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Abstract

By estimating the first-order (direction) and second-order (curvature) derivatives in an image, the parameters of a line
or circle passing through a point may be uniquely defined in most cases. This allows to compute a one-to-one Hough
transform, every point in the image space voting for one unique point in the parameter space. Moreover, those
parameters can be directly estimated on the greyscale image without the need to calculate the contour and without
reducing the spatial support of the Hough transform, i.e. densely on the whole image. The general framework using
multiscale derivatives is presented, and the one-to-one Hough dense transforms for detecting lines and circles are
evaluated and compared with other variants of Hough transforms, from qualitative and computational points of view.
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1 Introduction
The Hough transform (HT), one of the oldest algorithms
of computer vision [1, 2], has been attracting a continuous
interest for more than 50 years, as testified by a num-
ber of surveys [3–5], the most recent one [6], mentioning
more than 2500 research papers, and citing around 100
post-2000 references. This is due not only to the constant
development of applications based on graphics recogni-
tion but also to the elegance and generality of the Hough
framework, allowing to detect analytical [7–10] as well as
non-analytical [11–13] shapes in a wide variety of relevant
manners.
The basic principle of the HT is to project the image

data within a parameter space representing possible posi-
tions of a shape in the image space, then to search
accumulation points in the parameter space, correspond-
ing to the most probable positions of the shape in the
image. Although many variations have been proposed
until recently, it is remarkable that in most cases, the
projection (voting process) is sparsely performed on con-
tour or salient points of the image space. In addition, it
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is almost always performed using one of the two dual
methods: one-to-many (one point in the image space votes
for an multidimensional surface in the parameter space)
or many-to-one (a set of points in the image space votes
for one single point in the parameter space).
In this paper, we advocate the use of dense spatial

derivatives instead of reducing the spatial support to a
sparse set. Intuitively, this must make the vote more sta-
tistically significant and then have a positive influence
on robustness. More unexpectedly, this should also lower
the computational cost because it removes the selection
process and, above all, because in the case of lines and
circles, the voting is a one-to-one projection from the
image to the parameter space. Although dense HTs have
been proposed already, and one-to-one voting has also
been used by some authors, to our knowledge, the two
concepts have not been used together. Our contributions
are the following: (1) a general framework for one-to-one
dense Hough transform (DHT) using multiscale spatial
derivatives, (2) practical algorithms based on this frame-
work for line and circle detection and (3) a comparative
study to evaluate the benefits and the weaknesses of the
one-to-one DHTs.
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To compare with other HTs, we define a computational
protocol for evaluating the performance of line and cir-
cle detection algorithms. The algorithms are tested on
real images with manually defined ground truth. Then,
for every algorithm, we plot the number of true positive
shapes as a function of the number of detected shapes.
The robustness to noise and to illumination changes of
the different algorithms and their variants are evaluated.
We also compare the computational costs of the different
methods.
This paper is organised as follows: Section 2 recalls the

fundamentals for Hough transform and multiscale deriva-
tives and present the related works. In Section 3, we
present the one-to-one DHT for line and circle detection.
Section 4 defines the evaluation protocol, presents com-
parative results of line and circle detection and discusses
them. Section 5 finally outlines the contributions of this
work and concludes.

2 Related works
2.1 Hough transform
An n-dimensional binary image I being a subset of Rn, an
analytical shape may be defined by a parametric equation:
Ca0 = {x ∈ R

n;φ(x, a0) = 0}, where x is the spatial vari-
able, and a0 ∈ R

m is a constant parameter. Now for a
specific x0 ∈ R

n, the set Dx0 = {a ∈ R
m;φ(x0, a) = 0},

where a is the parametric variable, is a surface in the m-
dimensional parameter space, which is the projection, or
dual form of point x0. The sum of all the projections of I
is called the Hough transform of I relatively to φ: �

φ
I =∑

x∈I 1Dx , where1A is the indicator function of setA. The
most representative shapes within I are finally detected by
searching the maxima of �φ

I .
For line detection, the polar parametric equation is pre-

ferred for uniform quantisation purposes [7]. The space
variable is x = (x, y), the parametric variable is a = (θ , ρ)

and the parametric equation is x cos θ + y sin θ = ρ.
The dual form D(x,y) is a sine curve. For circle detection,
the parametric variable is (cx, cy, r) and the parametric
equation is (x − cx)2 + (y − cy)2 = r2 [7]. The dual form
D(x,y) is a conic surface.
In practice, both the image and the parameter space

are quantised. The HT is classically applied on a binary
image made of thin and regular curves, obtained using a
contour detection algorithm. The transform is calculated
using one of the two dual methods: (1) The one-to-many
projection (a.k.a divergent transform), which consists in
scanning every pixel x0 of the binary image, and then
incrementing �

φ
I on the whole surface Dx0 as defined

above. (2) The many-to-one projection (a.k.a convergent
transform), which consists in considering everym-tuple of
pixels {xi}1≤i≤m of the binary image such that there exists
a unique a0 in the parameter space such that for all xi,

φ(xi, a0) = 0 (e.g. m = 2 for lines and m = 3 for circles)
and then increment only �

φ
I (a0).

