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Abstract—Legacy software systems are valuable assets for
organisations and are sometimes their main source of incomes.
From time to time, renewing legacy software system architecture
becomes necessary in order to offer them a new future. Migrating
the architecture of a legacy software system is a difficult task. It
involves understanding and aggregating a large set of data (the
entire source code, dependencies, efc.); it may have a profound
impact on the system’s behaviour; and because it occurs very
rarely in the life of a system, it is hard to gain experience in
this domain. Based on the study of an industrial architecture
migration case, we discuss how this essentially manual effort
could be helped with automated tools and a better defined
process. We identified several issues raised during the task,
characterized their impact, and proposed possible solutions.

I. INTRODUCTION

Legacy software systems represent a significant part of
companies’ wealth. Maintainability of such systems has be-
come an important goal for companies which own them.
Software evolution activities can be classified in two: day to
day evolution, where engineers correct bugs, implement new
features, or adapt the system to new working conditions; and,
much rarer, restructuring, where engineers need to completely
re-think the architecture of a system because it seems no
longer possible to adapt it in small steps. Because it occurs
so rarely in the life of the system, restructuring software
architecture is mostly a case-by-case activity. It is difficult to
gain much experience in it and to improve its practice through
the definition of a formal process.

In our specific case, the company we are working with
wants to restructure a real-time, embedded, critical system.
The system is an old (> 20 years) Ada system in the defence
area. The goal is to modularise the system to ease day to day
evolution and take advantage of technological improvements
that were introduced since the creation of the system. The
wished architecture is partially specified in the sense that
high level components and main architectural rules have been
defined. In this restructuring, there is no immediate change in
the functionalities and one goal is to reuse existing code as
much as possible.

The classical process for architecture restructuring is the
horseshoe “process” [1]. However, this is a very generic one
that defines high level operations. As such it has been spe-
cialised in various publications (e.g. [2]). A line of research try

to generalise the target system into a Software Product Line [2]
by abstracting variation points in the functionalities, this is not
our case since we are keeping the same functionalities. Others
focus on migrating toward a Service-Oriented Architecture [3],
which, again is not our case, since it has been decided to go
for a component based architecture. The Component Recovery
line of research is an old one (e.g. [4], [5]) but it typically only
tries to extract the components without allowing to specify a
wished architecture. Confronted to architecture restructuring
in a real software architecture migration case, we found that
existing literature often relies on hypotheses that were not true
in our case.

In this paper we discuss a three steps process that we
formalised from the activities of the software engineers in
the project. We list the difficulties that arised when trying to
automate some of these activities and possible solutions that
we experimented. The efficacity of the different experiments
are evaluated against an oracle resulting from the work of
software engineers and ourselves on a part of the system.

Section II describes the problem of software architecture
migration and the potential related solutions in the literature.
Section III details the actions of the software engineers per-
forming the restructuring and points out weaknesses of this
project. Section IV presents a process formalising the actions
taken by the software engineers and ideas to (partly) automate
it. Finally, section VI draws lessons learned from this project
and explains the future work.

II. BACKGROUND

As stated previously, the classical process for architecture
restructuring is the Horseshoe process [1]. It is divided into
three main parts: reverse engineering, re-engineering and
forward engineering. The reverse engineering part aims to
model and understand the current system architecture, the re-
engineering part aims to restructure the architecture of the
system and the forward engineering part aims to re-implement
the new architecture in the source code [6]. In our project,
the reverse engineering part is already handled by the Moose
infrastructure [7]. This offers us a model of the system with all
its software elements (packages, procedures, types, variables)
and their interdependencies (use of variables, invocation of
methods, etc.). We will therefore focus on the re-engineering



part. We found in the literature different approaches that can
tackle this part, e.g. Software Architecture Transformation [8];
migration towards Service-Oriented Architecture (SOA) [3];
and Component Recovery [9].

A. Main Lines of Research

The phrase Software Architecture Transformation is defined
in [1] as the line of research that aims at transforming
the current architecture of a legacy system into a new one.
Transformation between old and new architecture is done
thanks to a set of “recipes” transformation between elements
from the two different architectures [10]. This domain focuses
on monitoring the impact of architectural changes on the
overall quality of the system. It also only considers small
architectural transformations that can be applied automatically
and guarantees the executability of the resulting source code.
This line of research does not concern us since the project
we are involved with will completely restructure the system
around an architecture radically different from the existing
one.

