LP-solution for BSDEs with jumps in the case p < 2
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In [8] we established existence and uniqueness of solutions of backward stochastic differential equa-
tions in LP under a monotonicity condition on the generator and in a general filtration. There was
a mistake in the case 1 < p < 2. Here we give a corrected proof. Moreover the quasi-left continuity
condition on the filtration is removed.

Introduction

The aim of [8] was to establish existence and uniqueness of solutions to BSDE in a general filtration that supports
a Brownian motion W and an independent Poisson random measure w. We considered the following multi-
dimensional BSDE:

vi—er [ U (5, Zu b )ds — / ' /u (). ds) = [ " Zaw, - / ", (1)

Let us recall briefly the setting. We consider a filtered probability space (2, F,P,F = (F;);>0). The filtration is
assumed to be complete and right continuous. We also assumed quasi-left continuity of the filtration. Nevertheless
as mentioned in the introduction of [1] (see also Section 2.2 in [12]), this condition is unnecessary.

The generator f satisfies Conditions (Hex)! in [8], that is, f is Lipschitz continuous w.r.t. z and ¥ and monotone
w.r.t.y. On & and f2 = f(¢,0,0,0), we keep the integrability condition: for some p > 1

T
E <|g|p+/0 |f(t,0,0,0)|pdt> < +oo. @)

Then the main results in [8] can be summarized as follows. Under Assumptions (Hex) and (2), there exists a
unique solution (Y, Z,v, M) in EP(0,T") to the BSDE (1) meaning that

E Ls[%% Ly ' |Zt|2dt)p/2 ([ |¢s(u)|2ﬂ(du)d5>p/2 + (M)

The comparison principle holds for this BSDE. If p > 2, our results are true. But for 1 < p < 2, as written in [8]

< +00.

the main difference is that for p < 2 the compensator of a martingale does not control the predictable projection
(see [10] for a counterexample). In the proof of Proposition 3 in [8], Equality (31) does not hold in general. A
simple counterexample is Y; = Ny — (T' —t), Zy = 0, ¥ (u) = 1y=1, p(du) = 61(du). Then

Yt:Nt—(T—t):NT—Q/tTds—/tT/uwt(u)%(du,ds).
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!The precise definition of (Hex) is given at the end of Section 1.



Here the generator is f(t,y, z,9) = —21¢(1). In this case

T
2—1
% /0 /u P (¥ PV Yo+ 9P L 1o st sore( s
! p/2—1
= ]E/O (|}/TS*|2 V |YV87 + 1|2) l‘Ys—‘\/|Ys_+1|7§0dS

where Y,_ is the left limit of Y at time s, and

T T
E /0 /u () PIYa P21,y popi(du)ds = E /0 Yol 1y, 0ds.

For 1 < p < 2, the second integral is strictly greater than the first one. In other words, if the generator does not
depend on 1), our earlier proof in [8] is safe (see also [5] and [6]). But the dependance due to the generator cannot
be controlled by the first integral if p < 2. Thereby Proposition 3, Theorem 2, Propositions 5 and 6 and Theorem
3 in [8] are not proved when p < 2. Here we present proofs for these results under strengthened assumptions.

A 1)-depending non trivial generator f can be found in [9] (see BSDE (3) in this paper). This example is coming
from an optimal stochastic control problem. It follows from the proof of Corollary 1 in [9] that Condition (Hcomp)
is satisfied (see Section 3.1 below) and thus (Hex) and (C) are satisfied as well (see Lemma 4 and the proof of
Theorem 2). Many other examples can be found for example in [3], Part II (see among others BSDEs (9.30) or
(11.13)).

1 Choice of a suitable function space for the Poisson integrand when p < 2

Recall briefly the notations of [8]. We consider a filtered probability space (2, F,P,F = (F¢)¢>0), the filtration
being complete and right continuous. Without loss of generality we suppose that all semimartingales have right
continuous paths with left limits and we assume that (2, F,P,F = (F;)i>0) supports a k-dimensional Brownian
motion W and a Poisson random measure 7 with intensity u(du)dt on the space U C R™ \ {0}. The measure p is
o-finite on U such that

[ AP n) <+
U

The compensated Poisson random measure 7(du, dt) = 7(du,dt) — p(du)dt is a martingale w.r.t. the filtration F.
Moreover we introduce the following notations.

e Gioc(p) is the set of predictable functions ¢ on Q=0Qx [0,T] x U such that for any ¢ > 0 a.s.

[ [ s nlpstbuan) < +oo
0 Ju

M, is the set of cadlag local martingales orthogonal to W and w. M is the subspace of M. of martingales.

e DP(0,T) is the space of all adapted cadlag processes X such that E (supte[oﬂ \Xt\p) < +o0. For simplicity,

we write X. = supyejo 7 [X¢| and xXPr = sup;cjo. 7y €71 Xy [P

. . T 9 p/2
e HP(0,T) is the subspace of all predictable processes X such that E (fo | X+ | dt) < 400.

e MP(0,T) is the subspace of M of all martingales such that E [([M]T)p/Q] < 400.

LE(0,T) = LE(Q2 x (0,T) x U) is the set of processes ¥ € Gy.(p) such that

’ k/oT / wu)r?w(du,ds))m

o L = LP(U, u;RY) is the set of measurable functions 9 : U — R? such that ‘WH& = Jy; [ (WP p(du) < +o0.

< +00.
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o £P(0,T) = DP(0,T) x HP(0,T) x L2(0,T) x MP(0,T).

Let ¥ € Gioe(t). Let us recall known results on the (local) martingale N given by

//zps #(du, ds),t > 0. (3)

t—//\ws m(du,ds).
//% % (du, ds)|

Now let us define the following norm on 1) € Gj,.(1): if v is the measure defined on U x [0, 7] by v = u ® Leb,
then

it (L [t )+ G frorme])”}

And for p € [1,2) and for a measurable function ¢ defined on U, we put

It follows that the compensator is given by

For ¢t > 0 let

= sup
rel0,t]

9oz = inE_ (16" g + 1670z

With this norm we can define the Banach space LI, + Li (for the definition of the sum of two Banach spaces, see

for example [7]). By the same way we define L) + L2.
Lemma 1

e Burkholder-Davis-Gundy inequality: For all p € [1,00) there exist two universal constants ¢, and C,
(not depending on N ) such that for any N defined by (3) and for any t >0

oF (INF?) <EIN)] < GE (V). (4)

e Bichteler-Jacod inequality®: For p € (1,2), there exist two universal constants kp and K, such that for
any ¥ € Gioe(pt), if N is defined by (3)

Kp [E ([N]?/2>]1/p < Wllrweysirar) < Kp [E <[N]1%/2>}1/P‘ (5)

Proof. The first inequality (4) is proved in [4], Proposition 3.66. The second result (5) can be found for example
in [11], Theorem 1 and the following comments pages 297 and 298. U
From the Bichteler-Jacod inequality (5) we deduce the next result.

