
HAL Id: hal-01451127
https://hal.science/hal-01451127v1

Submitted on 5 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Energy efficiency in Mobile Cloud Computing
Architectures

Thinh Le Vinh, Reddy Pallavali, Fatiha Houacine, Samia Bouzefrane

To cite this version:
Thinh Le Vinh, Reddy Pallavali, Fatiha Houacine, Samia Bouzefrane. Energy efficiency in Mobile
Cloud Computing Architectures. FiCloud Workshops 2016, Aug 2016, Vienna, Austria, Austria.
�10.1109/W-FiCloud.2016.72�. �hal-01451127�

https://hal.science/hal-01451127v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Energy efficiency in Mobile Cloud Computing
Architectures

Thinh Le Vinh1, Reddy Pallavali2, Fatiha Houacine1 & Samia Bouzefrane1
1CEDRIC Lab, CNAM, 292 rue Saint Martin, Paris, France

2Dept. of computer science, Andhra Pradesh, India
Email: { le_vi2@auditeur.cnam.fr, pallavali@gmail.com,

samia.bouzefrane@lecnam.net, houcin_f@auditeur.cnam.fr }

Abstract— Mobile Cloud Computing (MCC) is an emerging
and popular mobile technology which uses fully available Cloud
Computing services and functionalities. This technology provides
rich computational services to the users, network operators and
Cloud service providers as well. However due to users mobility
and high computational operations, consumption of energy is a
major issue. Energy efficiency over MCC is needed since 57% of
generated energy is used by ICT related devices and other
negative impacts over environment. This paper investigates
different mobile Cloud computing architectures and their
performance over energy efficiency by examining different
approaches: OSGi, overlay, and container based solutions.

Index Terms—mobile computing, Cloud computing, OSGi,
container.

I. INTRODUCTION
Heterogeneous mobile devices or networked objects (from

smartphones, laptops and wearable devices to embedded
objects) are assumed to have the capability of sharing data [1]:
studies point to the existing of more than 50 billion objects by
2020 [2]. The heterogeneity comes from software’s, hardware,
and architectural point of view as explained in [3]. Nowadays,
mobile computing is an essential part of human life which
makes daily life more convenient and effective regardless of
time and place [4]. However, the mobile devices are facing
several challenges over communication networks such as
mobility and resources, that is, battery life, storage and
bandwidth [5].

Cloud computing is a third party with large-scale storage
servers and data centers used to provide infrastructures,
software development and distribution platforms with low
costs in the computing technology. Cloud computing also
enables elastically on-demand services to the users. Hence,
mobile applications over Cloud computing can be rapidly
provisioned and released with minimal efforts of service
providers and management [4]. Therefore, the Mobile Cloud
Computing (MCC) paradigm came into picture by combining
Cloud computing with mobile environment. MCC provides full
Cloud services to its users. This mobile Cloud computing
paradigm provides the required support for the creation of
cyber-physical systems, which may be used to improve the
daily life experience of citizens as well as to bring social and
economic benefits.

Mobile networks are suffering from “capacity crunch”,
meaning that network providers are struggling to meet the

demand of mobile data services. To provide Quality-of-Service
to the user, the network provider must provide a rich set of
services such as, increasing the network capacity and energy
efficiency based on the user's mobility patterns.

In the context of MCC, energy efficiency must be
considered not only at the Cloud side but also at the mobile
side. The former is used to solve the existing limitation of the
latter by using remote resource provider rather than
processing/storing data locally [6]. In terms of saving energy
for mobile devices, the externalization of data and applications
is viewed as a good solution. However, this depends on the
MCC architecture that is considered. In fact, if the
externalization occurs between the mobile device and the
Cloud, the application or the data offloading may be costly
comparatively to a local mobile computation.

By pointing out the mobile computing concerns, especially
energy consumption, the contribution of this paper is to discuss
in detail the existing mobile Cloud computing architectures to
address the issue.

In this paper, after a related work in Section II, we will
investigate the three main MCC architectures and focus on the
promising one in terms of energy efficiency in Section III.
Section IV presents different offloading models that are
suitable with the MCC architecture that we consider here.
Section V discusses the conducted experiments using the
offloading models to study their energy efficiency, before
concluding in Section VI with future works.