One known drawback of the classical HT is their com-
putational cost. If p is the number of voting pixels in the
binary image, m the dimension of the parameter space,
and k the average number of samples per dimension of
the parameter space, the complexity of projection is pro-
portional to pkm−1 for the one-to-many transform, and to(p
m
)
for the many to one. The most popular approaches to

reduce the complexity consist in decreasing the number of
voting pixels by randomly picking a subset of them. For the
one-to-many transform, such approach is known as PHT,
or probabilistic Hough transform [14–16]. In the case of
many-to-one transforms, it is called RHT, or randomised
Hough transform [17, 18]. Classic HT, PHT and RHT
have been compared from qualitative and computational
perspectives in [19] and [20].
Using the local derivatives to improve or to acceler-

ate the HT has been done before, it was proposed for
lines by O’Gorman and Clowes [21] and for differentiable
curves by Shapiro [22]. In his review article, Maître [3]
explicitly mentioned the one-to-one HT for lines and cir-
cles. However, these approaches have been scarcely used
and—to our knowledge—only on binary curves, never
directly on grey level images. The gradient information
has been used in line detection for accelerating the HT
[23] or for controlling the voting process to improve the
progressive PHT [24]. Valenti and Gevers [25] have pro-
posed an efficient eye centre location algorithm based on
a voting scheme using the isophote curvature estimation.
Recently, Yao and Yi [26] used the curvature of the con-
tour to estimate the radius and then accelerate the circle
HT. However, all these approaches still reduced the voting
pixels to a thin contour previously calculated.
Kesidis and Papamarkos [27] have proposed an invert-

ible grey level HT by using directly the grey level value of
the pixels. In their circle detector, Atherton and Kerbyson
[28] applied a collection of convolutions on the gradient
image, which is equivalent to weighting the HT by the
gradient. A dense vote using the gradient and without cal-
culating the contours was performed for line detection
by Dahyot [29]. But she used an estimated density ker-
nel to spread the votes in the parameter space, resulting
in a computational cost actually higher than the classical
approach.
As a conclusion, amongst the few existing one-to-one

HTs, none is a dense method, and none of the existing
dense approaches is a one-to-one projection. The frame-
work proposed in this paper, which combines the two, is a
systematic approach based on (1) estimating the gradient
and/or the curvature on the greyscale image, (2) perform-
ing, for all the pixels of the image space, a one-to-one
vote in the parameter space, and (3) weighting the vote
by the significance of the derivative measure. We argue
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that (i) generalising the vote to all the pixels make the
DHT statistically more significant [29], (ii) the direct cal-
culation on the grey level removes the dependence to the
limits and parameters of the contour detection algorithm
and, finally, (iii) although the number of voting points
increases by one order of magnitude, the complexity is
actually lower because the estimation of derivatives have
a computational cost which is lower or comparable to the
contour detection algorithm and the one-to-one voting
process has a constant complexity. Let us now recall the
useful bases on image derivatives.

2.2 Multiscale derivatives on greyscale images
When dealing with local structures in images, differen-
tial geometry is a very convenient framework and has
been used for low-level image modelling and analysis for
decades to perform contour detection [30], point tracking
[31], optical flow estimation [32], corner [33], blob [34]
or ridge detection [35]. From a biological point of view,
the importance of local derivatives up to order two for the
human visual system has been acknowledged a long time
ago [36].
In the differential framework, the image I is considered

as a differentiable function from R
2 to R. Let (O, x, y) be

the Cartesian reference frame of R2. We denote Ix = ∂I
∂x ,

Ixx = ∂2I
∂x2 and so on.

At first order, if ∇I = (Ix, Iy) is the gradient vec-
tor, the value of the first derivative along any direction
represented by unit vector v is given by

Iv = vT .∇I. (1)

Thus, the derivative along the direction orthogonal to
the gradient (isophote direction t) is zero, whereas the
derivative in the gradient direction g is equal to the gra-
dient magnitude ||∇I|| =

√
I2x + I2y . On every point p

such that ||∇I(p)|| > 0, the gradient and isophote form a
local reference frame (p, g, t) corresponding to first-order
gauge coordinates (see Fig. 1). The isophote curve pass-
ing through p can be parameterised by the curvilinear
coordinate s, such that

I(g(s), t(s)) = I(p) (2)

At second order, if HI =
(
Ixx Ixy
Ixy Iyy

)

is the Hessian

matrix at point p, the value of the second derivative along
any couples of direction represented by unit vectors u and
v can be calculated by

Iuv = uTHIv. (3)

One important second-order measure is the isophote
curvature. Consider the displacement of a point along
the isophote curve, where the curvilinear coordinate s

Fig. 1 Gradient, isophote and curvature estimated at point P in a
greyscale image

is assimilated to time, and the local frame (p, g, t) cor-
responds to the Frenet frame. In this case, the isophote
curvature can be defined as the radial acceleration g̈(s),
when the displacement is made at unit velocity, i.e. ṫ(s) =
1 (using the notation ẋ = ∂x

∂s and ẍ = ∂2x
∂s2 ).

Derivating Eq. 2 with respect to s provides

ġ Ig + ṫ It = 0. (4)

Since It = 0, if Ig �= 0, we get ġ = 0. Then, derivating
again Eq. 4 with respect to s provides

ġ2 Igg + g̈ Ig + 2ġṫ Igt + ṫ2 Itt + ẗ It = 0. (5)

Finally, since It = 0, ṫ = 1 and ġ = 0 (if Ig �= 0), we get

g̈ = − Itt
Ig
. (6)

And by using Eqs. 1 and 3, we can get the expression of
the isophote curvature κ in Cartesian coordinates [37]

κ = g̈ = − IxxI2y − 2IxyIxIy + IyyI2x
||∇I||3 (7)

The absolute value of the isophote curvature corre-
sponds to the inverse of the radius of the osculating circle
to the isophote curve (see Fig. 1), while its sign provides
the polarity of the curvature (positive: brighter inside).
When I is a digital image, according to the scale space

framework [36, 38, 39], the spatial derivatives are esti-
mated relatively to a certain scale σ which represents
the level of regularity, explicitely enforced by Gaussian
smoothing

Iσxiyj = I 	
∂ i+jGσ

∂xi∂yj
, (8)
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where 	 is the convolution and Gσ the 2d Gaussian func-
tion of standard deviation σ (from now on, when working
at a single scale, we will frequently omit the σ superscript).
In the next section, Hough transforms and multiscale

derivatives are put together to form an effective frame-
work for line and circle detection.

3 One-to-one dense Hough transforms
The one-to-one dense Hough transforms (DHT) for lines
and circles are presented in this section. They are directly
computed on greyscale images using spatial derivatives.
The first-order derivatives (gradient vector) are used for
the line detection, and the first- and second-order deriva-
tives (gradient vector and Hessian matrix) are used for
the circle detection. Section 3.1 exposes the general prin-
ciples, then the algorithms are presented in Section 3.2.
Section 3.3 discusses the implementation details and
parameters, and Section 3.4 shows some results.