Migration towards Service-Oriented Architecture (SOA)
aims to “move the legacy system architecture to the more
flexible SOA while preserving the original system data and
functionality” [11]. SOA migration approaches either address
the technical perspective to expose legacy code as services,
or determine the migration feasibility regarding the charac-
teristics of the legacy system and the requirements of the
target SOA system [12]. We are not interested in the technical
aspects because, in our case, the current and future systems
are both implemented using the same technologies and we
foresee no technical difficulties there. Moreover, components
and services, even though they are close, have fundamental
differences that would make it very difficult to reuse SOA
migration approaches for component architecture migration.

On the other hand, SOA migration work, e.g. [11], [12],
[13], introduced interesting techniques such as Concept Slicing
to associate the existing source code with the services they
extract. The idea behind Concept Slicing is to identify the
source code associated with the implementation of a human-
oriented “concept”. The human oriented concept thus becomes
a service and the code associated to it is used to implement
that service. Concept slicing works by combining Concept
Assignment solutions, that identify relevant pieces of code
from a concept, with Program Slicing solution, that identify
an executable piece of code.

A last related line of research named Component Recov-
ery, or Component Identification, automatically organises the
software elements of a system into components. Component
recovery corresponds to the detection of subsystems [14], it
works by clustering the nodes of a dependency graph of the
application [4], [5], [15] into independent components. Yet
because they work on structural information (a graph of de-
pendencies between the elements of the system), they can only
extract structurally coherent components whereas they should
include human and domain knowledge in the process to be able
to extract business components [16], [17]. Another issue with

existing Component Recovery techniques is that they do not
accept a predefined target architecture, but focus on extracting
what they consider the best possible components. In our case,
the target architecture is already partly defined and we already
know what the main components (more abstract ones) should
be and even for some of them what sub-components they
should contain. We are not aware of a Component Recovery
approach that would suit this requirement.

B. Extraction of components from existing source code

Although the existing Component Recovery approaches do
not apply to our project, they offer some useful techniques.

All the techniques are based on the idea of representing
the source code as a dependency graph where the nodes are
software elements and the vertices are dependencies between
them [4], [5], [15]. Any given approach will work at a specific
level of abstraction and consider a small number of software
element kinds, Koschke [5] calls them Quarks, “the smallest
significant element at the architectural level”. For example,
Allier and Seriai [4], [15] work with classes and Koschke [5]
with subprograms, user defined types and variables (in a C
program). On the other hand, the example of SOA migration
shows that it might be necessary to work at a very fine-grained
level. This is the case when program slicing is used to extract
executable services.

From the dependency graph, software elements are clus-
tered to form components. The clustering tries to maximise
dependencies within a component (known as Cohesion) and
minimise dependencies between components (known as Cou-
pling). Many different metrics have been proposed to compute
Cohesion and Coupling and we will not consider them in this
paper.

Finally we should add that Johnson [18] noted the necessity
of an iterative process.

III. DESCRIPTION OF THE PROJECT

We are accompanying a large company which undertook a
big software migration project where the architecture of the
subject system will be completely redesigned. This section
describes the project, Section III-A explains the context of the
project; Section III-B details the informal process followed by
the re-engineers. Section III-C points out the weaknesses of
this informal process.

A. Context of the Migration

The migration project is to restructure a real-time, embed-
ded, critical system in the defence area. The system is old (>
20 years), big (> 300 KLOC) written in Ada 83. It counts
around 1500 packages and 15000 subprograms gathered into
modules. Table I summarises main characteristics of this
system and Figure 1 gives a general idea of the existing
software architecture. It should be noted that this existing
architecture was not explicit prior to the project and has been
reconstructed as part of a reverse engineering effort. This
reverse engineering effort has been done by engineers inside
the company and none of the authors have participated.



TABLE I
CHARACTERISTICS OF THE SOFTWARE SYSTEM
Technical ~ Age >20 years
Character-  Size >300 kLoC
istic Programming
Language Ada 83
#Package 1537
#Subprograms 14 650
Embedded, Real
Specificity Time, Critical
Modules with single
Design Architecture responsibility
Character- Treatment based
istic Communication
System Message exchanges

Algorithm
Layer

Messages

Library
Management
Layer

Inputs
Layer

3

w

Old software architecture
“module”

ackages ﬁ Physical Devices

Fig. 1. Simplified representation of the existing software architecture

The problems identified with this system are:

This is a real time system developed a long time ago with
the best techniques of that time. As such, a strong empha-
sis was placed on the processing with little consideration
for a high level data model. The company now wishes
to correct this situation by defining and using high level,
business oriented, data structure that could possibly be
shared with other systems in the company.

