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Abstract

An efficient texture modelling framework based on Topological Attribute Patterns (TAP) is presented considering topology related
attributes calculated from Local Binary Patterns (LBP). Our main contribution is to introduce new efficient mapping mechanisms
that improve some typical mappings for LBP-based operators in texture classification such as rotation invariant patterns (ri), rotation
invariant uniform patterns (riu2), and Local Binary Count (LBC). Like them, the proposed approach allows contrast and rotation
invariant image description using more compact descriptors by projecting binary patterns to a reduced feature space. However, its
expressiveness, and then its discrimination capability, is higher, since it includes additional information, related to the connected
components of the binary patterns. The proposed mapping, evaluated and compared with different popular mappings, validates the
interest of our approach. We then develop Complemented Patterns of Topological Attributes (CTAP) that generalise TAP model
and exploit complemented information to further enhance its discrimination capability, and evaluate it on different texture datasets.

1. Introduction

For two decades, Local Binary Patterns (LBP) [1] have been
extensively used for texture analysis, an important area of com-
puter vision. Their decisive advantages are their low computa-
tional cost and their invariance to contrast changes, which made
them attractive not only to texture recognition, but also to many
other areas of computer vision.

The presented work consists of three main contributions for
LBP approach. First, a family of novel mappings T APA is
presented by considering topology-related attributes extracted
from binary patterns. Second, we propose a simple yet efficient
mapping T APA,t, an improved version of the first ones, that al-
lows to improve their discrimination power in complemented
schemas while reducing the curse of dimensionality of the fea-
ture space. The two proposed mappings do not increase signif-
icantly the computational cost of basic LBPs. They extend and
improve several typical mappings such as riu2 or LBC, and are
also compatible (and then can be combined) with most of the
other variants. Third, we investigate the proposed mappings
in complemented frameworks combining with a LBP variant
to construct an efficient descriptor that is comparable to recent
advances in texture classification.

The remaining of this paper is organised as follows. The
next section recalls LBP works more specifically related to our
work. Section 3 presents a new mapping mechanism, devel-
opped from the preliminary work [2]. Section 4 presents an
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application of our mapping model to LBP variants for effective
texture recognition. Section 5 is a comparative evaluation of the
different descriptors derived from our models.

2. Related works

2.1. General form of LBP

Local Binary Patterns are introduced in a generic form in [3]
as a binary code to present the local structure of a texture image
by considering the centre pixel and its P neighbours sampled
on the centred circle of radius R. The sample values can be
calculated by interpolation. For a scalar valued image I, the
general form of the LBP encoding is defined as follows, for
every pixel p:

LBPP,R(p) =

P−1∑
i=0

s(I(qi) − I(p))2i, (1)

where the {qi} represent the P points sampled on the circle of
centre p and radius R, and

s(x) =

1, x ≥ 0
0, otherwise.

(2)

2.2. Mapping of the LBP labels

In practice, the basic LBP labels are not much used because
of the high dimensionality of the descriptor when the num-
ber of neighbours is large. They are projected into a limited-
dimensional space based on a mapping mechanism.

The circular nature of the neighbourhood justified the defi-
nition and use of local binary uniform patterns that is the most

Preprint submitted to Pattern Recognition Letters May 31, 2016



popular mapping of LBP labels. A LBP is said uniform when
the number of bit-transitions (1-0 or 0-1) in its binary chain is at
most 2. Uniform LBP based encodings (denoted LBPu2) consist
in discarding non uniform patterns in the global representation.

Another important notion related to the circular cod-
ing is the rotation invariant LBP, defined as: LBPri

P,R =

min
0≤i<P
{ROR(LBPP,R, i)}, where ROR(x, i) is the right circular bit-

wise shift of i bits on the P-bit number x. The rotation invariant
form of uniform patterns (denoted LBPriu2), has shown impres-
sive results for texture classification.

Zhao et al. [4] introduced Local Binary Count (LBC), in-
spired from [5], as an alternative mapping for LBP patterns. It
discards most of the structural information of LBP by merely
counting the number of 1s in the binary code. Good results
have been reported on rotation invariant texture classification
using statistics of LBC features.

