to a limit value h that will be the constant value of the harvest from the threshold T 2 . This piecewise linear operator policy harvesting has been introduced in [START_REF] Bohn | Continuous Threshold Prey Harvesting in Predator-Prey Models[END_REF] in a predator-prey model without delay, where a Holling response function of type II was considered. Tankam et al. [START_REF] Tankam | Local Bifurcations and Optimal Theory in a Delayed Predator-Prey Model with Threshold Prey Harvesting[END_REF] have proven that a Hopf bifurcation occurs in the equation ( 1) considering the harvesting function (4) but the properties of this bifurcation have not been established. Yet, analysing properties of this bifurcation ensures us whether the bifurcating branch of periodic solution exists locally when the delay crosses a critical value.

The principal aim of this paper is to study the properties of the Hopf bifurcation obtained by Tankam et al. [START_REF] Tankam | Local Bifurcations and Optimal Theory in a Delayed Predator-Prey Model with Threshold Prey Harvesting[END_REF] and stability of bifurcated periodic solutions occurring through the Hopf bifurcation. The paper is organized as follows. Section 2 summarizes the results on equilibria and their stability. In Section 3 we determine the stability and direction of the bifurcating periodic solutions. Numerical results to illustrate the analytical findings are presented in Section 4 and, finally, a summary is presented in Section 5.

Results on equilibria and stability [15]

Let x 0 = K[r(T 2 -T 1 ) -h] 2r(T 2 -T 1 )
and

d 1 = d cm .
The following table summarizes the equilibria of the System 1.

Table 1 : Existence conditions of equilibrium points.

Number of Equilibria Existence conditions

Domain equilibria 1 F1 (x 1 , 0) ϕ(T 2 ) > h x1 ∈]T 2 , K], x1 > K 2 1 F (T 2 , 0) ϕ(T 2 ) = h, T 2 ≥ K 2 T 2 ∈ [ K 2 , K] 1 Ē1 (x 1 , 0) ϕ(T 2 ) < h, T 2 ≥ K 2 x1 ∈]T 1 , T 2 [ 1 Ē2 (x 2 , 0) ϕ(T 2 ) < h, ϕ( K 2 ) < h and x 0 ≤ T 2 < K 2 x2 ∈]T 1 , T 2 [ 2 F (T 2 , 0), F3 (x 3 , 0) ϕ(T 2 ) = h, x3 ∈]T 2 , K] x 0 ≤ T 2 < K 2 2 Ē3 (x 3 , 0) and F4 ( K 2 , 0) ϕ(T 2 ) < h, ϕ( K 2 ) = h and x 0 ≤ T 2 < K 2 x3 ∈]T 1 , T 2 [ 3 Ē4 (x 4 , 0), F5 (x 5 , 0), F6 (x 6 , 0) ϕ(T 2 ) < h, ϕ( K 2 ) > h x5 ∈]T 2 , K 2 [, and x 0 ≤ T 2 < K 2 x4 ∈]T 1 , T 2 [ x6 ∈] K 2 , K[
Concerning the stability of equilibria, when τ = 0 we have the following results.

Theorem 2.1 Let us consider the model system ( 1) and ( 4).

(a) Equilibria F5 (x 5 , 0) and F (T 2 , 0) are always unstable. 

(b) If 1-ad 1 ≤ 0, then equilibria F1 (x 1 , 0), F (T 2 , 0), F4 ( K 2 , 0),
∆ E = [ϕ ′ (x ⋆ ) -mp ′ (x ⋆ )y ⋆ -H ′ (x ⋆ )] 2 -4mdp ′ (x ⋆ )y ⋆ .
The stability of equilibrium E(x ⋆ , y ⋆ ) for τ = 0 is given as follows:

(a) If ∆ E ≥ 0 then E is a node. The node is stable if ϕ ′ (x ⋆ )-mp ′ (x ⋆ )y ⋆ -H ′ (x ⋆ ) < 0 and unstable if the inequality is reversed.

(b) If ∆ E < 0 then E is a focus. The focus is stable if ϕ ′ (x ⋆ ) -mp ′ (x ⋆ )y ⋆ - H ′ (x ⋆
) < 0 and unstable if the inequality is reversed.