The legacy system uses a communication system, that is
a proprietary middleware, based on messages exchanges.
Since its installation, new communication standards have
been defined, that the company wants to use. Instead of
using an event based communication system (messages),
interactions should be based on shared data.

Changes in the physical environment of the system are
foreseen in the near future, and there is a concern whether
these changes could be easily accommodated in the
existing system. For example, the Algorithm layer (Figure
1) regularly interacts directly with the physical devices.
The company now wishes to have a more modular system

that will constraint the impact of any of these changes to
a small portion of the system.

o The legacy system adopts a layered architecture. How-
ever, communication and dependencies between layers
are frequent and not only between two adjacent layers.

o Ultimately, there is a hope to be able to reuse some of
the components of the target architecture in other systems
of the company in the same business domain. Again,
this implies having a more modular system, with better-
defined components and data structures.

With these requirements in view, some high level com-
ponents were defined by domain experts and structured in
the target architecture sketched out in Figure 2. The target
architecture is only partially specified in the sense that these
high level components and main architectural rules were
defined, but the exact content of the composite components
(i.e. the small boxes within the big ones) was not clear at
the start of the project. In this restructuring, all functionalities
should remain the same. One goal is to reuse existing code
as much as possible and what parts of the existing code
should map to what components (composite or atomic) is to
be decided by the restructuring project.

The planned architecture has two levels: a component can
either be composite (large boxes in Figure 2), and contain other
components, or atomic (smaller boxes), and be associated
to current code. A few architectural rules were defined to
constraint relationships between components, such as a strict
three layer architecture (+ the physical device layer) where
any layer can only interact with the layers directly above
or below it (therefore Business layer cannot interact with
Interface layer).

Business
Layer

HDD

Data
Layer

IO

ik Physical Devices

Interface
Layer
L]
]
U

:l Data bus

Ay

[:I Component

Fig. 2. Simplified representation of the target component-based architecture

B. Existing Activities in Details

The restructuring relies on manual code analysis. A brief
overview of the Ada language is given here to help the
reader understand the activities taking place in this project.



The Ada entities of interest are: packages, subprograms and
instructions. Packages contain entities that can be packages,
subprograms or instructions. Subprograms contain only sub-
programs or instructions. Instructions are elementary entities
(e.g. subprograms calls).

The software engineers study the source code to allocate
software elements to one of the 16 pre-defined composite
components. They do this by actually assigning software
elements to potential atomic components within the composite
components. Two tasks are therefore performed concurrently:
assign software elements to the composite components and
decomposing these into a number of atomic components.
Software engineers try to allocate entire packages to a given
atomic component. Yet studying it, they may consider that a
part of it, maybe a subprogram, will need to be assigned to
another atomic component (but always in the same composite
component); they may sometimes even go down to assign-
ing instructions (always subprogram invocations) to another
atomic component.

From this informal process, we identified two interesting
characteristic. First, they work at very different levels of
abstraction, from coarse grained elements (packages) to very
detailed ones (single instruction). To the best of our knowl-
edge, we have not seen a proposition in the literature that
allows to work with such a wide range of entities. Second, they
adopted an iterative approach that tends to refine the results,
working first on packages, then on subprograms and eventually
on instructions.

Allocating Packages: Based on their understanding of
the source code, the re-engineers select a set of packages
that are likely to answer the responsibility of a component.
The packages imported by each of these initial packages are
normally allocated to the same component. Exceptions occur
when an imported package has already been allocated to some
other component. In that case, a deeper analysis of the package
is performed, by looking at the comments in the source code,
to resolve the conflict.

In case of doubt, another possibility is available: a library
component gathering all the packages that could not be allo-
cated to one single component.

Allocating Subprograms and Subprograms Invocations:
Subprograms and subprograms invocations may be moved
from one atomic component to another but only between
sibling components (meaning they remain in their composite
component). Re-engineers’ analysis of the packages content
relies on structural information such as dependencies between
subprograms, and instructions in order to identify flows of
execution. One must recall that we are dealing with a real
time system which implies that functionalities or task within
this system are first class citizens that receive a large part of
the developers’ attention. In comparison with more traditional
information system, it seems that data received less attention
during the system initial development. It is actually one of the
goal of the system to correct this fact and identify high level,
business, data structures that could possibly be reused in other
related systems.