LBP mappings based on uniform patterns ignore all the ge-
ometry of non-uniform patterns that can bring important in-
formation about textural structures. Several authors have dealt
with non-uniform patterns to enhance the representation power
of LBPriu2. Liao et al. [6] and then Bianconi et al. [7] proposed
to use dataset dependent dominant patterns. Nanni et al. [8]
used random subspace to train features based on non-uniform
patterns. Zhou et al. [9] combined non-uniform patterns by
analyzing their structure and occurrence probability. Fathi and
Naghsh-Nilchi [10] encoded the patterns having 4 transitions of
bit (0-1 or 1-0) like riu2 patterns by counting their number of
1s. The other patterns are encoded by considering their number
of bit transitions.

2.3. LBP-based variants

The basic LBP having several limitations, such as small spa-
tial support region, loss of local textural information, rotation
and noise sensitivities, a lot of LBP variants [11] have been
introduced. Different neighbourhoods, such as elliptical [12],
three-patch or four-patch approaches [13] have been employed
to exploit anisotropic information. In encoding step, three val-
ues {−1, 0, 1} are used in Local Ternary Patterns [14] to ad-
dress the issue of LBP instability on near constant image ar-
eas. Multi-structure approach [15] is considered to represent
information at larger scales. Exploiting non-uniform patterns
[6, 8, 9, 10, 2] is introduced to capture more useful textural in-
formation. Guo et al. [16] used a complementary component
related to the magnitude of the differences. In another work,
Guo et al. [17] proposed to incorporate variance as a local con-
trast measure into LBP histogram to take into account comple-
mentary information ignored in LBP encoding. Nguyen et al.
then developed this approach by introducing Statistical Binary
Patterns (SBP) [18] that explore different order moments. In
[19], the discriminative patterns are selected based on a three-
layered learning framework. A linear model based descriptor
is introduced in [20] to take into account the microscopic con-
figuration and local structures. Nanni et al. [21] reported a
comparison for extracting features given the co-occurrence ma-
trix using region-based approaches. In [22, 23], a more general

Figure 1: TAP approach Figure 2: Multi circular supports

class of LBP-based methods, namely Histograms of Equivalent
Patterns, has been developed.

3. Topological Attribute Patterns

3.1. Topology related attributes

The local descriptors used by our texture model embed and
generalise several rotation invariant descriptors, including uni-
form patterns and local binary count. They are based on a fam-
ily of numerical attributes that are calculated on the original
LBP. Consider the support of LBPP,R as a set of P points on a
circle, where two consecutive points are said adjacent (see Fig-
ure 1). Topological information can then be extracted from the
LBP using the connected components (circular runs) of 1s in
the pattern. We will consider the following attributes:

• Number of connected components of 1s (#)
• Length of the largest run of 1s (M)
• Length of the smallest run of 1s (m)

All these attributes are rotation invariant. # is a topological
measure, whose importance in the characterisation of shape is
attested by a number of works in digital topology, in particular
in the detection of critical points in thinning algorithms [24].
The uniform patterns correspond to # = 1 or 0. M and m can
be seen as extensions of the uniform pattern values to non uni-
form patterns. Figure 1 illustrates a non-uniform binary pattern
(10111010) of 8 bits; with # = 3, M = 3, m = 1.

These attributes are not independent; all configurations of
values are not possible and must respect the following con-
straints:

1. m ≤M 4. if # = 1, 1 ≤ m = M ≤ P
2. 0 ≤ # ≤ bP/2c 5. if # > 1, 1 ≤M ≤ P - 2# + 1
3. if # = 0, m = M = 0 6. if # > 1, 1 ≤ m ≤ bP/#c - 1

3.2. Texture modelling

The purpose of this work is to evaluate the contribution of
the different topological attributes in texture description. The
main idea is to propose a series of mappings for encoding bi-
nary patterns. First, we present TAPAP,R mappings that have been
firstly considered in a preliminary paper [2]. Second, we pro-
pose a new series of mappings, so called TAPA,tP,R, that are more
efficient than the previous ones in complemented schemas.