(c) If ϕ ′ (x ⋆ ) -mp ′ (x ⋆ )y ⋆ -H ′ (x ⋆ ) = 0 then E is center-type.
Concerning the stablility of equilibria, when τ > 0 we have the following theorem.

Theorem 2.4 Suppose that a positive equilibrium E exists and is locally asymptotically stable for [START_REF] Beretta | Convergence results in a well-known delayed predator-prey system[END_REF] with τ = 0. Also let η 0 = w 2 0 be a positive root of

η 2 + ϕ ′ (x ⋆ ) - H ′ (x ⋆ ) -mp ′ (x ⋆ )y ⋆ 2 η -dmp ′ (x ⋆ )y ⋆2 = 0.
Then there exists a τ = τ 0 such that E is locally asymptotically stable for τ ∈ (0, τ 0 ] and unstable for τ > τ 0 . Furthermore, the system undergoes a Hopf bifurcation at E when τ = τ 0 , where

τ 0 = 1 w 0 arccos w 2 0 dmp ′ (x ⋆ )y ⋆ .
The next section deals with the properties of the Hopf Bifurcation.

Properties of Hopf Bifurcation

In this section, we analyse the properties of the Hopf bifurcation using normal forms theory as in Hassard et al. [START_REF] Hassard | Theory and Applications of Hopf Bifurcation[END_REF]. The main result is given in Theorem 3.1 after having been proved by pre-calculations. Considering the equations (1) and x 1 (t) = x(t)x ⋆ and x 2 (t) = y(t)y ⋆ ; then system (1) is equivalent to the following two-dimensional system:

   ẋ1 (t) = ϕ ′ (x ⋆ ) -my ⋆ p ′ (x ⋆ ) -H ′ (x ⋆ ) x 1 (t) -mp(x ⋆ ) x 2 (t) + f 1 x 1 (t), x 2 (t) , ẋ2 (t) = cmy ⋆ p ′ (x ⋆ ) x 1 (t -τ ) + f 2 x 1 (t), x 2 (t), x 1 (t -τ ) .
(5) where

f 1 x 1 (t), x 2 (t) = ϕ x 1 (t) + x ⋆ -m(x 2 (t) + y ⋆ )p x 1 (t) + x ⋆ -H x 1 + x ⋆ -ϕ ′ (x ⋆ ) -my ⋆ (t)p ′ (x ⋆ ) -H ′ (x ⋆ ) x 1 (t) + mp(x ⋆ ) x 2 (t)
and

f 2 x 1 (t), x 2 (t), x 1 (t -τ ) = -d + cmp x 1 (t -τ ) + x ⋆ x 2 (t) + y ⋆ ) -y ⋆ cmp x ⋆ x 1 (t -τ ) let τ = τ 0 j + µ;
then µ = 0 is the Hopf bifurcation value of system (1) at the positive equilibrium G(x ⋆ , y ⋆ ). Since system (1) is equivalent to system (5), in the following discussion we shall consider mainly system (5).

In system (5), let xk (t) = x k (τ t) and drop the bars for simplicity of notation. Then system (5) can be rewritten as a system of RFDEs in C [-1, 0], R 2 of the form:

       ẋ1 (t) = (τ 0 j + µ) ϕ ′ (x ⋆ ) -my ⋆ p ′ (x ⋆ ) -H ′ (x ⋆ ) x 1 (t) -(τ 0 j + µ)mp(x ⋆ ) x 2 (t) + (τ 0 j + µ)f 1 x 1 (t), x 2 (t) , ẋ2 (t) = (τ 0 j + µ)cmy ⋆ p ′ (x ⋆ ) x 1 (t -τ ) + (τ 0 j + µ)f 2 x 1 (t), x 2 (t), x 1 (t -τ ) . (6 
) Let us consider the following lemma proved in Annex 1.