The analysis of the software engineers also relies on their
knowledge of the system, their experience in the domain, the
identification of features in the source code and the extraction
of the source code associated to a feature. They are basically
applying a concept slicing to determine the instructions that
perform a specific feature and then allocate theses instruc-
tions to the component that should implement this feature.
Respect of the mandatory / prohibited relationships between
components are also used in the allocation of subprograms and
subprograms invocations.

Code Rewriting: In accordance with the allocation, re-
engineers rewrite the existing code to make the legacy software
system work with its new architecture. Classic V-cycle is the
basis of this part and it is done in parallel with the previous
step.

At the moment, this project is ongoing, atomic components
have been identified in all 16 composite components. Many
packages and subprograms have been allocated to their com-
posants, but all the work is not done yet and the final step of
rewriting the code to actually build the new system did not
start yet.

C. Existing Approach Weaknesses

This informal process mostly relies on a comprehension of
the legacy system by the re-engineers. A deep knowledge of
each entity (package, subprogram or subprograms invocations)
is required. Consequences are twofold.

First, the process is fully manual leading to time con-
sumption and possible error creation. Due to the significant
size of the legacy system, the full content of each package
cannot be analysed in details by humans. Consequently, in
the package allocating stage, the re-engineers use imported
packages declarations to navigate dependencies from a given
package. However, these declarations may be a super set of the
actual dependencies. Unrelated packages are analysed together
whereas they have no connected responsibilities and their
analysis should be postponed.

Second, the process mostly relies on the skills of very
few re-engineers who know the software enough. This deep
knowledge eases their task, by enabling them to eventually
skip the analysis of entities. However, their analysis strongly
depends on the coding convention, making the process strongly
dependent on the legacy software system. Consequently, the
process is ad hoc and is difficult to reproduce on another
legacy system or with another engineer.

IV. A PROPOSED TOOL SUPPORTED PROCESS

To help overcome these weaknesses, we are working on
formalizing a restructuring process and developing tools to
automate it. Our solution is based over an existing industrial
tool using the Moose technology [7]. Our hopes are: to validate
the work already done and/or identify possible erroneous
decisions; To speed up the remaining of the project; To prepare
for envisioned future similar efforts in the company. While
describing this process, we will highlight decision points (D P)



that we evaluated to understand which solution was the best
and what consequences they could bring.

Our process consists in an iterative refinement of the al-
location of software elements to components: In a first step,
packages will be assigned to components, possibly resulting
in conflicting assignments. We then go down to the level
of subprograms to decompose the conflicting packages into
coherent “sub-packages”, and decompose composite compo-
nents into atomic components. Finally we propose to go down
to decomposing subprograms by allowing to assign some of
their instructions to different atomic components. This last step
assumes one would do subprogram extraction refactorings.

The process does no try to create components as often
seen in past research, but relies on the knowledge of software
engineers in their business domain to propose meaningful
components and assign software elements to these compo-
nents. This knowledge is reinforced by structural information
(dependencies between elements) and the identification of
special elements.

At the start of each iteration, a model of the system (or of
a part of the system) is built with the software elements to be
allocated (called architectural quarks following the convention
in [5], i.e. the smallest significant elements) and their relation-
ships (or dependencies). Each iteration then consists in asking
the software engineers to identify core quarks and assign
them to components. From these core quarks, we navigate
the dependencies between all quarks to assign them to the
components. The main decision points (D P) in evaluating our
process and its automation will therefore be, at each iteration
(or level): (i) how to choose the right core quarks; (ii) what
dependencies to follow (or how to follow the dependencies
as will be explained further down); and (iii) how to resolve
conflicting assignments. Note that it is not mandatory to solve
every conflict during a given step. Thus, at the end of an
iteration, some conflicts might still exist.

Finally, we must note that our process does not yet address
the code rewriting step.

A. First iteration: Package allocation

This first iteration aims to allocate packages into composite
components. At the architectural level of this iteration, the
quarks are Ada packages. The edges of the dependency graph
are the dependencies between packages as when one package
imports another one.

The software engineers helped us to identify simple rules
that allowed to identify the core packages of each composite
components (DP! *). There can be as little as one core
per component. It was easy for the software engineers to
select them. Actually, the choice of the composite components
of the wished architecture already implicitly relied on the
identification of important part of the system that were easy
to map to some packages. For the system under study, it
was possible to define rules, based on naming convention
and the presence of some specific software elements (an Ada

*DP} stands for Decision Point for Core quarks at iteration 1.

procedure named run), allowing to automatically identify core
packages for each high level component.