3.1 General principles
It can be deduced from Section 2.2 that at any image loca-
tion p such that ||∇I(p)|| �= 0, the knowledge of the two
first orders of spatial derivatives allows to calculate the
equation of the line or circle possibly present at p. Further-
more, the scale space estimation of the derivative allows to
effectively compute the line and/or circle present at many
locations directly from the greyscale. This can be seen on
Fig. 2, where the lines (a) and circles (b) passing through
different locations in the image have been automatically
computed using respectively the first-order and the two
first-order derivatives. The basic principle of the one-to-
one DHT is to generalise this computation to all pixels
through a voting process.
More explicitely, at the first order, using the classi-

cal (θ , ρ) polar parametrisation, where ρ is the distance
between the line and the origin, and θ is the angle made
by the normal to the line with the x axis, if there is a line
passing through point p, we must have

θp = arg∇I, (9)

ρp = |p.∇I|
||∇I|| . (10)

i.e., θp corresponds to the direction of the gradient vec-
tor and ρp to the distance between the origin and the
line passing through p and perpendicular to the gradient
vector. To evaluate the significance of the location with
respect to the presence of line, it is natural to use the
strength of the first derivative, i.e., the magnitude of the
gradient ||∇I|| =

√
I2x + I2y (see Fig. 3a, b).

At the second order, using the (C, r) parametrisation,
where C ∈ R

2 is the centre and r the radius of the circle, if
there is a circle passing through point p, we must have

a

b

Fig. 2 Direct detection of lines and circles from partial derivatives. In
the two images, the derivatives have been estimated at a few chosen
locations (shown by the little red circles) from the grey levels using a
scale estimation of σ = 3.0. a Line deduced from the gradient
direction (here, the segments with arrow represent the gradient
vectors). b Circle deduced from the isophote curvature and the
gradient direction: here, the segments with arrow have the direction
of the gradient vector, their magnitude is the inverse of the absolute
value of the isophote curvature, and their sense is the same as the
gradient for the positive curvature (blue circles) and its opposite for
the negative curvature (circles in cyan)

rp = 1
|κp| , (11)

−−→pCp = ∇I
κp||∇I|| . (12)

i.e., the radius rp is the inverse of the absolute curvature
κp calculated at point p using Eq. 7, and the centre Cp is
obtained by tracing from p the vector whose magnitude
corresponds to the radius, whose direction is the same
as the gradient and whose sense depends on the sign of
curvature. Again, we can evaluate the significance of the
location p with respect to the presence of circle by using
the strength of the second derivative, i.e., the Frobenius
norm of the Hessian matrix ||HI ||F =

√
I2xx + 2I2xy + I2yy.

The convergence of the most significant votes toward the
potential circle centres is visible on Fig. 3c, d.
In the multiscale DHT, we will combine the derivatives

estimated at different scales. If the votes account for the
relative importance of a given derivative at a certain loca-
tion, it is advisable to normalise the corresponding deriva-
tive according to the scale and to the order of derivation σ

[40]. Then, the multiscale voting weights will be σ ||∇I|| at
order 1 and σ 2||HI ||F at order 2.

3.2 DHT algorithms
3.2.1 Line DHT
The one-to-one DHT algorithm for line detection using
the (θ , ρ) parametrisation is presented on Table 1.
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Fig. 3 Voting in one-to-one DHT (the estimation scale used here is
σ = 3.0; for visibility purposes, at most, one vote per 5 × 5 block is
displayed). a Voting weight at order 1: the magnitude of the gradient.
b Votes for the gradient direction (only votes with weights higher than
2.5 are displayed). c Voting weight at order 2: the Frobenius norm of
the Hessian matrix. d Votes for the position of the centre of osculating
circle (only votes with weights higher than 0.5 are displayed)

Table 1 1-to-1 line DHT based on multiscale gradient

� = func t i on Hough_Lines ( Image I )
f o r a l l s c a l e σ ∈ {σ1, . . . , σn}

f o r a l l p i x e l p = (px,py)
∇I ← (Iσx (p), Iσy (p))

i f ||∇I|| > 0 :
d ← pxIx + pyIy
ρ ← |d|

||∇I||
θ ← arctan(

Iy
Ix )

�(ρ, θ) ← �(ρ, θ) + σ ||∇I||
end i f

endfor
endfor

end

This algorithm is directly deduced from Eqs. 9 and 10.
An example of 1-to-1 line DHT can be seen on Fig. 6d.

3.2.2 Circle DHT basic (V1)
Table 2 shows the basic algorithm for circle detection,
based on 1-to-1 dense votes in the 3d (cx, cy, ρ) parameter
space.
This algorithm is directly deduced from Eqs. 11 and

12. An example of 1-to-1 circle DHT V1 can be seen on
Fig. 8 (2, right).

3.2.3 Circle DHT two-pass (V2)
The straightforward implementation of the one-to-one
DHT for circles does not provide good results in general.
This is due to the fact that several scales of estimation are
usually needed to improve the detection of the centres,
but they also disperse the votes for the radius component,
which makes the detection difficult.
To address this problem, a two-pass algorithm can be

applied. The whole algorithm is detailed on Table 3. It first
computes a one-to-one partial DHT �1, where the param-
eter space is reduced to the 2d (cx, cy) centre space. This
first pass (lines 3 to 13) then concentrates the votes for
all radii, reducing the sparsity and improving the centre
localisation. The N best centres are selected from �1 (line
15), and then a second pass is applied to accumulate the
possible radii for a circle centred on one of these N candi-
date centres. In this second pass (lines 17 to 27), one single
scale (the smallest σ1) is used, to determine for every pixel
p, in a one-to-one manner, the centre and radius of a cir-
cle possibly passing through p (lines 18 to 21). Then, it is
checked if the estimated centre matches one (or several)
previously selected candidate centres, and when it does,
the accumulator array �2 for the corresponding candidate
and radius is incremented (lines 22 to 26).