Lemma 2 For p € (1,2), there exists a universal constant K, 1 such that for any ¢ € Gioe(p) and N defined by

3)
E [ /0 ) sl ds] < K, rE ([N)7*). (6)

If a function ¢ defined on [0,T) x U is in LL + 12, then

T
/0 I9sllLsrr2ds < 1V VT) |6y rz- (7)

2See the discussion in [11] for the name of this estimate.



Proof. Let ¢! € LP(IL2) and ¢? € LP(L}) such that ¢ = ' + 2. By Jensen’s inequality:

e[ [ i) - E[ [(/ |w;<u>|2u<du>>p/2ds]
T SE[(//W )| p(du)d )

o[ [tz = B[ ([ wrwpu)a] =101,

We deduce (6) directly from Bichteler-Jacod inequality (5).

p/2

IN

T 02, 0.

and

For the second inequality, if ¢ € Ll + L2, for any £ > 0, there are two functions ¢! and ¢? in L, respectively
in L2 with ¢ = ¢! + ¢? and
Iollsarz <l ey + 9% < I6llLstrz + &
Hence for almost any s € [0,7], ¢! (resp. ¢2) belongs to IL}L (resp. Li) with ¢s = ¢! + ¢2. Thus by definition
@5l 1.2 < H(b;H]LL + HqﬁgHLﬁ . We integrate this inequality between 0 and 7" and by Jensen’s inequality

T T . T )
[ 1opanzds < [ ot [ 102lgds
0 0 0
< ol + VTS Ie < AV VT (o Iy + [16°(12)
< (1\/\/T)(||¢H]L},+L?, +€).
Since these inequalities are true for any £ > 0, we deduce Estimate (7). [

In particular (4) means that the martingale NV is well-defined (see Chapter II in [4]) provided we can control [N]
in LP/2(2). And from (6), P ® Leb-a.s. on Q x [0,T], ¢ is in L}, + Lﬁ if again we control [N] in LP/2(Q). From
Lemma 3 below, ¢, is also in IL}L + Li and this implies that for any b € (0, 4+00)

T
E[/ /(|?/)s(u)|21|ws(u)gb+|¢s(u)|1|ws(u)>b)u(du)d5 < +o0.
o Ju

This last estimate can be also found in Proposition 3.68 of [4]? in a more general setting.
To illustrate and motivate our purpose, let us consider a stable Lévy process X = (X3, 0 < ¢ < T). The Lévy
measure is pu(du) = |u‘ﬁdu where u €e Y =R\ {0} and 0 < o < 2. Then by the Lévy-Khintchine decomposition:

t t
X = / /u1u|<1%(du,ds)—|—/ /u1|u>17r(du,d8)
0 Ju 0 Ju
t t
= / /u%(du,d8)+t/u1|u>1u(du):/ /u%(du,ds).
0 Ju u - 0 Ju

Now Xp € LP(Q) if and only if p < a < 2. We take £ = Xp, V; = X3, 4(u) = v and

Ytzg—/tT/uu%(du,ds).

For any t € [0,T], p < «, Yy is in LP(Q) and ¢y ¢ ]Li. Nevertheless for any § > 0, ¢; = Y1y, <5 belongs to ]Li
and ¢? = Yiljy,|>5 to L. Thus ¢ is in L}, + Li. And it is easy to check that i, also belongs to IL}L + Li.

Conclusion and assumption on f: From now on, we assume that p € (1,2). Then we have to choose 1 in
a suitable integrability space, namely L}L + Lz. From the next Lemma 3, this space contains all spaces L, + Li.
Hence in the rest of the paper, our generator f satisfies Condition (Hex):

3With our setting, the process W of [4] is identically equal to zero.
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(H1) For every t € [0,7T], z € R¥* and every v € }LL + ]LZ the mapping y € R? — f(t,y, z,%) is continuous.
Moreover there exists a constant « such that

<f(tayaza¢) - f(t,y,aza¢)’y - y/> S Oé|y - y,|2'

(H2) For every r > 0 the mapping (w,t) — supyy <, |f(t,¥,0,0) — f(£,0,0,0)| belongs to LY x [0,T],P ®m).

(H3) There exists a constant K such that for any ¢ and y, for any z, 2z’ in R¥* and 1, ' in L}L + Lz
|f(t’y, Zﬂ/)) - f(taya Z/a¢/)| S K <|Z - Z/| + H¢ - ¢/||L;1L+]Li> .

Note that (H1) and (H2) coincide with assumptions (H1) and (H2) in [8], whereas (H3) above replaces the older
condition (H3) in [8].

Remark 1 Note that if p > 2, since LI, + Lﬁ C IL%L, the generator f can be defined on the function set IL%L.

The next result will be used several times. Although it is quite simple we did not find a reference. The proof is

postponed to the end of this paper.

Lemma 3 Letp € [1,00) and ¢ : U — RY be a function in L}, +1.2. Then ”(bHLﬁﬂLLZ < o0 if and only if for any
0 > 0 4t holds that ¢1,4<s € Li and ¢1ig|>5 € LY. Moreover it holds that LI, + Li C IL}L + Lﬁ, The same results
hold if p is replaced by v.

2 Complete proof for p < 2 of Proposition 3 and Theorem 2
We say that the Condition (C) holds if P-a.s.

<g7f(t7y7271/})> S ft + Oé’y‘ + K’Z‘ + KHwHL}L-HLﬁa

with K > 0 and f; is a non-negative progressively measurable process. Note that compared to [8], we change the

norm on ¢. Recall that for y € R%\ {0} we write § = ﬁy and 0 = 0. Let us denote F = fOT frdr.

Proposition 3 Let the Condition (C) hold and let be (Y, Z,1p, M) € EP(0,T) be a solution of BSDE (1) and
assume moreover that FP is integrable. Then there exists a constant C' depending on p, K and T such that

E LSES,I’T i (/ ' rztﬁdt)p/z 0y ([ ' / \ws<u>12w<du,ds>)p/2 o ( ' frdr>p] |

A comment before the proof. If 1) € L%, then Inequality (5) and Lemma 2 imply that P-a.s. ¢ € L, + L2 and
from Lemma 3, ¢ € L, 4+ L2. Hence the integrand 1 is in the required function space (see Condition (H3)).