We experimented two alternative solutions for DP}: the
packages indicated by the software engineers (see above) and
random choice of packages. Obviously, the second one will
give poorer results, but it may be a specificity of this project
that high level composite components and core packages
seemed very clear to the software engineers.

The dependency graph is navigated from each core, fol-
lowing its dependencies recursively (see Figure 3). Each
reached node is allocated to the same component as the core.
Obviously, the same node may be reached from different cores
because several packages depend on it (e.g. the triangle and
diamond elements on the right of the figure) resulting in
conflicting quarks (multi-core conflict). It may also occur that
some quarks are never reached from the cores resulting in
another type of conflict (isolation conflict as for the dotted
elements on the left of the figure).

We experimented with three solutions for Decision Point
DP} f: First the dependency relationships can be Ada de-
clared imports between packages (Ada instruction with).
Second they can be what we call referenced imports which are
the declared imports that are actually necessary in the code to
make it compile (as in many languages, the compiler does not
check that a declared import is actually necessary). This is one
point where an automated tool has an advantage over manual
analysis in identifying the imports that are really required.
The referenced imports are guaranteed to be a subset of the
declared imports. Third, dependencies between packages can
be the same referenced imports, but this time followed upward
and downward, that is to say we look on what packages the
core quarks depend (as for the two other solutions), but we
also include in the component, the packages that depend on
the core quarks.

Re-engineers may solve conflicts manually according to
their knowledge of the application. They are helped by infor-
mation about the packages e.g. their names, their comments
or all the dependent packages in the dependency graph. In this
iteration, conflicts resolution is not required since the iteration
is used to set out the architecture migration process.

We experimented with two solutions for Decision Point
DP! *: first and as currently done by the software engineers,
the “resolution” of multi-core conflicting packages may be to
assign them to a special component called the Library. The
rational is that packages that are required by more than one
component need to be accessible from everywhere. In this first
solution, we propose to resolve isolation conflict by following
the dependencies from the isolated packages towards the core
packages (note that the isolated packages are those that could
not be reached from any core towards them). This part is
similar to the third choice for DP;.

A second option that we evaluated for DP! was to leave
the components in conflict and evaluate them as if they were

TDP(} stands for Decision Point for Dependency relationship at iteration
1

j;DPrl stands for Decision Point for Resolving conflicts at iteration 1.



A Component 1 Core node

¢ Component 2 Normal node

Conflict node

Fig. 3. Example of navigation and conflicts

actually member of both components (multi-core conflict) or
of no component at all (isolation conflict).

B. Second Iteration: Subprograms allocation

This second iteration aims to refine the allocations done
in the first iteration by defining atomic components in the
composite components and allocating subprograms to these
atomic components. The dependency graph is build from sub-
programs (the quarks) and the dependencies between them are
invocations. Again the iteration starts by choosing core quarks
and allocating them to components following transitively the
dependencies.

Allocation is always considered within a composite compo-
nent, which means that subprograms in a package will always
remain within the composite component of their package, but
two subprograms of one package may be allocated to two
different atomic components.

We experimented with only one composite component in
this iteration.

The first option for DP? (choosing of core quarks for
iteration #2) is again to follow the indications of the software
engineers. (They were less clear cut this time). Several atomic
components of the composite component considered for this
evaluation were named by the software engineers from one
package of the same composite component. All the subpro-
grams of such packages were an obvious choice as core quarks
for their respective atomic components. In other cases, we
tried to rely on subprogram naming convention to choose core
quarks for other atomic components.

For Decision Point DP?, we relied on invocation between
subprograms as stated above. We considered three options
(not all mutually exclusive): only using downward invocation
from the cores to other subprograms; using both upward and
downward invocations; and/or considering what variables the
subprograms use. The last option is based on the hypothesis

that some variables are “indicators” of atomic components. By
identifying these variables, we want to assign subprograms that
use them to the components,

This iteration will also result in conflict that may be resolved
by the software engineers or left for the next iteration.

C. Third Iteration: subprograms invocations allocating

This iteration aims to resolve some of the conflicts left in
the previous iteration by decomposing the subprograms and
assign individual instructions (extracted in new subprograms)
to atomic components. As for the manual process, the in-
structions considered here are invocation (subprogram calls)
instructions.

We identified some conflicting subprograms that act as
“dispatcher” between several atomic component: The flow
of execution reaches them and they channel it toward the
appropriate atomic component after a series of tests. Such
dispatcher subprograms are often in conflict in that they appear
to be assignable to several atomic components, usually all the
components to which they may dispatch the flow of control.
One idea is to try to decompose these dispatchers so that each
flow of execution is concentrated in its atomic component and
the dispatching done earlier in the flow of execution.