Lemma 1

The system [START_REF] Gopalsamy | Stability and Oscillations in Delay Differential Equations of Population Dynamics[END_REF] is equivalent to

ẋ(t) = A(µ)x t + R(µ)x t , (7) 
where A(µ) is linear. Besides, there exists an inner product < •, • > and eigenvectors q(θ) and q ⋆ (s) respectively of A(0) and A ⋆ such as < q ⋆ (s), q(θ) >= 1, where A ⋆ is the associate operator of A.

Using the same notations as in [START_REF] Hassard | Theory and Applications of Hopf Bifurcation[END_REF], we first compute the coordinates to describe the center manifold C 0 at µ = 0. Let x t be the solution of Equation ( 5) when µ = 0. Define

z(t) = q * , x t W (t, θ) = x t (θ) -2R e z(t)q(θ) = x t (θ) -z(t)q(θ) + z(t)q(θ) (8) 
On the center manifold C 0 we have

W (t, θ) = W (z, z, θ) (9) 
where

W (z, z, θ) = W 20 (θ) z 2 2 + W 11 (θ)z z + W 02 z2 2 + W 30 (θ) z 3 6 + • • • (10) 
z and z are local coordinates for center manifold C 0 in the direction of q * and q * . Note that W is real if x t is real. We only consider real solutions. For solution x t ∈ C 0 of (5), since µ = 0, we have

ż(t) = iw 0 τ 0 j z + q * (0)f 0, W (z, z, 0) + 2R e z(t)q(θ) ≡ iw 0 τ 0 j z + q * (0)f 0 (z, z)
We rewrite this equation as

ż(t) = iw 0 τ 0 j z + g z, z (11) 
where

g z, z = g 20 (θ) z 2 2 + g 11 (θ)z z + g 02 z2 2 + g 21 (θ) z 2 z 2 + • • • (12) 
The following lemma gives the values of the coefficients of g(z, z) and is proven in Annex 2.

Lemma 2

g 20 = 2τ 0 j D -r K + mp ′ (x ⋆ )ν 1 + my ⋆ p ′′ (x ⋆ ) 2 + ν1 y ⋆ cmp ′′ (x ⋆ )e -2iw 0 τ 0 j 2 + cmp ′ (x ⋆ )ν 1 e -iw0τ 0 j g 02 = 2τ 0 j D -r K + mp ′ (x ⋆ )ν 1 + my ⋆ p ′′ (x ⋆ ) 2 + ν1 y ⋆ cmp ′′ (x ⋆ )e 2iw 0 τ 0 j 2 + cmp ′ (x ⋆ )ν 1 e iw0τ 0 j g 11 = 2τ 0 j D -r K + mp ′ (x ⋆ )R e {ν 1 } + my ⋆ p ′′ (x ⋆ ) 2 + ν1 y ⋆ cmp ′′ (x ⋆ ) 2 + cmp ′ (x ⋆ )R e ν 1 e iw0τ 0 j g 21 = τ 0 j D -r K 4W
(1)

11 (0) + 2W (1) 20 (0) -mp ′ (x ⋆ ) 2W (2) 11 (0) + W (2) 20 (0) + ν1 W (1) 20 (0) + 2ν 1 W (1) 11 (0) -mp ′′ (x ⋆ ) 2 (2ν 1 + 4ν 1 ) -my ⋆ p ′′ (x ⋆ ) 2 4W (1) 11 (0) + 2W (1) 20 (0) + ν1 my ⋆ p ′′ (x ⋆ ) 2W (1) 11 (-1) + W (1) 20 (-1)e iw0τ 0 j + ν1 cmp ′ (x ⋆ ) ν1 W (1) 20 (-1) + W (2) 20 (0)e iw0τ 0 j + 2W (2) 
11 (0)e -iw0τ 0 j + 2ν 1 W

(1)

11 (-1)

+ cmp ′′ (x ⋆ ) 2 4ν 1 + 2ν 1 e -2iw0τ 0 j ( 13 
)
Since there are W 20 (θ) and W 11 (θ) in g 21 , we still need to compute them. From (36) (cf Annex 1) and ( 8), we have:

Ẇ = ẋt -żq -ż q =        AW -2R e q * (0)f 0 q(θ) , θ ∈ [-1; 0); AW -2R e q * (0)f 0 q(θ) + f 0 , θ = 0. ≡ def AW + H z, z, θ (14) 
where