II. RELATED WORK
In this section, we present the analysis of energy efficiency

over MCC approaches. Since, mobile devices have limited
computational resources; there is a need for offloading of
computations to the Cloud. Offloading is a process of
migrating computations to more resourceful systems like Cloud
environments for processing and retrieving the results to
mobile devices. Therefore, this section provides the analysis of
offloading schemes with their limitations towards energy
efficiency.

An adaptive offloading scheme was proposed, in [7], to
search for a resourceful Cloud server with a critical value on-
demand for a specified mobile device. In this approach, the
computations take place in a Cloud server and the results are
sent to the mobile device in order to save energy while
improving the mobile device performances. However, the

2016 4th International Conference on Future Internet of Things and Cloud Workshops

/16 $31.00 © 2016 IEEE

DOI 10.1109/W-FiCloud.2016.72

326

2016 4th International Conference on Future Internet of Things and Cloud Workshops

978-1-5090-3946-3/16 $31.00 © 2016 IEEE

DOI 10.1109/W-FiCloud.2016.72

326

server selection phase required for offloading should be done
before computations take place in the mobile device because it
consumes bandwidth and other additional resources, especially
when data type is audio or video.

In [8], the authors used several communication
technologies for offloading the data between mobile devices
and the Cloud. Several task execution mechanisms were
considered such as local, offloading from wearable to
smartphone or Cloud. The Wi-Fi based communication gives
better results than LTE technology in terms of time
consumption. However, there is no single optimal solution
based on their conclusions.

Because the above approaches considered offloading
mechanisms without addressing the overhead of components
for migration at runtime, the authors of [9] proposed a
distributed Energy Efficient Computational Offloading
Framework (EECOF) for MCC. This framework migrates
computationally intensive components to the Cloud centers at
runtime. This has led to the reduction of data transmission rate
and energy consumption while offloading computations to
MCC. However, it suffers from bandwidth consuming when
the data seamlessly need to be transferred between devices and
the Cloud. In [10], a dynamic resource provisioning scheduler
was proposed for MCC offloading that jointly minimizes the
consumption of energy over computations and
communications. The authors considered parameters like
execution time, good put and bandwidth usage to evaluate the
proposed algorithm with existing approaches. This scheduling
(dynamic load balancing and online job decomposition) can be
done by suing internet based virtual data centers for adaptive
resource management. However, this model is based on
TCP/IP. Phone2Cloud [11] is another energy saving method
by offloading mobile application computations to the Cloud. It
offloads all or part of running applications to the Cloud to
reduce energy consumption and execution time while
improving user’s experience (i.e. users delay tolerant
experience). However, smartphone energy was heavily
consumed when it tries to predict face finder with the data
increase. In addition, considering the delay tolerance as always
constant is not possible in real world settings. In [12], the
authors designed a mathematical model for representing
optimization problem for energy efficiency. They proposed a
free sequence protocol that allows dynamic execution of
applications based on the combination of clients and servers.
They used a compression technique to transmit data to the
Cloud. If the computation is small then it takes place in local
mobile only. They also found that Wi-Fi is the better option
than the 3G since 3G consumes more battery and bandwidth
than Wi-Fi. Moreover, there is an increase in energy
consumption through this dynamic method as authors
explained.

In order to analyses the energy efficiency of mobile Cloud
computing depending on the interaction models that are used,
in the rest of this paper: we will first investigate the different
architecture models of MCC before focusing on the Cloudlet
model that is a promising architecture. We will then identify
different interaction models in the Cloudlet context and analyze

the conducted experiments to show the most suitable models in
terms of time execution and energy consumption from the
mobile point of view. The interaction models include
offloading mechanisms as well as client/server models.

III. MCC ARCHITECTURES
The major benefit of Cloud Computing for mobile devices

is the ability to run applications between resource-constrained
devices and Internet-based Clouds [13]. Hence, resource-
constrained devices can outsource
computation/communication/resource intensive operations to
the Cloud. The principal motivation of offloading is to achieve
less execution time and less energy consumption within mobile
devices. This section aims to highlight the principles behind
three architecture models of MCC.