We neither had the time nor enough data yet to experiment
solutions for this step.

V. EXPERIMENT DESCRIPTION

We presented a process to help software engineers restruc-
ture a software system. At each iteration of the process, we
identified decision points and proposed solutions. We compare
these solutions to an oracle corresponding to the manual work
of the software engineers after possible modifications.

We first present the oracle before discussing in detail each
proposed solution and see their respective efficiency and what
impact they have on the result.

A. Oracle

The manual work described in section III-B is considered
the oracle. The target architecture is composed of 16 composite
components. One of them is the Library component and is used
to gather all the packages that are needed (i.e. imported by
a package) by several composite components. The engineers
allocated 1537 packages on to the 16 composite components.
408 packages, out of the 1537 packages of the application,
were allocated to the Library. 593 packages have been cate-
gorised as messages and are treated by the engineers during
the second iteration. This first step took about two weeks
long to four engineers to complete. This first assignment of
packages into composite components is the base for our oracle
(evaluation of our first step solutions).

At the time of this writing, the engineers finished defin-
ing all the atomic components belonging to the composite
components. However, few of these atomic components have
been populated by software elements (packages, subroutines,
instructions). The engineers focused on two of the 16 compos-
ite components, and their atomic components are considered



complete. These two composite components and their atomic
components are used to evaluate the results of our second step
solutions. This part of the oracle took some time to establish
as it requires a more in depth study of the packages and
their subprograms. Each of these two composite components
took one person/month to complete. The software engineers
established a first classification that was too low level (not
sufficiently abstract). After reworking they merged some of
the atomic components originally identified together.

Unfortunately, we could not establish a meaningful oracle
for the evaluation of the third step solutions.

B. Evaluation of solutions

Evaluation of all proposed solutions will be computed
against the oracle. We use Precision and Recall metrics, also
summarised in the F-Score metric. For any possible allocation
of quarks in components:

e Precision = % of quarks allocated to a component in the
evaluated solution that are in the same component in the
oracle.

e Recall = % of quarks allocated to a component in the
oracle that are in the same component in the evaluated
solution.

o F-Score = 2*(precision*recall)/(precision + recall)

Typically, one may achieve better precision (all allocated
quarks are in their right component) by lowering the recall
(very few quarks are actually allocated to any component).
The opposite is also true. For this reason, the F-Score metrics
offers a balanced value of both metrics together.

The result we give are the arithmetic mean of the metrics
values over all components.

For reference, we give the results of the first allocation
of software elements into atomic components made by the
engineers (Table II). They later improved this work, but con-
sidering their initial result can give some ground of comparison
to rank the quality of the automated solutions. These results
may be compared to what we did on the second iteration of
our process (see Section V-D. The results are not perfect and
show how difficult it can be for human experts to allocate
software elements into components.

TABLE I
EVALUATION OF THE RESULTS OF THE FIRST VERSION OF EXPERTS
ALLOCATION

Recall
83%

F-Score
66%

Precision
65%

C. Proposed Solutions For Iteration 1

DP!: Software engineers identified 64 packages as the core
quarks for the 16 composite components. As mentioned in
Section V-C, we could easily define rules to automatically
identify the core packages based on naming convention of the
packages and the presence of some specific software elements
(an Ada procedure named run). This is due to the fact that the
composite components match high level features of the system

which themselves each correspond to some easily recognizable
package.

DP}: We experimented three solutions:

e Declared imports between packages (Ada instruction
with), going from core packages to the packages they
import (and transitively);

e Referenced imports which are the declared imports
backed up by some actual use of the package content,
going from core packages to the packages they import
(and transitively);

e Up/Down imports which are the referenced imports going
from core packages to the packages they import (and
transitively) and also from core packages to the packages
that import them (and transitively). Both paths (up and
down) are followed completely from cores without going
back. In other terms directions are not mixed.

DP}: We experimented two solutions:

o With library where packages in conflict are allocated to a
special component called the library (precision and recall
are computed for this special component as well as the
other);

e No library where packages are allowed to remain in
conflict and are considered allocated to several composite
components and the library components is empty which
already means precision and recall will be lower.