Table 2 1-to-1 circle DHT (basic version)

� = func t i on Hough_Circles_V1
( Image I )

f o r a l l s c a l e σ ∈ {σ1, . . . , σn}
f o r a l l p i x e l p = (px,py)

∇I ← (Iσx (p), Iσy (p))

HI = ( Iσxx(p) Iσxy(p)

Iσxy(p) Iσyy(p)

)

i f ||HI ||F > 0 :
κ ← IxxI2y − 2IxyIxIy + IyyI2x
ρ ← ||∇I||3

κ

(cx, cy) = (px,py) − ∇I||∇I||2
κ

�(cx, cy, ρ) ← �(cx, cy, ρ) + σ 2||HI ||F
end i f

endfor
endfor

end
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Table 3 1-to-1 circle DHT (two-pass version)

1 [�1,�2] = f unc t i on Hough_Circles_V2
2 ( Image I )
3 % 1 s t pas s : DHT reduced to the
4 cen t r e parameters
5 f o r a l l s c a l e σ ∈ {σ1, . . . , σn}
6 f o r a l l p i x e l p = (px,py)
7 ∇Iσ ← (Iσx (p), Iσy (p))

8 Hσ
I =

⎛

⎝
Iσxx(p) Iσxy(p)

Iσxy(p) Iσyy(p)

⎞

⎠

9 i f ||Hσ
I ||F > 0 :

10 κσ ← Iσxx(Iσy )2 − 2IσxyIσx Iσy + Iσyy(Iσx )2

11 (cx, cy) = (px,py) − ∇Iσ ||∇Iσ ||2
κσ

12 �1(cx, cy) ← �1(cx, cy) + σ 2||Hσ
I ||F

13 end i f
14 endfor
15 endfor
16 % S e l e c t i o n o f the N be s t c en t r e s
17 (C1, ...,CN ) = Se l e c t _N_Bes t (�1 )
18 % 2nd pas s : DHT reduced to the
19 r ad i u s parameter
20 f o r a l l p i x e l p = (px,py)
21 i f κσ1 > 0 :
22 ρ ← ||∇Iσ1 ||3

κσ1

23 (cx, cy) = (px,py) − ∇Iσ1 ||∇Iσ1 ||2
κσ1

24 end i f
25 f o r a l l i ∈ {1,N}
26 i f d((cx, cy),Ci) < 1
27 �2(i, ρ) ← �2(i, ρ) + ||∇Iσ1 ||
28 end i f
29 endfor
30 endfor
31 end

Two-pass algorithms are now classical in Hough-based
circle detection [41–43], but their first pass is a one-to-
many 2d HT, where the votes are made along straight
lines, either defined by the gradient direction [41, 42],
or by the bissector of a point pair chord [43]. In our V2
version, the first pass is a one-to-one DHT based on the
isophote curvature. Figure 8 (4, right) shows an example
of such first pass (centre detection).

3.3 Implementation and parameters
Although simpler in many aspects, the one-to-one dense
Hough transform, like its one-to-many or many-to-one
counterparts, is sensitive on implementation details and
parameters. The purpose of this section is to go into
deeper details on each part of the algorithms.

3.3.1 Weighting the votes
The DHT uses a norm-based censitary suffrage: all the
pixels vote, but their vote is weighted according to the
norm of the corresponding derivative. When using differ-
ent scales, the scale should also take part to the weight as a
scale space normalisation. The votes are then weighted by
σ ||∇I|| at order 1 and σ 2||HI ||F at order 2. The justifica-
tion of using this weight is that the relevant features (line
or osculating circle positions) are poorly defined when the
contrast (||∇I||) or the global curvature (κ) is too weak.
However, such weighting naturally favours the highly

contrasted structures, which is not always desirable. A
radical method for being contrast invariant is to use a
true egalitarian suffrage, with uniform weight ω = 1.0,
which conversely may favour spurious structures like jpeg
artefacts. Obviously, many trade-offs can be applied, like
using a uniform weight but selecting the voting pixels
with threshold or weighting by the logarithm of the norm.
Different weighting strategies will be compared and dis-
cussed in the evaluation section (see Section 4).

3.3.2 Multiscale derivatives
A proper estimation of the derivatives is essential for the
DHT. The poor results obtained using finite difference on
curves, or small convolution kernels on greyscale images
(particularly for the curvature), probably explain the very
little attention received by one-to-one HT so far. Never-
theless, the scale space estimation of derivatives allows
an accurate and noise robust estimation of gradient and
curvatures at different scales. In this work, we used the
recursive implementation of the (approximated) Gaussian
convolution proposed by Young and van Vliet [44]. The
best estimation scale locally depends on the image struc-
ture and the noise level. It could be selected automatically
from the image [40], but simply aggregating the votes at
the different scales with their different weights is actually
faster and closer to the Hough spirit.
The number and the values of scales thus have an

influence on the results. At larger scales, the number of
structures decrease but their localisation is less precise:
in the Hough space, the peaks are less numerous, but
more flattened. In this sense, combining multiple scales
can improve the detection, as illustrated on Fig. 4: the
finer scales improve the localisation of the main peaks
while the coarser scales reduce the influence of the spu-
rious structures. Furthermore, the use of several scales
may also improve the detection by reducing the sparsity of
the DHT.
What was observed in our experiments (see Section 4)

is that for line detection, the use of more than one scale
is unnecessary for noise-free images. For circles, the V1
and V2 versions work better with multiple scales. For
V2 version, the first pass uses several scales, as it clearly
improves the detection of the centres, while the second



Manzanera et al. EURASIP Journal on Image and Video Processing  (2016) 2016:46 Page 7 of 18

a b c

Fig. 4 Influence of the multiscale: topographic close up around a maximum in the (θ , ρ) space for the 1-to-1 line DHT, using one single fine scale
(a): σ = 1.0, one single coarse scale (b): σ = 4.0 and three scales (c): σ ∈ {1.0, 2.0, 4.0}

pass (radius voting) performs better by using one single
scale, the finest one. Figure 5 illustrates this behaviour by
showing on a toy example that only the multiscale version
of the V2 algorithm correctly detects all the circles.