A. Cloud Server

Mobile Cloud computing aims to prolong the capabilities of
storage/computation-limited devices and to provide seamless
access to data/application on a remote resource rich server
from anywhere. A remote Cloud server acts as a service
provider to mobile devices. The network connectivity from the
device to the Cloud server needs to be optimized to ensure the
quality of service and seamless handover. With the term of “No
Cloud without Virtualization”, to reduce the processing time
and improve the efficient energy, there are many existing
solutions that support this architecture by using the
virtualization technique such as Virtual Machines-based,
Container-based virtualization.

B. Virtual Cloud

Another approach [14] is to build up a Cloud with peer-to-
peer connected mobile devices for data storage and processing
so that mobile devices are resource providers of a virtual
Cloud. In this architecture, the mobile devices work as either
service providers or consumers, and as such each mobile
device can cooperate with its neighbors to collect/distribute its
surrounding information for specific purposes such as traffic
app, healthcare monitor, etc.

C. Cloudlets

The concept of Cloudlets as proposed in [15], is an
alternative architecture of MCC in which, the Cloudlet is
represented as intermediate offload elements in three-tier
structure: mobile device- Cloudlet- Cloud. The Cloudlet is
considered as resource-rich, well-connected and powerful
computer installed in the public infrastructure with the
connectivity to Cloud server. It can be implemented thanks to
Wi-Fi hotspot servers that support hypervisors to manage VMs,
or can correspond to powerful base stations in a mobile edge
computing. Communication between the Cloudlet and Cloud is
established only during setting-up and provisioning. This is
useful for the proximate mobile device to offload its workload
while ensuring low delay and high bandwidth. Simanta et al.,

327327

in [16], present a reference architecture based on Cloudlets as
part of Elijah project. The principle of Cloudlet approach is
based on the overlay notion that will be discussed in the next
section.

IV. IMPLEMENTATION MODELS FOR CLOUDLET BASED
ARCHITECTURE

Currently, the trend is to bring the information closer to the
mobile user as in mobile edge computing or fog computing.
Hence, the Cloudlet concept may be appropriate to provide
proximate services with a high bandwidth rather than the
remote Cloud. In this context, the challenge is how to interact
efficiently with the Cloudlet to minimize the battery life of the
mobile device.

In this paper, we focus on the Cloudlet based architecture
because through it, it is easy to investigate the energy
efficiency according to many scenarios.

Regarding the interaction, the mobile device in MCC can
use one of the following methods to get a required service: 1)
perform a remote call to the Cloudlet server or 2) offload a
piece of code that will be executed on the Cloudlet. To allow
the execution of offloaded mobile applications on the Cloudlet
server despite their mobile platform dependency, some
offloading approaches propose solutions that are independent
from the mobile platform. In the following, we will explore
three interaction models. The first discussed architecture relies
on OSGi framework proposed by [17] for MCC architecture.
The second approach is based on the overlay notion proposed
by [18] to avoid heavy offloading. The third studied solution is
to offload a layer of a Docker Container from the mobile
device to the Cloudlet.

A. OSGi based approach

 Through Open Service Gateway initiative (OSGi) platform,
Houacine et al. in [17] demonstrated the possibility of building
a Cloud with mobile devices such as Android smartphones to
provide basic functions and services. In the OSGi approach,
the OSGi framework provides an environment for the
modularization of applications into smaller components called
bundles. These bundles can be either executed on the mobile
device or on the Cloud/Cloudlet. In addition, the OSGi
framework needs to be installed in both mobile device and
Cloud side. The former has a service consumer which is used
to handle interaction with mobile apps that import and
consume remote service offered by the Cloud servers. A
service provider has been installed on the latter to implement
and export services. Figure 1 illustrates the interaction
between a mobile device and the Cloud/Cloudlet using OSGi
framework. To address the inter-OSGi framework
communication issues, they adopt an XMPP (Extensible
Messaging and Presence Protocol) based solution. To integrate
XMPP service within Android based framework, a signaling
and communication agent bundle has been developed within
Felix a lightweight implementation of OSGi. The mobile
device implements a discovery bundle while the Cloudlet runs

a service advertisement bundle. Each bundle interacts with an
internal XMPP bundle.