TABLE III
DECISION POINTS FOR ITERATION 1

Precision Recall F-Score

DP; Declared imports 68%  93% T6%
DP} With library

DP] Referenced imports  94%  89%  90%
DP! With library

DP] Up/Down imports ~ 25% 3% 6%
DP} With library

DP; Declared imports

DP! No library 6%  96% 9%
DP) Referenced imports

DP! No library 9%  93% 12%
DP} Up/Down imports

DP}! No library 1% 93% 11%

The first conclusion is that precision is much better when
we resolve conflict by assigning packages to the library
component. This was expected as this library contains 1001
packages in the oracle that will all hurt the precision metrics
if they were not allocated to their library component. Recall is
better if we do not assign conflicting packages to the library
because it gives a chance to some packages that should not
be in the library to be actually allocated to their component.
Overall, the loss in precision largely outweighs the gain in
recall as shown by the F-Score.

We also see that referenced imports are better than declared
imports in terms of precision. The explanation must be that
some packages are indeed imported where they are not needed



and this introduces noise. As expected this improve in preci-
sion is made at the expense of the recall but the F-Score still
is better for referenced imports. This, therefore, seems to be
the solution of choice.

Finally, considering referenced imports both downward and
upward from the core packages significantly lowers the results.
The explanation is that much more packages can be reached
from any core with this solution. Some of them may be correct
hits, but many more should not have been reached thus hurting
precision. For line 3, recall also diminishes drastically, because
with more packages reached from any core, many end up in
conflict and are therefore allocated to the library component
instead of their right component.

Because of its size (two third of all the packages of the
application), including the library in the comparison could
impact the precision, recall and F-Score. We decided then to
make two comparisons for our chosen solution (line 2 of table
VI): a comparison that includes the packages of the library; a
comparison that does not include the packages of the library.
Table IV shows that precision ad F-Score are increased without
taking the library into account in the comparison while recall
is stable (only a decreasing of on but it is mostly due to the
fact that metrics are rounded).

TABLE IV
CHOSEN SOLUTION INCLUDING AND NOT INCLUDING LIBRARY
COMPONENT IN COMPARISON

Precision Recall F-Score

D P} Referenced imports 94%  89% 90%
DP} With library

Library in Comparison
DP] Referenced imports 98% 8% 93%

DP! With library
No Library in Comparison

Table V gathers precision, recall and F-Score for each com-
posite component of the application (excluding the Library) in
case of a comparison like in line 2 of table IV. Name of the
composite components are changed to respect the company
rules on confidentiality.

Precision is stable for each composite component, except for
the composite F. We took a deeper look at this composite and
it appears that packages are coming from the others composite.
However no general rule can be found to handle this effect.
Although recall fluctuates between 70% and 100%, leading
the F-Score to also fluctuates, these two metrics stay above
70%

D. Proposed Solutions For Iteration 2

In this Iteration, quarks are subprograms that are allocated
to atomic components. One decision in this iteration is that
we would not go back on the previous results and leave
subprograms in the composite component where their parent
packages are allocated. But two subprograms in the same
package may be allocated to two different atomic components
(within the same composite component). For the evaluation

TABLE V
PRECISION, RECALL AND F-SCORE FOR EACH COMPOSITE COMPONENT
IN ITERATION 1 WITH OUR CHOSEN SOLUTION

Precision Recall F-Score

A 94%  82% 88%
B 100% 85% 92%
C 100% 100% 100%
D 92% 95% 93%
E 94% 70% 76%
F 8% 99% 99%
G 100% 75% 86%
H 100% 89% 94%
I 100% 8% 93%
T 98%  98% 98%
K 9% 75% 85%
L 100% 90% 95%
M 100% 86% 92%
N 100% 100% 100%
O 100% 96%  98%

of our solution, we only consider two specific composite
components that were fully treated by the software engineers.
DP?: Based on some indications by the software engi-
neers, rules were defined using a naming convention on the
subprograms to identify core subprograms of some atomic
components (the name of the atomic components can be found
in the name of some subprograms). In other cases, one package
was identified as central to an atomic component and all its
subroutines were consequently chosen as core quarks for this
component. This work was performed without the direct help
or monitoring of the software engineers and therefore, we
cannot ensure that our chosen cores are the best we could
have defined for each atomic component. The rational was
that we wanted to see how well we could do with a more
limited understanding of the system. We did had to correct
some of our rules after a first try when we obtained results
that were not those expected. We believe, this kind of iterative
refinement of the core quarks selection is normal and reflects
actual working conditions when the software engineers would
not have a perfect understanding of the existing system.
DP}?: We experimented two solutions:

e Downward invocations between subprograms, going from
core subprograms to the subprograms they call (and
transitively);

e Up/Down invocations going from core subprograms to
the subprograms they call (and transitively) and also from
core subprograms to the subprograms that call them (and
transitively).