<CE

Proof.
Step 1: We prove first that there exist two constants 5 (depending on K, a and p) and k), g such that

T T
E/ " |Y,|P~2| Z,|* 1y, zods + E/ 5|V [P 1y, 4od[M]S
0 0

T
s 2—1
E /0 /M B4 (w)? ([Yae 2V Y 4 9(@))”2 ™ Ly s sy (s, ds)

2—1
+E D P (Ve PV [Yae + AMP)P T 1y ans ol AMJ
0<s<T

T
+E / P\ YilPds < kp gB(X). (8)
0



where -
X = TP + / BV, 7L fods.
0

In the following let ¢(p) = p(p — 1)/2. For some constant § € R, we apply It6’s formula (see Corollary 1 in [8]) for
7 € Tr to eP|Y;|P to obtain

eB(MT)]Y}/\T\p—i—c(p)/

FYIP LAy pods +elp) [ VPP, pod(M
tAT

tAT
T T
< eIy, +p/ PN [PV f (5, Y Zo)ds = B | |V |Pds

tAT tAT

T T
o [P ZaW, / eIV, P1Y,_dM,
tAT AT

o [PV [ (.
tAT

/A / Yo + s ()l — Yo P = plYe_ P71V, thy ()] m(dus, ds)

P (Yo + AM,[P = [Ys [P = p| Y, P71V AM,] .
t/\7'<s<7'

With Condition (C) this becomes

HONipg P+ clp) [

tAT

PP Ay pods +elp) [ IV, pod(M

tAT

< Y4 / &5 (plYaPLfy + (par — )\Y\p)ds—i—pK/ 55|V, [P~1| Z,|ds
AT

+pK [ P P sl 2 ds — p / |V P, Z,d W

tAT tAT
—p/ P3| Y, _[PTYY,_dM, —p / P3|V, _ [Py, /¢s 7(du, ds)
tAT tAT
/ / Yo + s ()l — Yo P = plYs_ P71V, thy ()] m(dus, ds)
/\T

[1Yer + AM,P — [V |P = p|Ys- P71V, AM] .
t/\T<s<T

Moreover by Young’s inequality

pK?
PRSP 2] < Py + Lz Py e

Hence we obtain that

AUy, P 4 @ /

tAT
< |y +/

tAT

" |Y,P~2| Z,|* 1y, zods +C(P)/ e |Yo_[P?1y, _ sod[M]S
tAT
_

_ K?
o (e Gk 25— i)

oK [ P agds — p / YL PV, Z,d W,
tAT

tAT
—p/ el ) P L dMS—p/ el ) P L /zps 7(du, ds)
tAT
/ / Yo + ()P — [Yor [P = plYsr [~1Y, ()] 7(du, ds)
/\T
SYer + AMP — [V [P = p|Ye [PV AM] . (9)

t/\T<s<T



In particular we have:
-
0< [ [ Ve 4wl — Yool = plYe P Yo (0)] (s )
tAT u

<y [
N

pK?
p_

o (mmplfs T (pas P ﬁ)lel”> ds

1

oK [ PNV il agds —p [ YLz
tAT tAT

o [P Ve dM = p [ PP [ )i, ds) (10)
t t u

AT AT

where the first inequality is due to convexity. Now since (Y,v) € DP x L, Inequalities (5) and (7) and Young’s
inequality give:

T
PKE [ Ve P uluy izds < pKE
0

T
sup _(X0s/p]y, _p1) /0 eﬁs/pnwsummids]

s€[0,T7]
T P
([ e lonuynas)

T p
(/ eﬁS/pfst>
0

Using a fundamental sequence of stopping times 75 for the local martingale

< K(p-1)E + KE < +o0

sup (BBSIY;I”)
s€[0,T]

and since FP is integrable

T
E/ 655|Y5|p_1fsds <E [ sup (668|Ys|p) +E < +o00.
0 ]

s€[0,T

/ Y Y (stWs+dMs+ / ws<u>%<du,ds)>
0 u

and taking 7 = 73 and the expectation in (10), this local martingale term will disappear in (10). Then since
Y € DP(0,T), by monotone convergence theorem we obtain when k goes to co

T
0< E/ eﬂs/ [1Vae + ()P — Yo P — plYs_ P~ Vo ths (w)] (du, ds) < +oc. (11)
0 1z

From Lemma 5 we choose ¢ > 0 depending on p and K (see (31) for a possible choice of ¢) and we fix
d =9(e,p)|Ys—| if Ys— # 0 (and any 6 > 0 if Y;_ = 0) where ¢ is defined in Lemma 5. From the norm definition
on IL}L + Li and Young’s inequality it follows that

IN

T T
pK [ Y P sl 2 ds pK [ Pyt <||71Z)s]-|ws\<6”]Lﬁ + IIT,Z)sl\ws\zaHL;) ds

tAT tAT

K2 T
pA - eﬁs’y;_’pds_i_p_g/
2e tAT 2

IN

T
t eﬁs\Ys—!pi?le_;éoWsl\ws|<5|h2LgdS
AT

K [ PN P L sl ds.
tAT

From Lemma 9 in (8]
/ / e [|Yoe + v ()P — [Yer |P = p|Yer [PVt (u)] 7(du, ds)
tAT JU

T s 2-1
> o(p) / /u 1 () ([Yar > V [Yar + ()22 Ly juiye s oo (dus ds).
and

S P [[Vae + AMP — Yoo [? — p|Ya [P Vi AM]
IANT<s<T

2—1
>ep) S PIAMP (Ve PV [Yee + AMP) 1y juv s ansigo
IANT<s<T



Therefore from Inequality (9) we deduce the following inequality for any e € (0, +00)

T T
KON+ D[ Bz Py s + o) [ PPy podlM
tAT

tAT
ap i S 2—1
+% /M /u by ()2 (IYar 2V [Yar + 95 ()2 Ly vive_ oy o (du, ds)

2—1
+elp) Y e |V, 2V [Yee + AM, ) Ly, jv|ve_+ans 20l AM[?
tAT<s<T

S d%wy;vj+_pd/

tAT

T 1(2 1(2
e’ (pa—ﬁ—i— P 1+p—> |Ys[Pds

eﬁsmyplfsder/
tAT
—p/ e O s Y (Z dWs + dM; —|—/¢8 (du,ds))
tAT
5 / L / [Ys + s ()] — [Ya_ | — plYs "1V, 104 ()] 7(du, ds)
tAT u

1 [T o
—5/mf /L,“YSWAMI”—IYu”—pIY;IP Vi the(u)] pu(du)ds

pe [T _

+5 PN P2y, o[ty <sllF 2 ds
tAT "