3.2.1. TAPAP,R mappings
Every version of the descriptor used in the experiments is

related to a vector of r topological attributesA = (A1, . . . ,Ar)
(1 ≤ r ≤ 3). Basically, a texture is described by computing,
for each pixel p, the LBP and its vector of r attributes, denoted
TAPAP,R(LBPP,R(p)), and by calculating, for the whole image,
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the joint histogram of TAPAP,R. The total feature number of the
TAP depends on P and the chosen subset of attributes, but it
is always much smaller than 2P, the number of different LBPs
(see Tab. 1). In practice, to reduce the computation time of
the descriptor, we pre-compute by simple enumeration a label
table Λ which is a bijection from TAPAP,R(J0, 2P−1K) to J0,NAK,
where NA is the number of distinct attribute vectors. Finally we
represent a texture by a histogram of labels:

H(l) = |{p; Λ
(
LBPP,R(p)

)
= l}| (3)

Figure 3 shows a texture image with its corresponding la-
bel images and label histograms for the different configura-
tions of TAPA1,8. In addition, Figure 4 shows images and la-
bel histograms corresponding to TAP#Mm

1,8 for different images,
from the same class and from different classes. The visual
(dis)similarity of histograms is apparent on the figure.

3.2.2. TAPA,tP,R mappings
Although smaller than traditional LBPs, the number of labels

(and then of histogram bins) can become practically too big
(see Tab. 1) when all three attributes (M,m,#) are combined,
with P = 16 or P = 24. This will be particularly true when
this mapping is applied on complemented LBP-based variant
(CLBP) (see also Table 3).

To address this problem, instead of combining all three at-
tributes, we propose to consider only two attributes (M and m),
and to use the last one (#) to highlight the most important pat-
terns. Let us recall that the most popular mapping mechanisms
(u2, riu2) use only uniform patterns. Fathi and Naghsh-Nilchi
[10] extended the notion of uniform pattern to capture more
significant patterns. These patterns have a strong link to our #
attribute, a u2 pattern having #≤ 1 and an extended u2 pattern
having #≤ 2. The fact that the most significant patterns have a
small value of # suggests us using # attribute to select patterns
ofA = Mm labels. The key idea is to project all patterns having
more than t connected components to a unique label:

TAPA,tP,R =

0, If # > t
TAPAP,R, otherwise.

(4)

Obviously the difference between feature vector sizes using
TAPMm,t and TAPMm

P,R mappings is negligible since only one
more bin is used if t ≥ 2 for discarding unimportant patterns.
On the other hand, TAPMm,t

P,R allows to considerably reduce the
feature space compared with TAPMm#

P,R . In addition, by consider-
ing only the more stable patterns based on # attribute, TAPMm,t

P,R

mapping may be more discriminant. In the same way, TAPM,t
P,R

and TAPm,t
P,R can be defined to highlight the more stable patterns

using the # attribute. Because TAPM,t
P,R, TAPm,t

P,R and TAPMm,t
P,R sim-

ply become LBPriu2 when t = 1, in this work we consider only
t ≥ 2. Moreover, for TAPA,t mappings, A is just a subset of
M,m, attribute # is not considered anymore, then the number
of TAPA,t labels is simply equal to the number of TAPA label,
plus one, independently on the value of t. Table 2 presents the
number of labels for TAPA,tP,R mapping. It can be seen that the di-
mensionality of the proposed mapping is considerably reduced
in comparison with the corresponding TAPAP,R mapping.

Table 1: Number of different labels in
TAPAP,R mapping.
A # M m M# m# Mm Mm#
TAPA8,1 5 9 9 18 14 15 22
TAPA16,2 9 17 17 66 36 59 125
TAPA24,3 13 25 25 146 62 135 353

Table 2: Number of different la-
bels in TAPA,tP,R mappings (t ≥ 2).