DP?: We experimented three solutions:

e No action where subprograms are left in conflict. Con-
trarily to the previous iteration, in this case we consider
that subprograms in conflict are not allocated to any
atomic component. This is somehow similar to saying
they are allocated to a kind of “library atomic component”



although such atomic component does not really exist.
The subprograms in conflicts are left to be disambiguated
in the next iteration of the process;

o Variable uses (post) where some variables were identified
that are only used within an atomic component (we
say they are endemic to this component). Using these
variables, we try to resolve subprograms in conflict by
looking if they refer to any of these variables and if so,
allocating them to the atomic component related to this
variable.

e Variable uses (during) where we worked again with
variables endemic to an atomic component. But this
time, we try to resolve conflicts immediately as they
arise during propagation from the cores. If we could
resolve the conflict, this allowed us to propagate one step
further the allocation to a component. In this setting, the
set of endemic variables is recomputed at each step of
the propagation and gradually shrink, but it is larger at
the beginning, allowing to allocate more subprograms to
atomic components.

TABLE VI
DECISION POINTS FOR ITERATION 2

Precision Recall F-Score

DP? Downward invocations  57%  51% 51%
DP? No action

DP3 Downward invocations ~ 60%  49%  51%
DP? Variables Uses (post)

DP? Downward invocations  74%  48%  54%
DP? Variables Uses (during)

DP? Up/Down invocations 3%  65%  45%
DP? No action

DP? Up/Down invocations ~ 53%  58%  52%
DP? Variables Uses (post)

DP? Up/Down invocations 53%  62% 57%

DP? Variables Uses (during)

The first line of result is not very good due to a large number
of subprograms in conflict.

Result of the second line are a slightly better, showing
that resolving conflicts with endemic variables can improve
precision. Unfortunately, there are actually few such variables.

The third line brings much better precision with very little
impact on recall. This is due to the fact that we have a larger set
of endemic variables at the beginning, when only few subpro-
grams are allocated to an atomic component. This suggest that
we might want to more permissive when computing endemic
variables.

The fourth line is interesting because it brings an increase
in recall when compared to the first one. This was expected
as we gather more subprograms, taking the ones called by the
core quarks and the ones that call the core quarks. Precision
is low because, as for iteration 1 (Section V-C), a lot more
nodes are reached from any core, including some that should
not be.

When introducing conflict resolution with the help of en-
demic variables, we observe the same phenomenon as for line
2: higher precision, lower recall.

Finally, the last experiment raises agin the recall, while
not affecting precision. tis gives the best F-Score over all six
experiments.

Results for this iteration are encouraging, but still not satis-
fying. They are definitely worse than the first try of the experts.
However, they were obtain which much less efforts (automated
solutions) and by people with a lesser understanding of the
system (we are not experts).

We are still working on this iteration to try to get more
satisfying results. One direction of possible improvement
would be to continuue working on the variables, either by
loosening the constraint for endemic variables, or finding other
interesting data. We noticed for example some “dispatching”
subprograms (see also Section IV-C) that allow to distribute
the flow of execution over several atomic components. They
do this by looking at the value of specific variables. Identifying
these variables and the values of interest could help us improve
our results, somehow as endemic variables already helped us.

VI. CONCLUSION AND FURTHER WORK

A large company called us to follow and help in its
legacy software migration project. The legacy software had
modularisation problems that led the company to decide for
a restructuring of the system architecture. The project started,
before we stepped in, by the definition of a wished, target ar-
chitecture at a rather high abstraction level. Then, the engineers
and architects performed an informal software architecture
migration process from which we pointed out weaknesses that
could prevent its reproduction in another migration.

We decided to propose a tool-supported process that reme-
dies these weaknesses. We based the definition of our process
on the informal one that we witnessed in the project. Our
tool supported solution is an iterative process that combines
dependency graph extraction, data uses analysis, and domain
knowledge of the re-engineers to select core elements that
serve as seed for components. While other research only work
with a fixed kind of software elements (typically classes or
procedures), our process works with different kinds (packages
and subprograms for now).

We identified several points of decision in our process and
proposed possible choices at each point. These choices were
then evaluated to see which one made more sense.

The next steps of our work will be to improve our results
in the second iteration and/or concentrate on the third step
that is intended to resolve the conflicts left in the second one.
Our main hopes for now will be to analyze data usage in the
subprograms to either allocate them to their correct component
or understand how to split them into different subprograms
each going more clearly into one atomic component.
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