H z, z, θ = H 20 (θ) z 2 2 + H 11 (θ)z z + H 02 (θ) z2 2 + • • • (15) 
Substituting the corresponding series into ( 14) and comparing the coefficients, we obtain

(A -2iw 0 τ 0 j )W 20 (θ) = -H 20 (θ) AW 11 (θ) = -H 11 (θ) (16) 
From ( 14), we know that for θ ∈ [-1, 0), H z, z, θ) = -q * (0)f 0 q(θ)q * (0) f0 q(θ) = -g(z, z)q(θ) -ḡ(z, z)q(θ)

Comparing the coefficient with (15), we get:

-g 20 q(θ) -ḡ02 q(θ) = H 20 (θ) (18) 
-g 11 q(θ) -ḡ11 q(θ) = H 11 (θ)

From ( 16) and ( 18) and the definition of A, it follows that

Ẇ (θ) = 2iw 0 τ 0 j W 20 + g 20 q(θ) + ḡ02 q(θ) (20) 
Notice that q(θ) = 1, ν 1 T e iw0τ 0 j θ . Hence,

W 20 (θ) = ig 20 w 0 τ 0 j q(0)e iw0τ 0 j θ + iḡ 02 3w 0 τ 0 j q(0)e -iw0τ 0 j θ + E 1 e 2iw0τ 0 j θ (21) 
where

E 1 = E (1)
1 , E

∈ R 2 is a constant vector. Similarly, from ( 16) and (19), we obtain

W 11 (θ) = - ig 11 w 0 τ 0 j q(0)e iw0τ 0 j θ + iḡ 11 w 0 τ 0 j q(0)e -iw0τ 0 j θ + E 2 (22) 
where

E 2 = E (1) 2 , E (2) 2 
∈ R 2 is also a constant vector. In what follows, we will seek appropriate E 1 and E 2 . From the definition of A and ( 16), we obtain

0 -1 dη(θ)W 20 (θ) = 2iw 0 τ j W 20 (0) -H 20 (0) (23) 0 -1 dη(θ)W 11 (θ) = -H 11 (0) (24) 
where η(θ) = η(0, θ). By ( 14), we have

H 20 (0) = -g 20 q(0) -ḡ02 q(0) + 2τ 0 j    -r K -mp ′ (x ⋆ )ν 1 -my ⋆ p ′′ (x ⋆ ) 2 y ⋆ cmp ′′ (x ⋆ ) 2 e -2iw0τ 0 j + cmp ′ (x ⋆ )ν 1 e -iw0τ 0 j    (25) 
H 11 (0) = -g 11 q(0) -ḡ11 q(0) + 2τ

0 j    -r K -mp ′ (x ⋆ )R e {ν 1 } -my ⋆ p ′′ (x ⋆ ) 2 y ⋆ cmp ′′ (x ⋆ ) 2 + cmp ′ (x ⋆ )R e ν 1 e iw0τ 0 j   
(26) Substituting ( 21) and ( 25) into (23) and noticing that

iw 0 τ 0 j I - 0 -1 e iw0τ 0 j θ dη(θ) q(0) = 0 -iw 0 τ 0 j I - 0 -1 e -iw0τ 0 j θ dη(θ) q(0) = 0 (27) 
we obtain

2iw 0 τ 0 j I - 0 -1 e 2iw0τ 0 j θ dη(θ) E 1 = 2τ 0 j    -r K -mp ′ (x ⋆ )ν 1 -my ⋆ p ′′ (x ⋆ ) 2 y ⋆ cmp ′′ (x ⋆ ) 2 e -2iw0τ 0 j + cmp ′ (x ⋆ )ν 1 e -iw0τ 0 j    This leads to   2iw 0 -ϕ ′ (x ⋆ ) + my ⋆ p ′ (x ⋆ ) + H ′ (x ⋆ ) mp(x ⋆ ) y ⋆ cmp ′ (x ⋆ )e -2iw0τ 0 j 2iw 0   E 1 = 2    -r K -mp ′ (x ⋆ )ν 1 -my ⋆ p ′′ (x ⋆ ) 2 y ⋆ cmp ′′ (x ⋆ ) 2 e -2iw0τ 0 j + cmp ′ (x ⋆ )ν 1 e -iw0τ 0 j   
Solving this system for E 1 , we obtain