Fig.1. OSGi based Cloudlet

B. Overlay based approach

While the OSGi-based solution requires the installation of
OSGi framework, Ha et al., in [18], introduced the
implementation of the concept of Cloudlet by using an
application overlay without the need of a pre-requisite
environment. In this approach, the VM overlay refers to the
compressed binary difference between a base VM image and a
complete VM image. The complete VM image is a base VM in
which the overlay application is installed. The mobile user
carries only the overlays that can be either calculated offline or
obtained from the Cloud via Cloudlet. As presented in Figure
2, when a mobile device is connected to a Cloudlet, an
application overlay, such as augmented reality, face or object
recognition, is offloaded to the Cloudlet instead of offloading a
VM which is too heavy for a transfer. In the Cloudlet side, a
VM instance is created from the received overlay and a base
VM possessed by the Cloudlet. This process is called VM
synthesis. The mobile device, consequently, can use this VM
instance for its offload operations.

Fig.2. VM Overlay in Cloudlet architecture

C. Container based approach

The overlay-based solution, despite its flexibility, assumes
the existence to a third party, like a Cloud or a Cloudlet, to run
overlay applications. In fact, there is no way to run the overlays
locally on the mobile device in case of bad connectivity. To
overcome this drawback, we think that a containerization
approach like Docker solution can overcome this drawback.
Technically, we can define a container as a confined
environment under the global environment. The Linux
operating system provides some mechanisms based on

328328

namespaces to create these confined environments or
containers. The containers are isolated like VMs but are
lightweight environments managed by an engine which is a
part of the native OS. In BYOD1 concept where a mobile
device can host two distinct environments one for corporate
purpose and another for personal needs, the container based
approach is suitable in this context. It isolates the environments
within two distinct containers making their data, sensitive or
not, inaccessible and invisible from the other container. A
mobile container includes the necessary environment (basic
libraries) to execute the application that needs offloading. The
advantage of offloading containers is that there is no need to
operate a container synthesis unlike VM synthesis that is
required with overlay based solution. However, offloading a
container may be energy and bandwidth consuming. In Docker
container technology for example, images are the result of a
recursive mounting of different image layers. Each image layer
has a parent image layer except for the root image layer.
Hence, instead of transferring the whole heavy container
(which is around 600 MB in our experiments), a specific small
size layer is transferred from the mobile device to the Cloudlet.

In the next section, we will discuss the experiments we
conducted based on the three approaches presented in this
current section, while comparing the energy efficiency among
these architectures to pinpoint their merit and demerit.

V. EXPERIMENTATION AND RESULTS
In order to study the energy efficiency of the mobile device

when using Cloudlet architecture, we conducted some
experiments by considering different approaches: OSGi,
overlay, and container based solutions.

To experiment on this work, we have used two devices to
implement three discussed Cloudlet based architectures.
Performance comparisons is conducted on a LAN (Local
Area Network) to overcome Internet WAN latencies that are
common to all solutions.

• Cloudlet side: Linux Ubuntu 14.04 LTS <64 bits>
(CORE i7)

• Mobile device side: Windows 7/Linux-based OS <32
bits> (DUAL CORE)

(1) Elijah project based on overlay notion. The application
overlay is calculated as the binary diff (VCDIFF
RFC3284) using xdelta3 tool [19], between the complete
VM disk image and the base VM disk image. The base
VM is then deployed to any platform that will serve as a
Cloudlet. We assume that we have a VM overlay in the
mobile device side. In the Cloudlet side, a VM instance is
rebuilt by this overlay. The mobile device connects to the
Cloudlet upon detecting its IP address, using the program
“synthesis_client” and supplies the VM overlay. When the
mobile device sends the VM overlay to the Cloudlet, the
Cloudlet server starts performing the VM synthesis
operation.