P TAPM,t TAPm,t TAPMm,t

8 10 10 16
16 18 18 60
24 26 26 136
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Figure 3: First row: A texture image and its label images; Second row:
Zoom image, label histograms for the different configurations of attributes, with
(P,R) = (8, 1). For the best visualization, the label images are zoomed from a
part corresponding to the red square of the texture image.

3.3. Relation with previous works
3.3.1. Relation with run-length texture analysis

Our proposed mappings share a similar point with [25] since
both of them exploit run-length features for texture analysis.
We point out the main differences between them as follows.

• Our mapping works on a circular support of LBP, not di-
rectly on the pixel values like [25].

• In [25], a run-length is calculted in different directions and
takes a value as the number of adjacent pixels having a
same gray level.

• In our mapping, we consider a set of run-lengths and ex-
tract its attributes: #, M and m, not handled in [25].

3.3.2. Relation with LBP-based methods
We point out hereafter the relations between the proposed

mappings and the classic mapping riu2

• When card(A) ≥ 2 and (# ∈ A), TAPAP,R is a superset
of LBPriu2

P,R patterns. In that case indeed, riu2 patterns are
distinguished, either by the value of # and anyone among
{M,m}.1 Therefore, for such combination of attributes A,
TAPAP,R inherits the distinctive properties of LBPriu2

P,R , while
containing more information. In this sense, TAPAP,R gener-
alises LBPriu2

P,R .
• When t = 1, TAPM,t

P,R, TAPm,t
P,R and TAPMm,t

P,R are identical to
LBPriu2

• When card(A) = 1 or A = {M,m}, A and riu2 are com-
plementary.

There is a strong link between TAPA,tP,R and previous works
aiming at exploiting information from non-uniform patterns to
improve the texture descriptors. In particular TAPA,2P,R are close
to [10]. In this work, the authors extended the notion of uniform
pattern to patterns having at most 4 transitions between 0-1 and
1-0, which corresponds to # = 2.

1Note that {M,m} alone do not allow to distinguish uniform patterns, since
the identity M = m can occur with several connected components.
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Figure 4: Texture images and their label images and histograms for TAP#Mm
8,1 .

The first row contains images of the same class, the second row contains images
of different classes.

Table 3: Number of histogram bins in the complemented texture descriptors,
for the different configurations.

A # M m M# m# Mm Mm#
CTAPA8,1 50 162 162 648 392 450 968
CTAPA16,2 162 578 578 8712 2592 6962 31250
CTAPA24,3 338 1250 1250 42632 7688 36450 249218

3.4. Texture classification

For texture classification, we use Nearest Neighbour Classi-
fier (NNC) to evaluate our descriptor on different datasets. The
χ2 distance between histograms is classically used to measure
the similarity between two texture images [3]. If H1 and H2 are
two attribute label histograms, the χ2-dissimilarity between the
two textures is as follows.

χ2(H1,H2) =

NA∑
i=1

(H1(i) − H2(i))2

H1(i) + H2(i)
, (5)

4. Texture descriptor based on TAPA,t
P,R

mappings

We investigate our proposed mapping compared with others
on LBP encoding [1] as well as on on different LBP-based vari-
ants such as Local Ternary Patterns (LTP) [14], Complemented
LBP (CLBP) [16], Biological Filters (BF) [26], Statistical Bi-
nary Patterns (SBP) [18] using single or multi circular support.

4.1. Complemented descriptor using TAPA,tP,R

Inspired from Guo et al. [16], we developed a comple-
mented framework for TAPAP,R in the preliminary work [2]. Ac-
cordingly, the texture operator, denoted CTAPAP,R, is formed
by the joint histograms of CTAP SAP,R (identical to TAPAP,R),
CTAP MAP,R and CTAP CP,R. Obviously, the number of his-
togram bins becomes much larger. If NA is the dimension
of TAPAP,R, the dimension of CTAPAP,R will be 2N2

A
. When

card(A) > 2 and P is large, the high dimension of CTAPAP,R is
a critical problem for the descriptor construction and the recog-
nition performance. Table 3 displays the number of histogram
bins for the different configurations. Clearly, there are many
cases where the very high dimension of the descriptors prevents
this method to be applied in practice, both for computational
limits and for irrelevance of the descriptors, due to the sparsity
of the histograms. This problem can be overcome by addressing
our new operator CTAPA,tP,R that will be presented hereafter.