E (1) 1 = 2 σ -r K -mp ′ (x ⋆ )ν 1 -my ⋆ p ′′ (x ⋆ ) 2 mp(x ⋆ ) y ⋆ cmp ′′ (x ⋆ ) 2 e -2iw0τ 0 j + cmp ′ (x ⋆ )ν 1 e -iw0τ 0 j 2iw 0 E (2) 1 = 2 σ 2iw 0 -ϕ ′ (x ⋆ ) + my ⋆ p ′ (x ⋆ ) + H ′ (x ⋆ ) -r K -mp ′ (x ⋆ )ν 1 -my ⋆ p ′′ (x ⋆ ) 2 y ⋆ cmp ′ (x ⋆ )e -2iw0τ 0 j y ⋆ cmp ′′ (x ⋆ ) 2 e -2iw0τ 0 j + cmp ′ (x ⋆ )ν 1 e -iw0τ 0 j where σ = 2iw 0 -ϕ ′ (x ⋆ ) + my ⋆ p ′ (x ⋆ ) + H ′ (x ⋆ ) mp(x ⋆ ) y ⋆ cmp ′ (x ⋆ )e -2iw0τ 0 j 2iw 0
Similarly, substituting ( 22) and ( 26) into (24), we get

  ϕ ′ (x ⋆ ) -my ⋆ p ′ (x ⋆ ) -H ′ (x ⋆ ) -mp(x ⋆ ) -y ⋆ cmp ′ (x ⋆ ) 0   E 2 = 2    -r K -mp ′ (x ⋆ )R e {ν 1 } -my ⋆ p ′′ (x ⋆ ) 2 y ⋆ cmp ′′ (x ⋆ ) 2 + cmp ′ (x ⋆ )R e ν 1 e iw0τ 0 j   
and hence

E (1) 2 = 2 ̺ -r K -mp ′ (x ⋆ )R e {ν 1 } -my ⋆ p ′′ (x ⋆ ) 2 -mp(x ⋆ ) y ⋆ cmp ′′ (x ⋆ ) 2 + cmp ′ (x ⋆ )R e ν 1 e iw0τ 0 j 0 E (2) 2 = 2 ̺ ϕ ′ (x ⋆ ) -my ⋆ p ′ (x ⋆ ) -H ′ (x ⋆ ) -r K -mp ′ (x ⋆ )R e {ν 1 } -my ⋆ p ′′ (x ⋆ ) 2 -y ⋆ cmp ′ (x ⋆ ) y ⋆ cmp ′′ (x ⋆ ) 2 + cmp ′ (x ⋆ )R e ν 1 e iw0τ 0 j where ̺ = ϕ ′ (x ⋆ ) -my ⋆ p ′ (x ⋆ ) -H ′ (x ⋆ ) -mp(x ⋆ ) -y ⋆ cmp ′ (x ⋆ ) 0
Thus, we can determine W 20 and W 11 from ( 21) and ( 22). Furthermore, g 21 in ( 13) can be expressed by the parameters and delay. Thus, we can compute the following values:

C 1 (0) = i 2w0τ 0 j g 20 g 11 -2|g 11 | 2 -|g02| 2 3 + g21 2 ν 2 = -Re{C1(0)} Re{λ ′ (τ 0 j )} β 2 = 2R e {C 1 (0)} P 2 = - Im{C1(0)}+ν2Im{λ ′ (τ 0 j )} w0τ 0 j (28)
which determine the qualities of bifurcating periodic solution in the center manifold at the critical value τ 0 j .

Theorem 3.1 : In Eq. ( 28), the sign of ν 2 determines the direction of the Hopf bifurcation. Thus, if ν 2 > 0, then the Hopf bifurcation is supercritical and the bifurcating periodic solution exists for τ 1 > τ 0 1 . If ν 2 < 0, then the Hopf bifurcation is subcritical and the bifurcating periodic solution exists for τ 1 < τ 0 1 . β 2 determines the stability of the bifurcating periodic solution: The bifurcating periodic solutions are stable if β 2 < 0 and unstable if β 2 > 0. P 2 determines the period of the bifurcating periodic solutions: the period increases if P 2 > 0 and decreases if P 2 < 0.