3.3.3 Parameter space representation andmaxima
selection

The representation of the parameter space has a major
influence on the precision of the detection and also on its
complexity. The most classical method consists in quan-
tising every dimension of the parameter space according
to the desired precision of the detection, voting by simply
incrementing the nearest node of the quantised space, and
then choosing the highest local maxima as the best shapes.
This is what is done for the one-to-manymethods because
a sufficiently high precision is needed to draw significant
dual surfaces in the parameter space.
Because the comparative evaluation in the next section

is performed against one-to-many methods, we have
essentially used the same classical representation, referred
to as “fine-grained parameter space”. This allowed to focus
the comparison on the impact of our contribution, that
is on the voting process, i.e., dense one-to-one vs. sparse
one-to-many.
It is well known that detecting the N local maxima with

highest value is not sufficient in general to avoid multiple
detections (a beam of shapes corresponding to the same
physical structure). In our experiments using fine-grained
parameter space, we employed non-local maxima deletion
as well as an exclusion distance criterion which consists in
discarding, in the Hough space, all values whose distance
to a previously selected point is below a certain threshold.
Defining the exclusion ball in general should not be a fun-
damental problem, since it relates to the expected spatial
distribution of the shapes.

The one-to-one, like the many-to-one transforms, are
naturally sparser than the one-to-many transforms, every
pixel voting for a single point. For circles, the sparsity of
the basic one-to-one transform (V1) is still more impor-
tant because of a larger parameter space. The sparsity can
bemoderated a priori by interpolating the votes and a pos-
teriori by smoothing the transform. For the V1 version of
the circle detector applied on Fig. 8 (2), a separable recur-
sive exponential smoothing filter (γ = 2.0) was applied in
the 3d Hough space.
More interestingly, voting for one single location in the

parameter space releases the strict need for quantisation.
As done by Xu in the case of many-to-one RHT [17],
dynamical accumulation data structures (e.g. lists or trees)
can be used to store the estimated parameters without
modifying them and then perform clustering-based accu-
mulation search. The number of votes of the DHT being
relatively high, and the dimension of the parameter space
being low, one natural data structure is a simple grid like in
the previous case, except that the step of the grid is much
larger (it no longer depends on a desired localisation pre-
cision, but rather corresponds to the exclusion ball used to
address multiple detections). The other difference is that
instead of coding only a number of votes, every cell of the
grid is a bucket containing a list of parameters with their
associated weights.
In fact, the actual method used in our experiments is a

very simple and efficient approximation of this large step
bucket grid, calculated as follows: instead of storing the
whole bucket list for every cell, we only keep one sin-
gle weight value for every (large) cell, which finally makes
the data structure identical as in the classical case, except
that the quantification step is much larger (and then the
resulting size much lower). However, to limit the effects
of quantization, for every estimated parameter, the vote
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Fig. 5 Influence of the multiscale voting on the two-pass one-to-one DHT for circle detection. The image represents 15 black disks with radii
ranging between 3 and 30 on a white background, with a Gaussian noise of 20%. Left: the original image with the 15 best circles overlaid in red. Right:
the output of the first pass of the two-pass DHT (centre localisation)

is multi-linearly interpolated over the corresponding cell
bounds. For every pixel, let Q be the (real-valued) calcu-
lated parameter vector and ωQ the associated weight. Let
�Q	 be the integer valued vector made of the integer parts
of every component of Q. Let R = Q − �Q	 the residual
part ofQ, with components in [ 0, 1[. Ifm is the dimension
of the parameter space, the interpolated vote consists in
incrementing the 2m cells �(�Q	 + B), for all B ∈ {0, 1}m,
by a value ωB such that:

ωB = ωQ

m∏

i=1
RBi
i (1 − Ri)

(1−Bi)

Once the vote is completed, the best shapes are detected
by searching the highest local maxima on the grid and
then calculating the centroids of the parameters in the
3m neighbourhood for every selected maximum. This
alternate method shall be referred to as “coarse-grained

parameter space,” and its impact will be evaluated in
Section 4.

3.4 DHT results
Figure 6 shows line detection results using the (θ , ρ)

parameter space for the DHT (Fig. 6d) compared with
the classic exhaustive one-to-many HT (all the contour
points are voting, Fig. 6b). For the classic HT, the con-
tour (Fig. 6a) is obtained using Canny algorithm [45] with
σ = 1.5 and hysteresis threshold with t1 = 1.0 and t2 =
2.0. For the DHT, the transform is obtained by estimating
the gradients at a single scale σ = 1.5. For both methods,
the parameter space was quantised using 720 samples for
θ , the resolution for ρ being set according to the image
diagonal, and the 50 best maxima were selected using the
exclusion condition (θe, ρe) = (15, 12) (which means that
two lines with parameters such that |θ1 − θ2| < θe AND
|ρ1 − ρ2| < ρe cannot be detected at the same time, see
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Fig. 6 Comparing the classic exhaustive one-to-many HT (a, b) and
the one-to-one DHT (c, d) for line detection

Section 3.3). The 50 best lines are overlaid in magenta
on the images that have been used for calculating the
transform (Fig. 6a, c).
Figure 7 shows two more results for line detection,

with the same parameters as above. The 30 best lines
are displayed for the first image, the 50 best ones for
the second. These results are compared with the classic

Fig. 7 Line detection, more results—left (lines inmagenta): one-to-one
DHT; right (lines in red): one-to-many HT (HoughStandard on OpenCV)

one-to-many HT calculated on contours (version called
HoughStandard available on OpenCV with the same
parameters as above).
Figure 8 shows results for circle detection. Figure 8(1)

corresponds to the classic one-to-many HT applied on
the contour image. Figure 8(2) corresponds to the basic
one-to-one DHT (our V1). Figure 8(3) shows the results
for the two-pass 2–1 HT available in OpenCV [41],
and Fig. 8(4) shows the results of the two-pass DHT
(our V2). For the algorithms operating on contours
(1 and 3), the Canny algorithm was applied with the
same parameters as for the lines. For the dense algo-
rithms (2 and 4), three scales were used for estimating
the derivatives: σ ∈ {1.0, 2.0, 4.0}. Finally, for all algo-
rithms, the radii were supposed bounded between 3
and 80, and to avoid multiple detections, an exclusion
ball (Ce, re) = ((3, 3), 8) was applied (see Section 3.3).
Figure 9 shows the results (40 best circles) on two
other images for the two two-pass algorithms (same
parameters).