+pK [ Yo P (s Ly, 0l ds. (12)
tAT

Let us explain how to deal with this inequality.

e For ¢ > 0 fixed by Lemma 5, we can take 8 large enough such that

K? K?
ﬁ>poz+p +p—
p— 2¢

and the term [; 74| Y, |Pds can be removed (or put on the left-hand side). Again 3 depends only on a, K
and p.

e Using again the fundamental sequence of stopping times 75 for the local martingale

/. MY [PV (stWS +dM, + / ws(u)%(du,ds)>
0 u
and taking 7 = 73, and the expectation in (12), this local martingale term will disappear.

e From Lemma 3.67 in [4] and (11) we deduce
T ~
0<E [ & [ Vi bl — [Vl = plYae P Ve v(a)] pldu)ds < 4o
0 u
This implies P-a.s. that
1 /(7 .
=5 [ [ Vet vl = 1Yo P = plYee P )] (s
0 u
pe [T g _
B W o [ P o cantdids

0

LK / Bo[Y,_ ! / () L, s s2( ) s

/ s / Yo (), K. 2,p) — U (Ye, (), p)] pldu)ds, (13)

with
U(a,b,p) = la+bP —laf’ —plal’(a,b)Laro (14)
[(a,b, K,e,p) = 2KplalP~ b|1jp> (e p)lal + PEIa b1 Lipj<ie p)lal- (15)

8



(e,p)|Ys—| if Ys— # 0 (and any 6 > 0 if Y;— = 0). From Lemma 5, for any

Recall that we have chosen § =

(w,s,u) € Q2 x[0,T] xU,
F(Y;_,#G(u),}(,g,p)——!D(Y;_,¢%(u),p);g 0.

Hence the integral (13) is non positive: P-a.s.

/ BS/ S 71/18 K7€7p)_\p(}/t9—7¢8(u)7
e Now in (12) the only uncontrolled remaining term on the right-hand side will be

! / " s / [[Yee + a()[? — [Ya P — plYer P Va_tpu(u)] 7(du, ds)
AT u

which is a local martingale. Thus it can be cancelled using another fundamental sequence 7,

p)] p(du)ds < 0.

Thereby (12) gives for 7 = 73, A Tj,
K? K?
pr_ b > Y, |Pds

E/OT (51) p—1

c T _
g [T Sz Py s + I [PV Py sodla]
0 0

c(p T s ~1
g /0 /M P42 ([Yarl? V Ve 4 9())”2 ™ Ly ivs sy (et ds)

2—1
+e(E Y & ([Yae PV [Yee + AMP) 1y, upvs s ansjzol M|

0<s<t
(16)

E (77[Y;[") + pE / Y P fods.
0

Recall that X is the quantity
T
X =T tp [ Y s
0

Then we can pass to the limit on % in (16), and we obtain the same estimate for 7 = 7" and E(X) on the right-hand

side, that is (8).
Step 2: In this part of the proof we prove that for some constant «, (depending also on § and K)

T
E( sup eﬁtlnlff’) —E (Y/?) <R [X + / Yo [P (sl 412 ds
te[0,7 0

From (10) with ¢t = 0 and 7 = 7', and from the choice of 5 we have
P, ()] m(du,ds)

T
0< / s / [Ye + sl — Yoo |? = pIY;
0 u

T
< X4pK [ W Wl rgds +p sup (T + 10+ 20,
te[0,T

where

/ Y Y, 2,40,
O = /Ot Y P dM,,  Ey = / 4|y, P 1Y, / Ps(u
From Theorem 3.15 in [4], taking the expectation in the previous inequality we obtain
0<B [ e [ o il = el —plYe P 0)] i

T
< E(X) + pKE / Y [P oy ynzds + pE | sup (] + [04] + 2]
0 t€[0,T]
9

I, =
7(du, ds).

(17)




Coming back to (12), the last three terms on the right-hand side are non positive (by the same arguments as
in Step 1). From the convexity of |z|P, the last local martingale can be controlled by (17). Hence from the
Burkholder-Davis-Gundy inequality we obtain

T
E(Y79) < E(X)+pKE / PN, P sy sz ds + R (D12 + 0117 + [E1%)
0
The bracket [F]lT/ ? can be handled as in [2]:

1/2 1 .8 3k; T sy -2 12
kaE<[F]T) < EIE(Y*’)+7E [P Py pods ).

For the other terms since p > 1 we have

[/ T 1/2
s —1
BE(1O1%) < kE ( /0 5 (V- [PV Ve + AM,[2)" 1ysv|ys+AMs|¢od[M]s) ]

1/2
kpyE ( sup e’ (Vs [* V Yoo + AMS\Q)p/2>

<
s€[0,7T7
- . - 1/2
(/ 7 (Ve PV Ve + AM )P 1|Ys_|st_+AMsaé0d[M]s> ]
0
1 D0 3k1’27 g Bs p—2 ¢
< EE <Y*’ >+TE ; € ‘Yts—‘ l\Ys_\;ﬁOd[M]s

2—1
+ > 653(’%—\2V\3§—+AM512)p/ Ly, v|vs_ +AM. 20l AM[* |
0<s<T

and by the same argument

=11/2 <1 .3
k,E ([_]T ) <ZE <Y )
k; 4 Bs 2 2 2\p/2-1
+=2 E/O e /u|1/)s(u)| (IVee [V |Yar + s (u)]?) Liy, [v[Ys_ oo )| 207 (i, ).

Using (8), we deduce that there exists a constant x, depending only on p such that

T
B s i) < B X [ oy ]
te[0,T] 0 R

Step 3: Let us derive now a priori estimates for the martingale part of the BSDE. We use Corollary 1 in [8]:

T p/2 T p/2
E </ 6268/1)‘25‘2618) —TF (/ eQBs/ple;ﬁO‘Zs‘st)
0 0

. 9p p/2
- (/ <e53/p\Y;]) P |y, P2 1Y5750’Zs’2d8>
0

p(2—p)/2 T p/
<E < sup eﬁt/p]Y}]> (/ P Y, P2 1Y57é0’Zs’2d3>
0

te[0,7)
(2-p)/2 T »/
} {E/ P |y, P2 1ys¢0|Zs|2ds}
0

2

2

<SE | sup ™|y
t€[0,T]
2—p Bt p. [T Bs v |P—2 2
< 2P | sup SP| 4 DB [ ot Yt Ly |2 s (18)
2 t€[0,] 2 Jo

10



where we have used Holder’s and Young’s inequality with % + £ = 1. With Inequality (16) we deduce:

T p/2 T
E< / ezﬁs/”rzs!%) < Ryl [X + / o [P0 llLa sz ds | -
0 0

The same argument can be used to control [M]¢. For the pure-jump part of [M] we have using the function wu.

defined in the proof of Lemma 7 in [8]:

p/2
E( Y ePPAM,
0<s<T
p/2
=E [ Y P (ue(|Yor |V [Vae + AM) P (ue(|Yar | V [Yae + AM,|))P~? |AM,|?
0<s<T

p/2

p(2-p)/2 _
<E | (e™/u(v.)) > (el Yol V [Vae + AM, )" |AM,
0<s<T

< (B[ @y ]}
p/2

XQE( D0 (eYarl v [Yam + AM )P |AM 2
0<s<T
2—p P _
SR [P (V)] + BB [ D (wel(Yan |V [Yer + AM, DY AM,
0<s<T

IN

Let £ go to zero. We use a convergence result, which is a direct consequence of the proof of Lemma 9 in [8] to

obtain that

p/2
E( D ePPam)
0<s<T
2—p N D _
< SEE(MYP) +SE (0 M (Ve | VY + AMP T Ly vy an ol AM

0<s<T
T
< RE [X + / eﬁ3|n|“\|ws||u+md8} -
0

The same argument shows that

p/2 T
E (/ 2ﬁs/p/ |95 (w) | (du d8)> < KE [X+/ 668|Y;|p1||w3‘|%+ltid5} '
0

Step 4: Now we prove the wanted estimate. Recall that we have found a constant &, such that

T p/2 T p/2
YP 4 ( / eQBS/pZSst> + ( / e%S/Pd[M]S)
0 0
p/2 T
+ (/ 265/1’/ [ths (w)|*m(du d5)> ] < kplE [X—F/ 663|}/;|p1||ws||LL+LﬁdS:|
0

T
X = HTIep 4 p / S|YoP fds.
0

E

where

Using Inequality (6) we know that there exists some constant K, r such that

T p/2
E/ P |ps|lF 1 10 ds < Kp 7 (/ 253/1’/ b ()| > (du ds)> .
0 m ©

11



Young’s inequality leads to:

T A2 T
1 (p—1 1
SE | [ PN g agds| < @R E g [ gy g
0 122 13 pp71 0

T
E/O eﬁsuwsHﬁ%ids.

2K, 1

Now from Inequality (8)

with

1
Cp = kp + kip,g(2Kp 1) 71
The key point is that EZ, depends on p, T and the regularity constants of the generator f. Then

— T . 1 T
pC,E / PV, P fds < pC (eﬁpT*|Y*|P*1) / 1P f s
0 0

1 B g Bs/ ’
_ * p s/p
2E (e Y| > +d, </0 e fsds>

Therefore we have proved that for any § large enough (with a lower bound depending only on «, K and p)

T p/2 T p/2
( p eﬁtw) ([ erzas) ([ [ @smppatn )
te[0,7] 0 0 Ju
T p/2 T P
+ </ eQﬁS/pd[M]s> PTIEP + </ eﬁr/pfrdr> ]
0 0

where C' just depends on p. This gives the desired estimate. O

IN

E

<CE

Theorem 2 Under Assumptions (Hex) and (2), there exists a unique solution (Y, Z,1, M) in EP(0,T) to the
BSDE (1). Moreover for some constant C' = Cp, i

o i </0T |Zt|2dt>p/2 + (/OT/M ¥s(u) P (du, ds))p/2 n ([M]T)m]

|
&+ ( / T|f(r,0,0,0>|dr>p] .

Proof. We can follow the proof of Theorem 2 in [8]. If we define

E

<CE

Sn = Qn(§)7 fn(t7y7z7,l/}) = f(t7y7z7,l/}) - f(t7 0707 O) + Qn(f(tv 07 070))7

with g, (z) = xn/(Jx| Vn), thanks to Theorem 1 in [8], we have a unique solution (Y, Z" 4™, M™") in £2, and thus
in P for any p > 1. From (Hex) it can be proved as in [8] that Condition (C) holds:

(Y;fm — Y;En) moomo . m n o oon o n
< ‘Ym _ Yn‘ 1th7Yt"7507 fm(un 7Zt 71/}t ) - fn(ta }/t 7Zt 71/}t )>
t t

< | (F(2,0,0,0)) = ga(F(£,0,0,0)] + K|Z7" — 20| + K[l — v g sz

12



Proposition 3 shows that

T p/2
sup |V — Y + ( / \Zm — Zg|2ds> + ([M™ = M™)p)P/?
te OT 0

([ [ e - e ds>)p/2]

T P
Em — Eal” + ( | tants0.0,0) - qn<f<no,o,o>>\dr) ] |

E

<CE

Thus (Y™, Z™, 4™, M™) is a Cauchy sequence in EP(0,T") and the conclusion follows. O
Again the Bichteler-Jacod inequality (5) implies that the sequence (¢") is also a Cauchy sequence in L, + L7,
(or in ILj; + L2) and the limit ¢ belongs to these Banach spaces.

3 Comparison principle and extension to random terminal time (Theorem 3)

3.1 Comparison principle

The comparison principle (Proposition 4 in [8]) holds true under Condition (Heomp), which reinforces Assumption
(H3). Now for p € (1,2) we assume that

(H3%) f is Lipschitz continuous w.r.t. z with constant K and for each (y,z,1,¢) € R x RF x (IL}L + Lz)Q, there
exists a predictable process k = k¥ : Q) x [0,7] x U — R such that:

o) = £(t92,6) < [ (0(0) = )t ()
with P ® Leb ® p-a.e. for any (y, z,9,1'),
o —1 <KV (u)
o [KVV ()] < ¢(u), where £ belongs to L2 N2,
We say that (Heomp) is satisfied if (H1)-(H2) and (H3’) hold.
Lemma 4 Assumption (Heomp) implies Condition (Hex), that is f is Lipschitz continuous w.r.t. .

Proof. Indeed for p < 2, we have to take ¢ and ¢ in ]L;lt + ]Lz. Thus if ¢ belongs to L7 N ]Li, the dual space of
}LL + ]Lz (see [7], Chapter 3, Theorem 3.1), then for 1) and ¢ in }LL + ]Li, we obtain:

|f(t’y, Zﬂ/)) - f(taya 2, ¢)| < ||£H]Lﬁ°ﬂLiH¢ - ngLbJr]LZ'

Then under (Heomp), the proof of Proposition 4 in [8] remains exactly the same.