Numerical simulations

In this section, we give some numerical simulations for a special case of system (1) with harvesting function (4) to support our analytical results. As an example, we consider systems ( 1) and ( 4) with the coefficients r = 1, K = 40; a = 0.1, b = 0.6, m = 0.1, d = 0.67, c = 1, h = 0.1 * K, T 1 = 10, T 2 = 25. From the above discussion, we may determine the direction of Hopf bifurcation and the direction of bifurcating periodic solution. So we consider the following systems:

       ẋ(t) = 1 * x(t) 1 - x(t) 40 - 0.1 y(t) x 2 (t) 0.1 x 2 (t) + 0.6 x(t) + 1 -H(x(t)), ẏ(t) = -0.67 y(t) + 1 * 0.1 * y(t) x 2 (t -τ ) 0.1x 2 (t -τ ) + 0.6 x(t -τ ) + 1 , (29) 
which has a positive equilibrium G(13.67, 7.59). When τ passes through the critical value τ = τ 0 = 1.1807 and d(Reλ(τ )) dτ ) λ=iw0,τ =τ0 = 0.0959, the equilibrium G losses its stability and the system (1) with (4) experiences Hopf bifurcation. When τ ≥ 0, the system satisfies all conditions of the Hopf bifurcation given by [START_REF] Tankam | Local Bifurcations and Optimal Theory in a Delayed Predator-Prey Model with Threshold Prey Harvesting[END_REF]. Consequently, the coexistence equilibrium point G becomes asymptotically stable when τ = 0.

Figure 2 shows the behaviour of the system (29) when τ = 1.4 > τ 0 and Figure3 shows the behaviour of the same system when τ = 1 < τ 0 = 1.1807. As in Theorem, the system (29) becomes conditionally stable around the coexistence equilibrium point G for τ ∈ [0, τ 0 ) (see Fig. 3), and unstable for τ > τ 0 (see Figure 2). From the previous section, we can determine the nature of the stability and direction of the periodic solution bifurcating from the interior equilibrium at the critical point τ 0 .

Using (28), we can compute C 1 (0) = -0.0014 -0.0010i, ν 2 = 0.0146 > 0, β 2 = -0.0028 > 0 and T 2 = 0.0106. Since ν 2 > 0 and β 2 < 0, the Hopf bifurcation is supercritical and the bifurcating periodic solutions exist when τ crosses τ 0 1 from left to right. Also, the bifurcating periodic solution is stable (as β 2 < 0) and its period increases with τ (as P 2 > 0).

Conclusion

Prey-predator harvesting model has undergone different developments in theoretical and practical applications in the field of biomathematics.So, in this paper, we have studied properties of the Hopf bifurcation of a delayed predator-prey system with Holling Type III response function and continuous harvesting function with two thresholds. In a previous work, sufficient conditions on the parameters for which the delay-induced system is asymptotically stable around the positive equilibrium for all values of the delay parameter had been obtained; and if the conditions were not satisfied, then there existed a critical value of the delay parameter below which the system is stable and above which the system is unstable. By applying the normal form theory and the center manifold theorem, we now determined the explicit formulae which determine the stability and direction of the bifurcating periodic solutions. Our analytical and simulation results show that when τ passes through the critical value τ 0 , the coexisting equilibrium E losses its stability and a Hopf bifurcation occurs, that is, a family of periodic solutions bifurcate from E. Also, the amplitude of oscillations increases with increasing τ . For the considered parameter values, it is observed that the Hopf bifurcation is supercritical and the bifurcating periodic solution is stable. 