As shown in Section 3, TAPA,tP,R allows to combine more
attributes without increasing significantly the dimensionality
of the feature space while improving discrimination power.
We remark that nothing prevents to use different mappings in

Table 4: Number of different labels in CTAPA,tP,R mappings (t ≥ 2).
P CTAPM,M,t CTAPm,m,t CTAPMm,M,t CTAPMm,m,t

8 200 200 320 320
16 648 648 2160 2160
24 1352 1352 7072 7072

the CLBP model. On the other hand, it is well-known that
the CLBP S component is more discriminative than CLBP M.
Therefore, in order to maintain a reasonable size of descriptor,
we prefer to use TAPMm,t

P,R mapping to encode the first compo-
nent, and TAPM,t

P,R or TAPm,t
P,R mapping for the second one. Let

us denote ”/” and ”–” as join and concatenation operations re-
spectively. We may for example consider the following com-
plemented descriptor:

CTAPMm,M,t
P,R = CLBP S Mm,t

P,R /CLBP MM,t
P,R/CLBP CP,R (6)

Table 4 shows the dimensionality of CTAPA,t descriptors.
Obviously, compared with Table 3, the dimensionality is signif-
icantly reduced in complemented schemas by using CTAPA,t.

4.2. Robust texture descriptor using CTAPA,tP,R

Using the proposed mappings, we can exploit more infor-
mation from non-uniform patterns. However, our mappings
are also sensitive to noise since a simple change of LBP code
can lead to important modifications of its attributs. In order
to remedy this issue, our solution is to combine with a noise
tolerant LBP-based variant. We introduce hereafter a robust
texture framework for these mappings based on a recent LBP-
based variant (SBP [27, 18]) to show the interest of our mapping
compared to others on noisy texture images. We note that this
framework can be similarly applied for other noise insensitive
LBP-based variants. The principle of SBP is to separate a given
texture image into different maps that are robust against noise
and uniform regions in images considering different maps of
moment calculated from a local support. In this paper, we ad-
dress a simple version of SBP [27] based on two first order mo-
ments: mean and variance. For each filtered image, CTAPMm,M,t

P,R
is used to explore its texture feature. The descriptor is obtained
by concatenating the feature vectors of filtered images and is
denoted as SBP CTAPMm,M,t

P,R . Moreover, TAP and CTAP ex-
ploit topological attributes considered in a single circular sup-
port. Many authors pointed out that a multi-scale approach
can significantly improve the performance of LBP-based op-
erator. In our work, M SBP CTAPMm,M,t

P,R1:R2
is constructed from

SBP CTAPMm,M,t
P,R on different circular supports (P,R) where R

varies by step one from R1 to R2 (see Figure 2).

5. Experiments

5.1. Datasets

The effectiveness of the proposed method and the impact of
the different attributes were evaluated on different representa-
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tive databases: Outex [28], CUReT [29], UIUC [30], 2D Hela
[31] and KTH-TIPS 2b [32] 2.

Concerning the Outex database, we used the two popular test
suites: TC10 and TC12 that are designed for texture classifi-
cation under different orientations and illuminations. Two
databases CUReT, UIUC use a same experimental protocol
[33, 16, 30] using N random images for each class to form
a learning set. The classification rate is reported as the mean
value together with over 100 runs. N is respectively set to 46
and 20 for CUReT and UIUC datasets. The 2D Hela dataset,
which consists of 862 single cell images, is decomposed into
10 classes where each class contains more than or equal to 80
images. Following [31], 80% images of dataset are used for
training and the rest is used for testing, the accuracy rate is ob-
tained using a 5-fold cross validation. For KTH-TIPS 2b, we
followed the training and testing scheme used in [32]. Experi-
ments were done by training on three samples; testing is always
performed on unseen samples only.