3.2 Random terminal time

Now we assume that 7 is a stopping time for the filtration F, which need not be bounded (as in Section 6 of [8]).
We want to solve the following BSDE: P-a.s., for all 0 < ¢ < T,

TNAT TAT

Y;f/\ﬂ' = YT/\T+/ f(S,Ks’aZs,ZZ)s)dS—/ ZSdWS

tAT tAT

TAT TAT
/ / s(u)m(du, ds) — / d My (19)
tAT tAT

with the condition that P-a.s. on the set {t > 7}, ¥; = £ and Z; = ¢y = M; = 0. Note that this equation was
denoted (36) in [8].

13



On the generator, Assumptions (Hex) still hold with a monotonicity constant o and a Lipschitz constant K,
but the growth condition (H2) is replaced by:

¥r>0, ¥neN, sup(|f(t,y,0,0) - f(t,0,0,0)]) € L' x (0,n)). (H27)

ly|<r

and the condition (2) is replaced by
E [epf”yg\” + / PPl f(¢,0,0,0)|Pdt| < 400 (20)
0

(denoted (H5’) in [8], Section 6). We suppose that the constant p in (20) satisfies

K? K?
p—1+¥’

p>v=aoa+

where the constant 0 < € < p—gl is given by Lemma 5 and depends only on K and p (see (31) for a value of ). As
in [8] we suppose that Condition (H6) holds, that is £ is Fr-measurable and

E |:/ eppt|f(t’£t’nta’7t)|pdt:| < +OO’
0

where § = E(¢|F;) and (n,7, N) are given by the martingale representation:

§=E(§)+/OOO ndes-l-/Ooo/u’ys(u)%(du, ds) + N,

E [( [ mbas+ [T ] pePau, ) + [N]T)W

Proposition 5 Under conditions (H1), (H2”), (H3), (20) and (HG6), the BSDE (19) has at most one solution
satisfying

with

< +00.

TAT TAT
E [epf’(tAT)\wap + / ePP3| Y, |Pds + / epps‘Y;IPQ\ZS\QlyS#Ods}
0 0

TAT
][ o et
0

TAT
2—1
+E [ /uepps (Yo PV Yar 4 05 () 2)”* ™ Ly, v s g0l s () P (du, ds)}
tAT
2—-1
FE| Y eAM (1Yo PV [Yer + AMP) P 1y v saniso| < oo (21)
0<s<TAT

Proof. From the assumption on f, Young’s inequality and Lemma 5, we choose £ > 0 and § = (e, p)|y| such that

1% . K* K? .
ol y(f (5,9, 2,9) = f(s,9/,2,9") = plglP < p <a Tt e p> ylP

() ~p 2 PE e > Sp—1).7
+= [yl 21y¢0|z|2+7|y|p LgrollvL g 5122 + PEITP I 555l

c(p) ~p .
< T‘y’p 21@;&0‘2

(p) | ~p- 2 Lo 2
T|y|p 21§¢0|Z|2+§F(y’¢’K’€’p)

N

PE | ~p— -~ ~p—1117
’24_7’3/‘1) 21@7&0“7/}1@‘<5H12L3+pK‘y’p 1H¢1|$|25H]L}1L

IN
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where I' is defined by (15). Then Ito’s formula and the previous inequality give for 0 <t < T

TAT <
epp(t/\T)|}/¥/\T|p < epp(T/\T)|YT/\7—|p _ p/ 6pp8|ys|p—1YsstWs
tAT

TNAT . = P TAT
—p/ ep"5|Ys|p_1stMs—p/ ePP3|Y,_ [P~ 1Ys/1/)s 7(du, ds)
t t

AT AT

1 TNAT )
2 205 | [[Yom + s ()P = Yoo [P — pl Vs P71t (w)] 7(du, d
z/t ¢ /MU + s (W)’ = [Yo P — plYs| s ()] 7(du, ds)

AT
TNt R N R N

iy [ e [P D). Keep) — W D)) (s (22
tAT

U being defined by (14). From Lemma 5 the last term is non positive. From the integrability conditions on the
solution taking the expectation in (22) leads to

E (epp(t/\f)’f/t/w ’p> <E (e””(TM)DAfT/\T\p) .
If we replace p by p’ with « —|— ;< p' < p we obtain the same result, and thus we get for any 0 <t <T
E (epp’(tAT)‘f/;M’p> < P =P)TR (epp(TAT)’f/TAT‘p) )

We let T go to infinity to obtain ¥; = 0. Therefore (Y, Z, ¢, M) a nd (Y’ ) w’ M) satisty BSDE (19) and Y = Y.
Thus we have the same martingale parts and by orthogonality, Z = ¢ = = 0. Uniqueness of the solution is

proved.
O

Proposition 6 Under conditions (H1), (H2”), (H3), (20) and (H6), the BSDE (19) has a solution satisfying
(21), the right-hand side of the inequality is given by

CF {epm|g|p+ / ePPs | f(s,0,0,0)|pds].
0

r /2 r /2 r /2
E(/O e2ps|Zs|2ds>p —i—E(/O 62ps/u|¢s(u)|27r(du,ds)>p —|—IE</O e2psd[M]s>p

< CE [ewrsm / epw\f(s,o,o,m\pds] (23)
0

Moreover

The constant C depends only on p, K and .
Proof. For each n € N we construct a solution {(Y", Z",¢™, M™), t > 0}, first on the interval [0, n] using Theorem
2:

Y= @R+ [ Loy 2 ends - [ ziaw. - [ | vrdnas) — [,
t t t
And for t > n (Assumption (H6)):
}/;tn = §t7 Ztn =, 1%1(“) = 715(“)7 Mﬁ = Nt-

e Step 1: a priori estimate.

Again with Young’s inequality and for some § > 0 sufficiently small and any 1 > 0

e K? K?
WP F (g, 2 ) < <a Lo —) P

((p—1) —20)
(r—1) -2 2 1 po e
R A— p—=1 Z t P
(B2 ) P2 1,lep + Sl 0,00 (S22
+elylP Ly ol L <n Ty + Ky 0Lyl - (24)
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We choose § > 0 such that o + 26 + (p_ffii%) + K?Q < p. Asin [8], Ito’s formula for 0 <t < T < n and arguments

used in the proof of Propositions 3 or 5 give:
TNAT
B |y s [ v
0

TNAT TNAT
+poE, [ / epp8|n"|p2|2§|21ysn¢ods} FeE [ Yy sod b
0 0

2—-1
+e(E | Y P AMP (Y VY + AME) Liyn jviyz +aMp|£0

0<s<TNT
TNAT
cp S|,/ n n n 2—1
92 [ [ o (2 P VIV + 02 @) L v sasoon(aus do)
p(g 1-p ,TAT
<E epﬂ<TAT>\Y1@MyP+<—1> / €PPe| £(,0,0,0)[Pds | . (25)
p— 0

e Step 2: the sequence (Y™) converges.
Take m > n and define
V=YY" Zy=Z]"-ZP, =yl —up, My=M" - M.