L µ (φ) = (τ 0 j + µ)   ϕ ′ (x ⋆ ) -my ⋆ p ′ (x ⋆ ) -H ′ (x ⋆ ) -mp(x ⋆ ) 0 0     φ 1 (0) φ 2 (0)   + (τ 0 j + µ)   0 0 y ⋆ cmp ′ (x ⋆ ) 0     φ 1 (-1) φ 2 (-1)   (30) and f (φ, µ) = (τ 0 j + µ)   f 1 φ 1 (0), φ 2 (0) f 2 φ 1 (0), φ 2 (0), φ 1 (-1)   (31) 
respectively, where φ = (φ 1 , φ 2 ) T ∈ C. By the Riesz representation theorem, there exists a 2 × 2 matrix function η(θ, µ), -1 ≤ θ ≤ 0 whose elements are of bounded variation such that

L µ (φ) = 0 -1 dη(θ, µ)φ(θ) for φ ∈ C [-1, 0], R 2 . ( 32 
)
In fact, we can choose

η(θ, µ) = (τ 0 j + µ)   ϕ ′ (x ⋆ ) -my ⋆ p ′ (x ⋆ ) -H ′ (x ⋆ ) -mp(x ⋆ ) 0 0   δ θ + (τ 0 j + µ)   0 0 y ⋆ cmp ′ (x ⋆ ) 0   δ θ + 1) (33) where δ is the Dirac delta function For φ ∈ C [-1, 0], R 2 , define A(µ)φ =    dφ(θ) dθ , θ ∈ [-1, 0); 0 1 dη(µ, s)φ(s), θ = 0. (34) 
and

R(µ)φ =    0, θ ∈ [-1, 0); f (µ, φ), θ = 0. (35) 
Then, the system ( 6) is equivalent to

ẋ(t) = A(µ)x t + R(µ)x t (36) 
where

x t (θ) = x(t + θ), θ ∈ [-1, 0]. For ψ ∈ C 1 [0, 1], R 2 , define A * ψ =    -dψ(s) ds , s ∈ (0, 1]; 0 1 dη(t, 0)φ(-t), s = 0. (37) 
and a bilinear inner product

ψ(s), φ(θ) = ψ(0)φ(0) - 0 -1 θ ξ=0 ψ(ξ -θ)dη(θ)φ(ξ)dξ (38) 
where η(θ) = η(θ, 0). In addition, by Theorem 2.4 we know that ±iw 0 τ 0 j are eigenvalues of A(0). Thus, they are also eigenvalues of A * . Let q(θ) be the eigenvector of A(0) corresponding to iw 0 τ 0 j and q * (s) be the eigenvector of A * corresponding to -iw 0 τ 0 j . Let q(θ) = 1, ν 1 T e iw0τ 0 j θ and q * (s) = D 1, ν *

1 T e iw0τ 0 j s . From the above discussion, it is easy to know that A(0)q(0) = iw 0 τ 0 j q(0) and A * (0)q * (0) = -iw 0 τ 0 j q * (0). That is

τ 0 j   ϕ ′ (x ⋆ ) -my ⋆ p ′ (x ⋆ ) -H ′ (x ⋆ ) -mp(x ⋆ ) 0 0   q(0) +τ 0 j   0 0 y ⋆ cmp ′ (x ⋆ ) 0   q(-1) = iw 0 τ 0 j q(0) and τ 0 j   ϕ ′ (x ⋆ ) -my ⋆ p ′ (x ⋆ ) -H ′ (x ⋆ ) 0 -mp(x ⋆ ) 0   q * (0) +τ 0 j   0 y ⋆ cmp ′ (x ⋆ ) 0 0   q * (-1) = -iw 0 τ 0 j q * (0)
Thus, we can easily obtain

q(θ) = 1 , y ⋆ cmp ′ (x ⋆ )e -iw0τ 0 j iw 0 T e iw0τ 0 j θ (39) q * (s) = D 1 , mp(x ⋆ ) iw 0 T e iw0τ 0 j s (40) 
In order to assure q * (s), q(θ) = 1, we need to determine the value of D. From (38), we have q * (s), q(θ) = q * (0)q(0) -

0 -1 θ ξ=0
q * (ξθ)dη(θ)q(ξ)dξ = q * (0)q(0) -

0 -1 θ ξ=0
D 1, ν * 1 e -iw0τ 0 j (ξ-θ) dη(θ) 1, ν 1 T e iw0τ 0 j ξ dξ = q * (0)q(0) -q * (0) 0 -1 θe iw0τ 0 j θ dη(θ)q(0) = q * (0)q(0) -q * (0)τ 0 

That ends our proof.