4 Qualitative evaluation
This section is dedicated to the qualitative evaluation
of the DHT for line and circle detection. First, the
evaluation protocol is presented and the proposed met-
rics are justified. Then, we apply this evaluation, first
to line detection, and then to the two versions of cir-
cle detection. The DHT algorithms are qualitatively
compared with classic and state-of-the art HT algo-
rithms available on the OpenCV library [16, 41, 46]
and also with other state-of-the art line and circle
detectors based on the HT, such as the randomised
Hough transform [17] and the curvature aided circle
detector [26].

4.1 Evaluation protocol andmetrics
Line and circle detection algorithms are usually eval-
uated using synthetic binary images, showing different
configurations of size/length, orientation, occlusion or
noise, depending on the properties that need to be
assessed. For obvious reasons, the DHTs need to be eval-
uated on greyscale images. The following protocol was
applied:

• One natural greyscale image showing significant
amount of lines (resp. circles) was chosen, and its
“ground truth” was manually set.

• Every algorithm is assessed according to the
proportion of ground truth lines (resp. circles) it
detects, as a function of number of selected maxima.

• To evaluate the sensitivity of the algorithms, the same
measure is performed on images with three kinds of
distortion: (1) additive noise, (2) impulse noise and
(3) non-uniform illumination.
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Fig. 8 Comparing different algorithms for circle detection. The 40 best circles are displayed. (1) and (3) operate on the contours, (2) and (4) on the
grey level. For (1) and (2), one single plane from the 3d transform is shown (plane of equation r = 25). For (3) and (4) is shown the 2d transform
corresponding to the output of the first pass (centre localisation)

4.1.1 Voronoi-based detection rate
Our evaluation metrics is based on a matching criterion,
using a distance in the parameter space. The ground truth
image defines a set of ground truth points in the parame-
ter space. The Voronoi tessellation [47] associated to this
point cloud allows to match every detected curve to its
most likely ground truth. If the distance to the matched
ground truth is less than a determined threshold, then
the corresponding curve is considered detected; other-
wise, it is a “false” detection. Obviously, only the closest
true detection is counted for each ground truth curve.
Figure 10 shows the application of this principle for line
detection on the House image.
Regarding lines, some precautions must be taken

when using the Euclidean distance in the classic (θ , ρ)

space because some discontinuities may appear when
ρ is close to zero, the lines (θ , ρ) and (π − θ , ρ)

being in that case close in the image space, but not
in the parameter space. To address this problem, the
(θ , ρ) space is extended to negative values of ρ, every
ground truth line (θ , ρ) being duplicated to its equiva-
lent (π − θ ,−ρ), at least for the small values of ρ. The

matching is then performed in this extended Voronoi
diagram.
A wrong detection may be due to a false alarm (a curve

absent from the ground truth) or to multiple detections of
a right curve. The manual ground truth collection being
largely subjective, measuring the false alarm rate did not
turn out relevant. The wrong detections being—at least
for clean images— essentially due to multiple detections,
the quality of detection depends much on the quantisa-
tion of the parameter space and the maxima selection
procedure. As the main contribution of this work is inde-
pendent of these steps, the different HTs were compared
using the same parameter space and selection steps.
Finally, the evaluation metrics we chose is the recall, i.e.

the rate of ground truth curves that have been detected, as
a function of the number of detected lines which is simply
the number of selected maxima, the HT being actually a
localisation, and not a detection algorithm.

4.1.2 Image distortions
To assess the sensitivity of the different algorithms and
to better understand the importance of their parameters,
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Fig. 9 Circle detection, more results—left (circles in yellow): one-to-one
two-pass DHT; right (circles in red): two-pass 2–1 HT (OpenCV)

the evaluation has been performed on distorted images.
The first considered distortion is additive noise: different
amounts of Gaussian noise have been added to the input
images before performing the detection. The noise level is
measured by the signal to noise ratio (SNR). The second
one is impulse (i.e. salt and pepper) noise, whose intensity
is measured as the proportion p of pixels set to aberrant
values. The third one is non uniform illumination: let c be
a non-uniformity factor. The distorted image is obtained
by multiplying every greyscale I(x, y) by the horizontal
ramp defined by r(x) = w

cx+w , where w is the width of the
image.

4.2 Line detection
We evaluated the DHT for line detection using the pre-
vious protocol on the House image with its ground truth
(see Fig. 10). First, we performed a parametric study of the
algorithm on different conditions. The results can be seen
on Fig. 11 and can be interpreted as follows:

• One single small scale (i.e. 1 ≤ σ ≤ 2) is generally
sufficient for noise-free images, and sometimes

Fig. 10 Ground truth and matching principles. a Ground truth curves
superimposed (in blue) on the image. b Corresponding point cloud in
the parameter space with its Voronoi tessellation. The line {θ = 0} is
represented to mark the extension of the diagram to negative values
of θ . c Detected curves (in red). dMatching the candidate curves in
Hough space

better, since larger scales may fuse close lines or miss
some segments.

• Using two of three scales slightly improve the results
for noisy images.

• Regarding the weighting policy, the use of ||∇I|| or
log(||∇I||) works equally well in the different
conditions, and much better than using uniform
weights, except for non-uniform illumination, when
the number of detected lines becomes high.