The argument already used to control the generator (see (24)) and suitable modifications (as in the proof of
Proposition 3 again) imply that Inequality (43) for n <t < m in [8] becomes now:

mAT T
E {sup T+ epﬂmpds} <CE [ (s, s
n n

tzn AT AT

From the same argument as in the proof of Proposition 5 for t <n

T

-
B (7| Tip, ) +E [ PITpds < BT <CE [ (s 6l
0 n

AT

The convergence of the sequence Y follows.
e Step 3: convergence of the martingale part (Z™, ™, M™).

For the convergence of (Z™, M™) the arguments are the same. But for 1", we control only

</0T/uepps|¢§n(U) - l/)?(U)P?T(du,dS))p/Q] _

Following the same sketch as in the proof of uniqueness we deduce

E

mAT N 9 _ MmAT R 9.5 19
E [ /0 T, P21y o dIN + /O R A VA #Ods]

AT pps |7 2 (17 (2 S -~ 9 p/2—1
+E /0 /u TN O o (A VTN O [ R TR C

— ~ ~ — /21
+E| Y ePPS|AMs|2(|y;,|2v|yg,+AMs|2)p 1

0<s<mAT

S CE/ epps‘f(saé.sansafys)‘pds'

AT

|V |V|Ys_ +AM;|£0

Then we can use again the argument (18) in order to have a Cauchy sequence for the norm:

T R p/2 T . p/2 T o p/2
E </ e2ps|Zs|2ds> +E (/ 62’)5/ |¢s(u)|2ﬂ'(du,d5)> +E </ e2psd[M]s> .
0 0 u 0
16



Hence it converges to (Z,1, M) and from the two previous steps the limit (Y, Z, v, M) is a solution of the BSDE
(19) which satisfies (21) and (23).
O
From the two previous propositions we deduce the following existence and uniqueness result.

Theorem 3 Under conditions (H1), (H2”), (H3), (20) and (H6), the BSDE (19) has a unique solution satisfying
(21) and (23).

4 Technical results

To prove our results in the previous section we used technical Lemmas 3 and 5. Here we give the proof of these
results

Proof. (of Lemma 3). If ¢! = PLig<s € ]LZ and ¢? = PLig>s € L, then ¢ = ¢! + ¢? and the result is trivial.
Conversely if “¢”Li+ﬂ42 < 400, then for any & > 0, there exists ¢! € ]LZ and ¢? € L}, with ¢! + ¢* = ¢ and

19tz + 16°1ILs < l1@llLz4pr +e.
Now for all 4 > 0 it holds that
1B 11g56 < 107+ [0 [1 161 136/2 + 0" 11161 <5721 6]>5-

We already know that ¢? € LY and that Pl e Lﬁ. Since p < 2 it follows that the second term is in L}:

1 N e N e
107 1PL 4115572 < <§> 107" 1 4115572 < <§> lo™|°.
For the third one, observe that if |¢!| < §/2 and ¢! + ¢?| = |¢| > 6, then |¢?| > §/2. Thus

611 1411<5 /21156 < [6°[L151<s/2L g5 < |7]-

Thus ’¢‘1‘¢‘>5 S ]Lz.
Let us now turn to ‘¢’1I¢|§5- We decompose this term as follows

181L161<5 < [0 + 0711 1421<26 + 167 |1} 52526 L) <o-
Again we already know that ¢? € L, and that = ]Li. Thus the second term is in ]LZ, since for p < 2:
167171 g21<26 < (26)7P[6%[PL 42126 < (26)°7P|67|P.
For the third one, observe that if |¢?| > 26 and |¢! + ¢?| < 4, then |¢!| > § and
07| < 16” + o' +¢'| <o+ o] < 2J¢").

Thus |¢|1‘¢‘§5 € Lﬁ.
Finally, if [¢|1)4)>s € Lji, we also have |¢[14s5 € IL}” and the conclusion follows. O

Recall that for p € (1,2), K >0, e > 0 and (a,b) € (R%)2, we have defined ¥ by (14) and T" by (15) as follows:

U(a,b,p) = la+bf—laf’ —plalP~"(a,b) = |a+b" — |a|’ — pla’~*(a,b)1az0
[(a,b, K,e,p) = 2Kp|al’  b|1p>0(p)(al + PEI” b1 Lipj<ie p)lal

where




Lemma 5 Let K > 0 and let p € (1,2). Then there exists 0 < e < p—gl such that
Y(a,b) € (R%)?, U(a,b,p) >T'(a,b,K,e,p).
Let us emphasize that € depends on K and p.
Proof. First observe that that for a = 0 the inequality holds for all ¢ > 0 and b € R%. Assume in the sequel that
a#0. Fort e R, 72 € [0,00) and € € (0,00) let
i) = (462 +7)" —1—pt

and
1/2
V(b 7% K 6p) = 2Kp (824 77) " Lyp rayesge ) + PEE + 7)1 (g2 452172 (e )

For all b € R? there exist a unique ¢ € R and a unique ¢ € R? with (a,c) = 0 and b = ta + c. If we choose t € R

2
and ¢ € R? in this way and let 72 = % > 0, we obtain that

U(a,b,p) = la+bP —|af —plaf~*(a,b) = (la+b*)P/* — |a’ — pt|a]’
2 ‘0‘2 ik 2
= o (o4 {) o = ptlal = Pt 7 ),
and
1/2
P(CL, b, K,e’;‘,p) = ]a\pQKp (t2 + T2) / 1(|t\2+7-2)1/2219(67p) + \a!pp€(t2 + 7—2)1(|t\2+72)1/2<19(a,p)

= lafPy(t, 7% K,¢,p).