Annex 2: Proof of the Lemma 2

We have x t (θ) = x 1t (θ), x 2t (θ) and q(θ) = 1, ν 1 T e iw0τ 0 j θ . So, from ( 8) and ( 10), it follows that x t (θ) = W (t, θ) + 2R e z(t)q(θ) = W 20 (θ) z 

2 Figure 1 .

 21 Figure 1.Harvesting function (T1 = 0.8, T2 = 1.5 and h = 0.9) given by Eq.(4).

Figure 2 .

 2 Figure 2. When τ = 1.4 > τ0, bifurcating periodic solutions from G(13.67, 7.59) occur.

Figure 3 .

 3 Figure 3. The system (1) is locally asymptotically stable around the interior equilibrium G at τ = 1 < τ0 = 1.1807. The other parameter values are given in the previous figure.

Annex 1 :

 1 Proof of the Lemma 1Define the linear operator L(µ) : C → R 2 and the nonlinear operator f (•, µ) : C → R 2 by:

ϕ 1 y 1 y

 11 ′ (x ⋆ )my ⋆ p ′ (x ⋆ ) -H ′ (x ⋆ ) -mp(x ⋆ ) = D 1 + ν 1 ν * 1 + τ 0 j e -iw0τ 0 j ν * 1 y ⋆ cmp ′ (x ⋆ ) ⋆ cmp ′ (x ⋆ ) ⋆ cmp ′ (x ⋆ )

2 2 + 2 +-2iw 0 τ 0 j 2 + 2 + ν1 y2iw 0 τ 0 j 2 + 2 ++ z 2

 2222ν1222 W 11 (θ)z z + W 02 z2 2 + 1, ν 1 T e iw0τ 0 j θ z(t) + 1, ν1 T e -iw0τ 0 j θ z(t) + • • • (42)and then we havex 1t (0) = z + z + W • • • x 2t (-1) = ν 1 ze -iw0τ 0 j + ν1 ze iw0τ 0 j + W It follows together with (31) that g(z, z) = z 2 2 2τ 0 j Dr K + mp ′ (x ⋆ )ν 1 + my ⋆ p ′′ (x ⋆ ) 2 + ν1 y ⋆ cmp ′′ (x ⋆ )e cmp ′ (x ⋆ )ν 1 e -iw0τ 0 K + mp ′ (x ⋆ )ν 1 + my ⋆ p ′′ (x ⋆ ) ⋆ cmp ′′ (x ⋆ )e cmp ′ (x ⋆ )ν 1 e iw0τ 0 j + z z 2τ 0 j Dr K + mp ′ (x ⋆ )R e {ν 1 } + my ⋆ p ′′ (x ⋆ ) 2 + ν1y ⋆ cmp ′′ (x ⋆ ) cmp ′ (x ⋆ )R e ν 1 e iw0τ 0 j

  and F6 (x 6 , 0) when they exist are locally asymptotically stable. When 1-ad 1 > 0, these equilibria are unstable if the first coordinate belongs to ]x ⋆ , K[ and stable if the first coordinate is less than x ⋆ . If 1ad 1 ≤ 0 and xi > x 0 , i = 1, ..., 4, the equilibria Ēi (x i , 0), i = 1, ..., 4, are locally asymptotically stable. These equilibria are unstable if the condition is reversed.

	(c) The equilibrium Ẽ3 (x 3 , 0) when it exists is stable if and only if 1 -ad 1 ≤ 0 and x3 > K 2 and unstable if not.
	Theorem 2.2 Theorem 2.3 Let

mp ′ (x ⋆ ) 2W

(2)

11 (-1)

Where f and D are given in the proof of the lemma 1 respectively by ( 31) and (41).

Comparing the coefficients with [START_REF] Macdonald | Time Lags in Biological Models[END_REF], we obtain the coefficients of g(z, z). That ends our proof.