5.2. Parameter setting

TAPAP,R was evaluated and compared with different mappings
on Outex dataset in the same condition using the most com-
monly used single scale (P,R) = (24, 3).

For complemented schemas, we choose the improved version
M SBP CTAPMm,m,t

16,2:12 that represents a fair trade-off between dis-
crimination power and calculation performance. In order to
have a reasonable feature vector length, only 16 neighbours are
considered at each scale that varies from 2 to 12. The TAPMm,t

P,R

and TAPM,t
P,R mappings are used respectively for encoding of

CLBP S and CLBP M components, where t is set to 2 empiri-
cally to give the best results. For SBP approach [18], the default
local support {(1, 5), (2, 8)} is used to calculate moments.

5.3. Evaluation of TAPAP,R and TAPA,tP,R mappings

The following evaluations of the proposed mapping are ap-
plied on Outex test suites using different encodings. Although
it presents only the results on the configuration (P,R) = (24, 3),
we have tested on different configurations of (P,R) and the ob-
tained conclusions are the same.

5.3.1. LBP encoding
Table 7 compares our proposed mapping (TAPAP,R) with the

different popular mappings such as LBPriu2 [3], LBPri [3],
LBPNT [10], DLBP [6] and LBC [4] on Outex dataset using
LBP encoding [3]. We can make the following comments.

• The three attributes have distinct properties. Considered
alone (rows 1 to 3 of Table 7), their performance is com-
parable to LBPriu2

P,R , except for #, whose expressiveness is
too weak if taken alone.

• Jointly considering 2 attributes (rows 4 to 6), the results are
always better than LBPriu2

P,R , with an average improvement
which can reach 6%.

2 Our code is avaiable and can be downloaded from this address: http:

//tpnguyen.univ-tln.fr/download/TopoLBP

Table 5: Comparison between our mapping TAPMm,2 and other mappings: riu2
and LBC considering different LBP-based encodings on Outex TC10 dataset.
The configuration (P,R) = (24, 3) is used.

Encoding method TAPMm,2 riu2 LBC
CLBP [16] 99.76 98.93 98.72
LTP [14] 94.92 94.77 90.08
BF [26] 98.52 98.99 96.35

SBP2 [18] 98.93 98.44 96.85

• Using all three attributes doesn’t improve the results com-
pared with a combination of two attributes. This can be
explained by the fact that in this case, the number of labels
is too high, which makes the histogram too sparse and re-
duces the effectiveness of descriptor.

• Regarding the comparison with state-of-the-art LPB map-
pings, our mapping TAPMm

P,R is comparable with DLBP and
outperforms other mappings.

• Regarding the comparison between the proposed map-
pings, the performances decrease from TAPAP,R to TAPA,tP,R.
This proves that the non-uniform patterns improve the dis-
crimination power of the descriptor.

5.3.2. LBP-based encodings
Table 5 presents the results of our mapping on different LBP-

based encodings such as: LTP, CLBP, SBP, BF compared with
other mappings: LBC and LBPriu2. It could be seen that the
proposed mapping make different encoding schemes more ro-
bust than using typical mappings.

5.4. Evaluation of proposed descriptor based on CTAPMm,M,t

5.4.1. Robust discrimination power
This section evaluates our proposed descriptors in Sec-

tion 4.2 : M SBP CTAPMm,M,2
16,2:12 . The dimension of the con-

sidered descriptor is 2160 × 11 = 23760. For a fair evalu-
ation, we compare with the same frameworks but using dif-
ferent existing mappings: riu2 and LBC. These descriptors
are denoted respectively as follows: M SBP CLBPriu2

16,2:12, and
M SBP CLBC16,2:12. The evaluation is carried out on different
datasets: CUReT, UIUC, 2D Hela and KTH-TIPS 2b. Table 6
presents our results compared with the best results of referenced
methods on these datasets.