1 Bring Your Own Device

(2) OSGi. For the mobile device, the OSGi framework is
installed on an emulator with the following characteristics:
Device Nexus S (4.0”, 480 * 800: hdpi));
Android 2.2 – API level 8; Ram 343; VM Heap: 32;
Internal Storage: 60MB
Bundle size: 32 KB.
In the Cloudlet side, the OSGi framework is hosted in a
specific VM.

(3) Docker container. Even though Docker container engine
can be installed on Windows operating system, both the
mobile device and the Cloudlet operated under Linux-
based OS to run Docker containers. In Docker technology,
the application is isolated within a container that is
managed by a container engine within the mobile device.
Instead of offloading the entire container to the Cloudlet,
that can be heavy (600 MB in our experiments) in size and
energy consuming, we offload only the layer that hosts the
application.

To compare the difference among these discussed Cloudlet

implementations, we consider calculating the execution time
locally by examining four different sizes of programs as
presented in table 1.

We then compare these programs under OSGi, Elijah and
Docker platform to measure their execution time. In this test,
communication is established via Wi-Fi to access to the
Cloudlet server. Figure 3 presents time in seconds for
downloading and launching the overlay for Elijah, OSGi
bundle, and Docker layer.

 Program size Execution
time on

computer OSGi Elijah Docker

Program 1 3.8 kb 4.96 kb 4.96 kb ~30 s

Program 2 1.22 Mb 1.22 Mb 1.22 Mb ~30 s

Program 3 7.922 Mb 7.923 Mb 7.923 Mb ~30 s

Program 4 15.843 Mb 15.844 Mb 15.844 Mb ~30 s

Table 1.Size and execution time of the tested programs

 Generally, increasing size of program leads to a rise of

execution time for all models. Although transferring an overlay
via high speed LAN Wi-Fi, however, Elijah takes more time in
comparison with the others especially soar to double time in
Program 4 which is the heaviest program. The concept of a
VM overlay is similar to copy-on-write virtual disk files or VM
image hierarchies [18]. It means that the overlay solution is
time-consuming task because of the heavy overlay offloading.

On the other hand, with installed Java virtual machine and
OSGi framework on each node [17], applications supporting
OSGi can interact with a proxy bundle which is generated
dynamically with the exported methods without transferring
any heavy code. As a result, running bundle in OSGi
framework is the fastest solution in term of time-consuming.
The remaining solution, Docker, has insignificant higher
execution time than OSGi due to the layer transferring.

329329

Fig. 3 Time in second for downloading and launching the

overlay, OSGi bundle, and Docker layer

VI. DISCUSSIONS
From the above analysis, we can clearly say that the mobile

Cloud computing aims to allow the mobile user to overcome its
heavy works by providing a seamless and rich functionality
regardless of the resource limitations of mobile devices.
Although mobile Cloud computing becomes the future
dominant model for mobile applications, the energy
consumption is necessary to consider so that to find a suitable
offloading model that is energy efficient. As described in [6],
the researchers focused on offloading mechanisms to reduce
the computation time and to improve the life time of mobile
energy.
In this paper, we discussed the three different MCC
architectures and their merits and demerits towards energy
efficiency while considering the offloading mechanism. For
the efficiency of offloading to enhance saving energy, we
consider the following formulas as defined in [20] to apply
with our experiments described in Section V.
 �
��

 (1): Formula 1 denotes the execution time to run the
program locally, where M is the amount of computation and
Sm is the speed of the mobile device.
 �
�
�+ �
��

 (2): Formula 2 refers to the execution time and the
offloading time, where D, B, and Sc are respectively the size of
input data, the bandwidth, and the speed of the remote server.
We consider two cases:

Case #1: If �
��
	
�

�
�+�
��

 ,i.e., if running a computation takes
locally more time than offloading it and running it remotely,
then the performance of the whole system is improved by
using offloading technique.
Case #2: However, if �

��

�

�
�+ �
��

, it means that the offloading
does not meet the requirement for energy efficiency.
Adapting these cases to the results discussed in Section V, it
can be clearly seen that the offloading result for three
architectures is almost positive. Take OSGi based approach
for a specific example, the value of (1) is always greater than
the (2)’s value regardless of the program’s size. However, this
does not mean that the offload method is always a suitable

solution in the context of saving energy. The program 4 in
Elijah has proved this drawback of the offloading.