Figure 12 shows the evaluation curves and Fig. 13 the
corresponding detection results of the DHT, compared
with other algorithms: (1) the standard one-to-many
exhaustive HT (SHT), (2) the state-of-the-art progressive
probabilistic HT (PPHT) [16] available fromOpenCV and
(3) the randomised HT (RHT) [17]. The three competitor
algorithms are computed on the contour image obtained
using Canny’s algorithm [45]. Algorithm 1 is the standard
one-to-many approach, where all the contour pixels vote
for a complete sine curve on the discrete parameter space,
with a uniform vote. Algorithm 2 is also a one-to-many
approach, except that only a fraction of the contour pixels
are randomly chosen, with dynamic mechanisms to adapt
the parameters to the lengths of significant lines. Finally,
Algorithm 3 is a randomised many-to one approach,
which randomly picks couples of points from the contour
image, and then votes for the unique corresponding point
in the parameter space.
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a d

b e

c f

Fig. 11 Parametric study of the DHT for line detection. a Influence of the number of scales (NS) on clean image. b Influence of the voting strategy
(VS) on clean image. c, d Influence of NS and VS on noisy image (SNR = 5). e, f Influence of NS and VS on non-uniform contrast image (c = 4)

4.3 Circle detection
The DHTwas evaluated the same way for circle detection,
using the radar ahead image as ground truth (Fig. 14).
From the parametric study (Fig. 15), the following remarks
can be made:

• The two-phase version (V2) works much better than
the direct (V1) version in all cases.

• Unlike the lines, the use of two or three scales
significantly improves the results, even for clean
images.

• Using the Frobenius norm of the Hessian matrix
(without multiplying by the squared sigma) seems the
best weighting policy, except for the non-uniform
contrast images, where the constant weight seems the
least bad option.

a b

c d

Fig. 12 Comparison between the DHT and others HT for line detection. a On clean image. b On image with additive noise (SNR = 5). c On image
with salt and pepper noise (p = 5%). d On non-uniform contrast image (c = 4). Each colour corresponds to a different method. Red DHT, green RHT,
blue SHT,magenta PPHT
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Fig. 13 50 best detected lines of the different algorithms in different conditions. Row 1: The SHT uses exhaustive one-to-many voting on Canny
contour image (parameters of the Canny detector are σ = 1, t1 = 6, t2 = 1 for column 1, σ = 2, t1 = 6, t2 = 5 for column 2 and σ = 1, t1 = 3,
t2 = 1 for column 3). Row 2: the DHT (our method) uses dense voting weighted with the gradient norm, and three scales of estimation (same
parameters for the three conditions). Row 3: the PPHT uses one-to-many scheme and adaptive random voting on Canny contour image. (Canny’s
parameters vary like row 1; the threshold for line decision is 50 for column 1, 20 for column 2 and 10 for column 3). Row 4: the RHT uses many-to-one
random voting scheme on Canny contour image. (Canny’s parameters vary like row 1)

• The method is pretty insensitive to noise; on the
contrary, the results dramatically drops when the
contrast turns non-uniform.

The V2 DHT for circle detection was also compared to
the following algorithms: (1) The classic one-to-many HT
(SHT) computed on Canny’s contour (every pixel of the
contour vote for a whole conic surface in the 3d parameter
space). (2) The 2–1 HT for circle detection from OpenCV
[41]. This algorithm is a two-pass one-to-many method,
computed on a contour image also, which estimates in the
first pass the gradient direction for every voting pixel, then
votes on the straight line orthogonal to this direction, in
the 2d parameter space restricted to the centre (cx, cy).
The second pass looks for the best radius for a selection

of the best centres, in the same manner as the V2 DHT.
(3) The randomised HT (RHT), a many-to-one approach
[17], which randomly picks point triplets from a contour
image and then vote for a unique point in the parame-
ter space. (4) The curvature aided circle detector (CACD),
which estimates the curvature on the contour image [26]
to perform a one-to-one vote using accumulation arrays of
different radius ranges. The charts and the corresponding
result images of this comparative evaluation may be seen
on Figs. 16 and 17.

4.4 Maxima selection and computational considerations
Finally, the influence of the parameter space represen-
tation, namely, “fine grained quantisation” vs. “coarse
grained quantisation” with interpolated votes and centroid
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Fig. 14 Test image for circle detection with ground truth (20 circles drawn in pink)

selection was evaluated. See Fig. 18: it can be seen here
that the results with the coarse grained strategy are just
slightly worse, although they are much more computa-
tionally efficient.
Regarding computational efficiency, Table 4 outlines the

general complexity figures of the different HT versions
that have been presented in this paper. To account for the
different variants and optimisations, the results are pre-
sented in a proportional manner (O(x) means that the
number of operations is proportional to parameter x). In

the table, every row corresponds to a different category of
HT algorithm, every column to a different step of the algo-
rithm. The different parameters appearing in the table are
explained as follows:

• n is the geometric mean number of samples per
dimension in the image space (n2 is the number of
pixels).

• p is the number of binary contour pixels.
• m is the dimension of the parameter space.

a b

c d

e f

Fig. 15 Parametric study of the DHT for circle detection. a Influence of the number of scales (NS) on clean image. b Influence of the voting strategy
(VS) on clean image. c, d Influence of NS and VS on noisy image (SNR = 5). e, f Influence of NS and VS on non uniform contrast image (c = 4)
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a b

c d

Fig. 16 Comparison between the DHT and the other HTs for circle detection. a On clean image. b On image with additive noise (SNR = 5). c On
image with salt-and-pepper noise (p = 5%). d On non-uniform contrast image (c = 4). Each colour corresponds to a different method. Red DHT,
green RHT, blue SHT,magenta 2–1 HT, yellow CACD

• k is the geometric mean number of samples per
dimension in the (fine grained) parameter space (km
is the number of parameter voxels).

• z is the geometric mean number of samples per
dimension in the exclusion ball.

• s is the number of scales used in the DHT.