For UIUC, CuRET and 2D Hela datasets, the results are re-
ported by mean ± std over 100, 100 and 5 random selections re-
spectively. Exceptfor the 2d Hela dataset, where the results are
obtained using a linear SVM classifier to be comparable with
other methods, the NNC is used as classifier for other datasets.
In geneneral, it can be seen from this table, our proposed de-
scriptor gives very good results on these datasets. In addition,
the proposed mapping clearly contributes to the discriminative
power of descriptor framework compared to other mappings:
riu2 and LBC.

For UIUC and CuRET datasets, our descriptor clearly outper-
forms recent state-of-the-art results. It also gives good result on
2D Hela dataset.

For KTH-TIPS 2b dataset, we compare with different meth-
ods: LBPriu2 [3], VZ-MR8 [34], VZ-Joint [33], CLBC [4],
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CLBP [16] and NI/RD/CI [35]. As it can be seen, our frame-
work significantly outperforms the LBP-based algorithms. Re-
cently, Khan et al. have significantly improved the state-of-the-
art result (70.6%) on KTH-TIPS 2b dataset. However Khan
et al. used a complex combination of many different texture
descriptors: CLBP [16], WLD [36], BGP [37] , LPQ [38]
and BSIF [39] to improve the discrimination power. Using
multiscale approach, our descriptor (M SBP CTAPMm,M,2) still
outperforms this result on KTH-TIPS 2b dataset, by reaching
71.28%. On the other hand, with a same texture framework, our
mapping allows clearly to improve the descrimination power
compared with other mappings: riu2 (70.71%), (LBC 65.49%).
For other techniques, Cimpoi et al. [40] set a new state-of-the-
art result based on the combination between Improved Fisher
Vector (IFV) and a deep learning technique (DeCAF).

5.4.2. Robustness against noise
As mentioned in Section 4.2, the proposed descriptor is ro-

bust against noise. The key idea is to take into account the ex-
tracted maps that is insensitive to noise. We consider the images
from UIUC dataset by adding Gaussian noises at different levels
(SNR: signal to noise ratio). Table 8 compares our descriptor
with the same frameworks using different mappings: riu2 and
LBC and with other methods. Although three descriptors based
on SBP are more robust against noise than two other methods
thanks to noise insensitivity of SBP, the proposed descriptors is
more powerful than using two mappings riu2 and LBC.

6. Discussion and conclusive remarks

We have introduced a versatile and efficient framework for
texture modelling and recognition, based on a family of rota-
tion invariant attributes calculated on local binary patterns. It
extends existing rotation invariant LBP based coding, including
riu2 and LBC, while enhancing their expressiveness and im-
proving their discrimination capability. Through an extensive
evaluation on five recent texture datasets, the impact of the dif-
ferent attributes themselves has been assessed, as well as their
relevance in combination with other LBP variants.

While most configurations of attributes outperform state-of-
the-art LBP based texture classification methods, several ques-
tions remain to enhance the efficiency of this framework:

• Are there other relevant rotation invariant attributes? We
also experimented a fourth attribute: a dissymmetry mea-
sure, which did not improve the recognition results.

• How to combine the attributes to optimize the trade-off

between recognition rate and computational performance?
• Can we extend this framework to other applications?

These questions should be addressed in future works.

3Due to the nature of ri mapping that generates a huge number of labels
when P is large, we consider (P,R) = (16, 2) for ri mapping.

Table 7: Comparison between the basic TAPA and different mappings such
as LBPriu2, LBPri, LBC, LBPNT , DLBP, etc. on Outex dataset using LBP
encoding.