The energy consumed by the mobile device in each MCC
model is mainly composed of:
- The computing energy: consumed by the mobile device

for execution of local services such as initiation and
service request, discovery service, locally executed
processes. This energy depends on both the mobile
characteristics (computing and battery features) and the
performed computing; and

- The communication energy: consumed during the I/O
operations using mobile network. It depends on the
mobile characteristics, the network characteristics and the
size of data to be transferred.

The local computing energy is calculated as in formula (4).

Computing Energy Service = Mobile Capacity x Time Service (4)
Where:
• Computing Energy Service: is the local energy consumed

by a service S (in Joule or kWH).
• Mobile Capacity: is the battery capacity of the mobile

device (in milliampere or Joule).
• Time Service: is the time of the service execution.
Nexus S (4.0”, 480 * 800: hdpi)) is used for our
experimentation with android 2.2 system. The energy capacity
of this device is 19152 Joules (1440 mAH).
Table 2 shows the consumed energy measured for each tested
solution.

Solution Execution
Time
ms

Mobile Capacity
mAH

Consumed Energy
joules

OSGi 30 1440 0,1596
Elijah 79 1440 0,42028

Docker 30 1440 0,1596

Table 2.Consumed energy for program execution

As shown in Figure 4, increasing the time of program
execution leads to a rise of the consumed energy on the same
device. The launching part (bundle or VM start) is less
consuming than the program execution part. For the same
program, Elijah consumes more energy in comparison with the
other solutions.
For the ubiquitous environment for the MCC, crossing
architectures also need to be considered. It may lead to increase
network latency and transmission rate. As can be seen in
Section V, the execution time is based on the application size
and the result does not always meet the expectation. For a
function partitioning [4], application functions could be
determined which part is to be offloaded to the remote Cloudlet
and which part is processed locally on the device. For example,
the appearance of application is displayed locally, while
offloading heavy computations to the Cloudlet. This takes
more energy consumption in case of heavy code offloading.
Consequently, the offloading technique is not always
considered as a good solution for MCC. In fact, the OSGi
based solution that relies on Client/Server interaction without

330330

offloading mechanism can confirm that offloading is not
always the suitable solution in terms of energy efficiency.

Fig.4. Service energy consumption

The next section concludes our analysis and includes future
works towards MCC architectures.

VII. CONCLUSION
The shortage of energy is still one of the crucial challenges

in mobile world. It makes the researchers spend time to mull it
over before delivering new approaches. For this reason, this
paper analyses the energy efficiency over three mobile Cloud
computing architectures by examining into different
approaches: OSGi, overlay, and container based solutions. To
look through these approaches, we also discuss how the
offloading gains an advantage in MCC. From the performance
analysis of our experiment, we conclude that the constraint
energy of the mobile device is overcome by adapting the
benefits of Cloud computing, regardless of remaining some
exception cases. Mobile Cloud computing will continue to be
the trend of technology in computing environment. Hence, we
plan to build a new approach which enables offloading while
addressing security issues so that to improve the work initiated
in [21].

REFERENCES
[1] R. H. Weber and R. Weber, Internet of Things. Springer, 2010.
[2] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos,

“Context aware computing for the internet of things: A survey,”
IEEE Communications Surveys and Tutorials, vol. 16, no. 1, pp.
414–454, 2014.

[3] Schmohl, Robert, and Uwe Baumgarten. "Heterogeneity in
Mobile Computing Environments." In ICWN, pp. 461-467. 2008.

[4] Dinh, Hoang T., Chonho Lee, Dusit Niyato, and Ping Wang. "A
survey of mobile Cloud computing: architecture, applications,
and approaches." Wireless communications and mobile
computing 13, no. 18, 1587-1611, 2013.

[5] Satyanarayanan, Mahadev. "Fundamental challenges in mobile
computing." In Proceedings of the fifteenth annual ACM
symposium on Principles of distributed computing, pp. 1-7.
ACM, 1996.