For the computation of contours, the O(n2) factor
comes from the local estimation of the derivatives and the
O(p) factor comes from the hysteresis threshold applied

Fig. 17 50 best circles of the different algorithms in different conditions. Row 1: the SHT uses exhaustive one-to-many voting on Canny contour
image (parameters of the Canny detector are σ = 2, t1 = 6, t2 = 3 for column 1, σ = 2, t1 = 6, t2 = 4 for column 2 and σ = 1.5, t1 = 2, t2 = 1 for
column 3). Row 2: the DHT V2 (two-pass) uses three scales of estimation, and dense voting weighted with Frobenius norm of the Hessian for columns
1 and 2, and uses two scales and uniform weight for column 3. Row 3: the 2–1 HT from OpenCV uses two-pass voting on Canny contour image. Row
4: the RHT uses many-to-one voting on Canny contour image. Row 5: the CACD uses one-to-one voting on Canny contour image. (For those three
last methods, Canny’s parameters vary like the method of row 1)
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a b

Fig. 18 Influence on the DHT of representing the parameter space using classic “fine grained quantisation” of the parameter space or “coarse
grained quantisation” with interpolated votes and centroid selection. a For line detection, b for circle detection

to the gradient norm. For the DHT, the estimation of the
derivatives has the same complexity as the first part of
contour detection, but has to be multiplied by the num-
ber of scales. It is recalled that one single scale is currently
used for lines and no more than two or three for circles.
For the Hough transform itself (voting process), the one-
to-many factor km−1 comes from the dimension of the
dual shape, and for many-to-one methods, the

(p
m
)
fac-

tor comes from the combinatorial choices of m points
amongst p contour points. The classical ways to lower
the complexity is to decrease the multiplying coefficient
to this factor by picking only a fraction of the contour
points (one-to-many PHT) or of the choices of m points
(many-to-one RHT). For the DHT, the cost of voting is
obviously constant. This means that globally, the cost of
the DHT is of the same order or lower than the con-
tour detection, which is only the pre-processing step of
the classic HT. For the last step, namely the maxima
extraction from the parameter accumulator, the complex-
ity is typically higher for one-to-many methods where
a higher resolution of the parameter space is needed,
than for many-to-one or one-to-one methods, where no
quantification is strictly needed, or where a coarser res-
olution associated with interpolation mechanisms can be
used.
As a complement to these theoretical considerations,

we also compared in Table 5 the actual computation time
between the different methods: our proposed method

Table 4 Computational balance for the three categories of HT

Row 1: one-to-many HT computed on a contour image and used with a fine
grained quantised parameter space. Row 2: many-to-one HT computed on a
contour image and used with a coarse grained quantised parameter space. Row 3:
one-to-one DHT computed on the greyscale and used with a coarse grained
quantised parameter space

(DHT), randomized Hough transform (RHT) [17], stan-
dard Hough transform (SHT) [1], progressive probability
Hough transform (PPHT) [16], curvature aided Hough
transform (CACD) [26] and 2–1HT [41]. Note that DHT,
SHT and RHT are applicable for both line and circle detec-
tion. Those figures only measure the computation of the
Hough transform, not the maxima selection, in order to
focus on our contribution. They have to be interpreted
carefully, since the experiments were all made on the
same hardware platform (a CPU Intel Duo cores, 2.6 GHz
with RAM 3Gb), but using different software implemen-
tations, including distinct languages and different levels
of optimisation[1]. We use the images of Fig. 10 (512 ×
512 pixels) and Fig. 14 (277 × 492 pixels), respectively,
for line and circle detection. The default parameters of
OpenCV or the parameters recommended by the authors
were used. For the RHT method, we followed the sugges-
tion of the authors of setting the number of point tuples
(i.e. pairs or triplets) picked from the contours, equal to
the number of pixels of the considered image. Obviously,
the computation time of the exhaustive SHT is consid-
erable. The RHT, PPHT and 2–1 HT approaches reduce
significantly the computation time by drastically decreas-
ing the number of votes. Finally, our DHT approach is
also very computationnally efficient by removing the seg-
mentation (contour) step and performing a one-to-one
vote.1

5 Conclusions
We have presented in this paper a unified framework
for computing dense Hough transforms directly from the
greyscale images, without reducing the support to contour
or interest points. By being independent on the quality of
the contours or any other pre-processing step, the voting
process is less sensitive to image perturbations. By allow-
ing all the pixels to vote, it is more statistically significant.
The weight of the vote can be softly adjusted by using
the significance of the contrast or the curvature, provided
by the gradient magnitude or the Frobenius norm of the
Hessian matrix.
Another fundamental advantage of the DHT for detect-

ing lines or circles is the unique determination of the
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Table 5 Computation time of HT (in s) for different methods and implementations

Line detection Circle detection

DHT PPHT RHT SHT DHT 2-1HT RHT CACD SHT

0.11 0.01 8.77 94.73 0.31 1.27 3.29 21.50 144.63

parameter from the spatial derivatives, which allows to
perform a one-to-one voting process, thus improving dra-
matically the global efficiency of the Hough transform.
We have proposed a multiscale voting procedure that

allows: (1) to improve the noise robustness and (2) to
enhance the detection of circles within a wide range of
radii, by simply suming scale-normalised votes over the
different scales.
We have proposed an evaluation protocol to assess the

results of line and circle detection algorithms on natural
grey level images and applied this evaluation on the DHT,
first to provide a parametric study of these algorithms and
then to compare them to other classic and state-of-the-
art versions of line and circle detectors based on Hough
transforms. We have shown that the qualitative results
obtained by the DHT are of the same level than the other
HT, while being less sensitive to image perturbations, and
more computationally efficient.
In our future works, we are going to produce optimised

versions of the one-to-one DHT for line and circle detec-
tions, in order to better promote and spread their use in
the community. We are also working on generalised DHT
[48] to extend the advantages of these algorithms to object
detection, tracking and recognition [49, 50].

Endnote
1 These methods were implemented using different

programming frameworks and languages: dense HT:
C++, RHT: Matlab, SHT: Matlab, CACD: Matlab, PPHT:
OpenCV/C++, 2–1HT: OpenCV/C++.
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