Row number Method (P,R)=(24,3)
TC10 TC12 t TC12 h

1 TAP# 76.98 67.50 58.19
2 TAPM 95.89 88.10 86.37
3 TAPm 96.48 86.20 80.37
4 TAPM# 96.77 88.75 84.33
5 TAPm# 97.47 89.28 85.00
6 TAPMm 98.12 92.22 87.20
7 TAPMm# 97.19 90.93 86.71
8 TAPM,2 95.05 87.06 83.38
9 TAPm,2 95.81 84.91 80.95
10 TAPMm,2 96.95 88.56 85.30
11 TAPM,3 95.05 87.06 84.95
12 TAPm,3 96.90 85.83 80.44
13 TAPMm,3 96.95 88.56 85.30
14 LBPriu2 [3] 94.6 84.0 80.5
15 LBPNT [10] 96.07 86.69 82.11
16 LBPri 3 91.72 88.26 88.47
17 DLBP [6] 98.1 91.6 87.4
18 LBC [4] 91.22 83.94 82.34

Table 8: Noise tolerance on UIUC datasets.
Method SNR=05 SNR=10 SNR=15 SNR=30

M SBP CTAPMm,M,2
16,2:12 95.50± 0.91 96.23±0.87 96.24± 0.78 96.37±0.66

M CLBPriu2
16,2:12 94.71 ± 0.87 95.35± 0.91 95.78±0.83 95.66±0.65

M CLBC16,2:12 93.08 ± 1.00 93.39 ±0.94 93.99±1.11 94.57±0.65
CLBP [16] 67.54 81.54 87.56 90.38

CRLBP(α = 1) [47] 79.20 88.57 92.74 93.07
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[38] E. Rahtu, J. Heikkilä, V. Ojansivu, T. Ahonen, Local Phase Quantization
for Blur-insensitive Image Analysis, IVC 30 (8) (2012) 501–512.

[39] J. Kannala, E. Rahtu, BSIF: Binarized Statistical Image Features, in:
ICPR, 2012, pp. 1363–1366.

[40] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, A. Vedaldi, Describing
Textures in the Wild, in: CVPR, 2014, pp. 3606–3613.

[41] F. M. Khellah, Texture Classification Using Dominant Neighborhood
Structure, IEEE Trans. Image Processing 20 (11) (2011) 3270–3279.

[42] Y. Xu, H. Ji, C. Fermüller, Viewpoint Invariant Texture Description Using
Fractal Analysis, IJCV 83 (1) (2009) 85–100.

[43] L. Liu, Y. Long, P. Fieguth, S. Lao, G. Zhao, BRINT: Binary Rotation
Invariant and Noise Tolerant Texture Classification, TIP 23 (7) (2014)
3071–3084.

[44] L. Nanni, A. Lumini, S. Brahnam, Local binary patterns variants as
texture descriptors for medical image analysis, Artificial Intelligence in
Medicine 49 (2) (2010) 117–125.

[45] F. S. Khan, R. M. Anwerb, J. van de Weijerc, M. Felsberga, J. Laakso-
nenb, Compact Color-Texture Description for Texture Classification, PRL
51 (2015) 16–22.

[46] R. Timofte, L. J. V. Gool, A Training-free Classification Framework for
Textures, Writers, and Materials, in: BMVC, 2012, pp. 1–12.

[47] Y. Zhao, W. Jia, R.-X. Hu, H. Min, Completed Robust Local Binary Pat-
tern for Texture Classification, Neurocomputing 106 (2013) 68–76.

7


	Introduction
	Related works
	General form of LBP
	Mapping of the LBP labels
	LBP-based variants

	Topological Attribute Patterns
	Topology related attributes
	Texture modelling
	TAPP,RA mappings
	TAPP,RA,t mappings

	Relation with previous works
	Relation with run-length texture analysis 
	Relation with LBP-based methods

	Texture classification

	Texture descriptor based on TAPP,RA,t mappings
	Complemented descriptor using TAPP,RA,t
	Robust texture descriptor using CTAPP,RA,t

	Experiments 
	Datasets
	Parameter setting
	Evaluation of TAPP,RA and TAPP,RA,t mappings
	LBP encoding
	LBP-based encodings

	Evaluation of proposed descriptor based on CTAPMm,M,t
	Robust discrimination power
	Robustness against noise


	Discussion and conclusive remarks