[6] Fernando, N., Loke, S.W. and Rahayu, W., 2013. Mobile Cloud
computing: A survey. Future Generation Computer Systems,
Volume 29, Issue 1, January 2013, Pages 84–106.

[7] Wu, Huaming, Qiushi Wang, and Katinka Wolter. "Tradeoff
between performance improvement and energy saving in mobile
Cloud offloading systems." In Communications Workshops
(ICC), 2013 IEEE International Conference on, pp. 728-732.
IEEE, 2013.

[8] Ragona, Claudio, Claudio Fiandrino, Dzmitry Kliazovich,
Fabrizio Granelli, and Pascal Bouvry. "Energy-Efficient
Computation Offloading for Wearable Devices and
Smartphones in Mobile Cloud Computing." In IEEE Global
Communications Conference, San Diego, CA, USA, 2015. 2015.

[9] Shiraz, Muhammad, Abdullah Gani, Azra Shamim, Suleman
Khan, and Raja Wasim Ahmad. "Energy efficient computational
offloading framework for mobile Cloud computing." Journal of
Grid Computing 13, no. 1 (2015): 1-18.

[10] Shojafar, M., Cordeschi, N., Abawajy, J.H. and Baccarelli, E.,
2015, December. Adaptive Energy-Efficient QoS-Aware
Scheduling Algorithm for TCP/IP Mobile Cloud. In 2015 IEEE
Globecom Workshops (GC Wkshps) (pp. 1-6). IEEE.

[11] Xia, Feng, Fangwei Ding, Jie Li, Xiangjie Kong, Laurence T.
Yang, and Jianhua Ma. "Phone2Cloud: Exploiting computation
offloading for energy saving on smartphones in mobile Cloud
computing." Information Systems Frontiers 16, no. 1 (2014): 95-
111.

[12] Saab, S.A., Saab, F., Kayssi, A., Chehab, A. and Elhajj, I.H.,
2015. Partial mobile application offloading to the Cloud for
energy-efficiency with security measures. Sustainable
Computing: Informatics and Systems, 8, pp.38-46.

[13] T. Le Vinh, S. Bouzefrane, J. Farinone, A. Attar, B. Kennedy.
"Middleware to Integrate Mobile Devices, Sensors and Cloud
Computing", The 6th International Conference on Ambient
Systems, Networks and Technologies (ANT-2015)), June
2015, Vol. 25, pp.234–243, London

[14] G., Huerta-Canepa, & D., Lee, "A virtual Cloud computing
provider for mobile devices", in: Proceedings of the 1st ACM
Workshop on Mobile Cloud Computing & Services: Social
Networks and Beyond, MCS’10, ACM, New York, NY, USA,
2010, pp. 6:1–6:5.

[15] M. Satyanarayanan, P. Bahl, R. Caceres, N. Davies, The case
for VM-based Cloudlets in mobile computing, IEEE Pervasive
Computing 8 (2009) 14–23

[16] S. Simanta, K. Ha, G. Lewis, E. Morris, and M.
Satyanarayanan, “A reference architecture for mobile code
offload in hostile environments,” in International Conference on
Mobile Computing, Applications, and Services, 2012, pp. 274–
293..

[17] F. Houacine, S. Bouzefrane, A. Adjaz. "Service Architectures for
multi-environment Mobile Cloud Services", International
Journal of High Performance Computing and
Networking, pp. to appear, 2016

[18] Ha, K., Pilai,P., Richer, W., Abe, Y., & Satyanarayanan,
M(2013). Just-in-time provisioning for cyber foraging (pp. 153-
166). Mobisys.

[19] Xdelta.org, xdelta.org
[20] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A Survey of

Computation Offloading for Mobile Systems,” Mob. Netw.
Appl., vol. 18, no. 1, pp. 129–140, Feb. 2013.

[21] T. Le Vinh, S. Bouzefrane. "Trusted Platforms to secure Mobile
Cloud Computing", The 16th IEEE International Conference on
High Performance Computing and Communications, August
2014, pp.1096-1103.

331331