Hence the conclusion of the lemma holds if and only if there exists ¢ € (0, p—gl) such that for all t € R and 72 > 0
it holds that ¥(t, 7%, p) > v(t,7%, K, &,p).
Let h: (0,00) — R be the function satisfying for all = € (0, 00) that

1
h(z) = ol = /2 1 — p(2K + 1)z

Since p > 1, the function h tends to +0o when # — +o00. Hence there exists a constant a(K, p) > 2 such that for all
x > «o(K,p) it holds that h(x) > 0. Now, for the sequel of the proof, fix € € (0, p%l) such that J(e, K) > a(K,p).
First case: Let t € R and 72 > 0 such that (t2 4+ 72)Y/2 < (e, p). In particular it holds that

2 2 2
1 /p—1\2—» 1 1 p—1\2-»r
2 2
= = ——1 - -1 26
<) \/2<2g> T3 <2[< 25> ] (26)
and consequently that

2 2 2
) p—1\2» 1\ 2> p—1\2» p—1\2» 1\ 2»
—1=(—= A A —1A| = -1 27
’ << 2e > <p€> ( 2e 2e 2e 27)

Moreover, it holds that

p—1 p—1 p—1 1
= A N —=. 28
£ 2 » 2 (28)

We have to show that (¢, 72,p) > pe(t? + 72). To this end we consider the function o: R — R,

a(s) = (s, 7%, p) —pe(s® +7%) = (L +)° + 7'2)p/2 —1—ps —pe(s® +77)
for s € R. The first and second derivatives of o are given by
o'(s) = p((1+9)? )" (14 8) —p—2pes,
a’'(s) = »p ((1 +5)? + 7'2)p/272 ((p —D(1+45)?+ 7'2) — 2pe.
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Observe that ¢/(—1) = —p + 2pe and

o(-1) ZTp—1+p—pe(1+7-2) :P—l—pe—i—Tp(l—pgq—Z_P),

_2
Since £ < I%l A% and 72 < <p%) " it holds that o(—1) > 0 and o’(—1) < 0.
Note that ¢ is well defined for all s # —1. Moreover since p — 1 < 1, for any s # —1 it holds that

2-1
o"(s) >plp—1) (1 +s)*+ 7'2)p/ — 2pe =: g(s).
_2 _2
Since 72 < p2—_€1 > we have g(s) = 0 if and only if (1 + s)? = (p—_1> P2

Observe that
2
— 1\ 7%
E(r*ep) =1~ \/<p2 ) !
€

is the only root of g on (—o0, —1). Moreover, it holds that g(—1) > 0. Hence at least on the interval (Z(72,¢, p), —1),

o” > 0. Thus o is increasing on (Z(72, €, p), —1) with ¢/(—1) < 0; in other words o is decreasing on (Z(72,¢,p), —1)
and o(—1) > 0. Thereby o(s) > 0 for all s € (E(72,¢,p), —1]. Observe that (t> 4+ 72)1/2 < (e, p) implies that

2 2
1 /p—1\T5 1 1/p—1\775 1
t>—de,p) = —1/ = S Y S
> (e,p) \/2<2€> +2+ > \/2<2€> +2 > (7' ,p),

where we used (26) for the last inequality. Thus we obtain that o(t) > 0 if t < —1.
Next assume that ¢ > —1. Observe that

2
—1\ =»
T(TQ,a,p):\/<p2 > p—7-2_1>—1
€

2
is the only root of g on (—1,00). Since 72 < (p2_—€1) P 1 (see (27)), it holds that Y(r2,&,p) > 0. And on the
interval (—1,Y(72,¢,p)), 0" > 0, thus ¢’ is increasing there with o/(—1) < 0. Moreover, it holds that

o' (0) = p ((1 yor2)p/2ml 1) > 0.

Hence, there exists a value § = §(72, p, €) in (-1, 0] such that o/ (§(72, p,)) = 0. And on the interval (—1, (72, ¢, p)),
the function o has a unique minimum m given by m = o (5(72,p,)). We want to prove that m > 0. By the very
definition

o'(6)=p((1+ 6)% + 7'2)p/271 (14+6)—p—2ped =0
hence

T2)p/2 _ 14 2e6

(1 +0)* + 15 (1+0)* +7%).

This gives that

m o= o) = ((1+6)2+72)"* =1 - ps—pe(62 + 72)

1+ 2eh
- 1++§ ((1+0)* +7%) =1 —pd —pe(8” +77)
1—2¢
= (2—p)ed?+(2e+1—p)d+(2— 2 .
(2-p)ed® + Qe+ 1-p)i+ 2= pler’ + 7T
If w is the function defined on (—1,0] by
1-2
w(:v):(2—p)ex2+(25+1—p)g;+(2_p)67_2+7_21+x€’

this function = +— w(x) has a positive second derivative and since ¢ < B L the first derivative is negative

2
n (—1,0]. Hence this is a decreasing function and we obtain that for any = € (—1,0], w(z) > w(0). Now
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@(0) = 72(1 — pe) > 0. Thus m = o(8) = w(d) > 0. Consequently, o is nonnegative on (—1, (7%, ¢,p)). Finally,

2
1 /p—1\77% 1
t<19(6,p)=\/§ (ng ) p+§—1<T(72,€,p),

where we used (26) for the last inequality. This implies that o(¢) > 0 also in the case ¢t > —1.
Second case: Let t € R and 72 > 0 such that (£ + 72)%/2 > 9(e,p). We have to show that (t,72,p) >
2Kp(t? + 72)'/2. First observe that

observe that

Ut 73 = 2Kp (B + )P = (L2 -2k (224 1)
> ((1+t)2+7'2)p/2—1—p(2K+1) (2 _,_7_2)1/2. (29)
Now for any ¢t € R, (1 +t)? > (t?/2) — 2, thus for t*> + 72 > 4
12 p/2 42 4 72 2 p/2
((1+f)2+72)p/22<5+72_2> :< o +%—2> : (30)

We define the function g on [2, +00) by

2 p/2
o(z) = <x+7—2> — zP/2,

This function tends to zero when z goes to infinity. If 72 > 4, then immediately o(x) > 0. If not, ¢ is non
decreasing and o(z) > o(2) > —2P/2. In any case, for x > 2, o(z) + 2P/2 > 0. With & = (t* + 72)/2 > 2, from (30)
we obtain that

2 2\ P/2
(1462 + 72" > (t J;T ) — ov/?

and therefore from (29) if 2 + 72 > 4

btp) —2Kp (P4 ) 2 s (P ) 2 1 pK ) (4 1)

= h((*+7H)?).
Since, we chose € € (0, p%l) such that ¥(e, K) > a(K,p) and it holds that h > 0 on (K, p), 00), it follows that

h((t? + 72)Y/2) > 0 and hence 9(t, 72, p) > 2pK (t* + 72)1/2. This completes the proof. O
Even if we can not compute «(K,p) explicitely, one can take

a(K,p) = (42K +2) + 1)1

And thus 9(e,p) > o(K, p) if
p—1
< 5
2 (a(K,p) +1)77

The right-hand side is a decreasing function w.r.t. p € (1,2) and w.r.t. K > 0. Hence when p is close to one and

(31)

K is large, ¢ is be very small.
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