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Introduction

The aim of [START_REF] Kruse | BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF] was to establish existence and uniqueness of solutions to BSDE in a general filtration that supports a Brownian motion W and an independent Poisson random measure π. We considered the following multidimensional BSDE:

Y t = ξ + T t f (s, Y s , Z s , ψ s )ds - T t U ψ s (u) π(du, ds) - T t Z s dW s - T t dM s . (1) 
Let us recall briefly the setting. We consider a filtered probability space (Ω, F, P, F = (F t ) t≥0 ). The filtration is assumed to be complete and right continuous. We also assumed quasi-left continuity of the filtration. Nevertheless as mentioned in the introduction of [START_REF] Bouchard | A unified approach to a priori estimates for supersolutions of BSDEs in general filtrations[END_REF] (see also Section 2.2 in [START_REF] Popier | Limit behaviour of bsde with jumps and with singular terminal condition[END_REF]), this condition is unnecessary. The generator f satisfies Conditions (H ex ) 1 in [START_REF] Kruse | BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF], that is, f is Lipschitz continuous w.r.t. z and ψ and monotone w.r.t. y. On ξ and f 0 t = f (t, 0, 0, 0), we keep the integrability condition: for some p > 1

E |ξ| p + T 0 |f (t, 0, 0, 0)| p dt < +∞. (2) 
Then the main results in [START_REF] Kruse | BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF] can be summarized as follows. Under Assumptions (H ex ) and ( 2), there exists a unique solution (Y, Z, ψ, M ) in E p (0, T ) to the BSDE [START_REF] Bouchard | A unified approach to a priori estimates for supersolutions of BSDEs in general filtrations[END_REF] meaning that

E sup t∈[0,T ] |Y t | p + T 0 |Z t | 2 dt p/2 + T 0 U |ψ s (u)| 2 µ(du)ds p/2 + ([M ] T ) p/2 < +∞.
The comparison principle holds for this BSDE. If p ≥ 2, our results are true. But for 1 < p < 2, as written in [START_REF] Kruse | BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF] the main difference is that for p < 2 the compensator of a martingale does not control the predictable projection (see [START_REF] Lenglart | Présentation unifiée de certaines inégalités de la théorie des martingales[END_REF] for a counterexample). In the proof of Proposition 3 in [START_REF] Kruse | BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF], Equality (31) does not hold in general. A simple counterexample is Y t = N t -(T -t), Z t = 0, ψ t (u) = 1 u=1 , µ(du) = δ 1 (du). Then

Y t = N t -(T -t) = N T -2 T t ds - T t U
ψ t (u) π(du, ds).

Here the generator is f (t, y, z, ψ) = -2ψ [START_REF] Bouchard | A unified approach to a priori estimates for supersolutions of BSDEs in general filtrations[END_REF]. In this case

E T 0 U |ψ s (u)| 2 |Y s-| 2 ∨ |Y s-+ ψ s (u)| 2 p/2-1 1 |Y s-|∨|Y s-+ψs(u)| =0 µ(du)ds = E T 0 |Y s-| 2 ∨ |Y s-+ 1| 2 p/2-1 1 |Y s-|∨|Y s-+1| =0 ds
where Y s-is the left limit of Y at time s, and

E T 0 U |ψ s (u)| 2 |Y s | p-2 1 |Ys| =0 µ(du)ds = E T 0 |Y s | p-2 1 |Ys| =0 ds.
For 1 < p < 2, the second integral is strictly greater than the first one. In other words, if the generator does not depend on ψ, our earlier proof in [START_REF] Kruse | BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF] is safe (see also [START_REF] Klimsiak | Reflected BSDEs on filtered probability spaces[END_REF] and [START_REF] Klimsiak | Dirichlet forms and semilinear elliptic equations with measure data[END_REF]). But the dependance due to the generator cannot be controlled by the first integral if p < 2. Thereby Proposition 3, Theorem 2, Propositions 5 and 6 and Theorem 3 in [START_REF] Kruse | BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF] are not proved when p < 2. Here we present proofs for these results under strengthened assumptions. A ψ-depending non trivial generator f can be found in [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] (see BSDE [START_REF] Delong | Backward stochastic differential equations with jumps and their actuarial and financial applications[END_REF] in this paper). This example is coming from an optimal stochastic control problem. It follows from the proof of Corollary 1 in [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] that Condition (H comp ) is satisfied (see Section 3.1 below) and thus (H ex ) and (C) are satisfied as well (see Lemma 4 and the proof of Theorem 2). Many other examples can be found for example in [START_REF] Delong | Backward stochastic differential equations with jumps and their actuarial and financial applications[END_REF], Part II (see among others BSDEs (9.30) or (11.13)).

1 Choice of a suitable function space for the Poisson integrand when p < 2

Recall briefly the notations of [START_REF] Kruse | BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF]. We consider a filtered probability space (Ω, F, P, F = (F t ) t≥0 ), the filtration being complete and right continuous. Without loss of generality we suppose that all semimartingales have right continuous paths with left limits and we assume that (Ω, F, P, F = (F t ) t≥0 ) supports a k-dimensional Brownian motion W and a Poisson random measure π with intensity µ(du)dt on the space U ⊂ R m \ {0}. The measure µ is σ-finite on U such that

U (1 ∧ |u| 2 )µ(du) < +∞.
The compensated Poisson random measure π(du, dt) = π(du, dt) -µ(du)dt is a martingale w.r.t. the filtration F. Moreover we introduce the following notations.

• G loc (µ) is the set of predictable functions ψ on Ω = Ω × [0, T ] × U such that for any t ≥ 0 a.s.

t 0 U (|ψ s (u)| 2 ∧ |ψ s (u)|)µ(du) < +∞.
• M loc is the set of càdlàg local martingales orthogonal to W and π. M is the subspace of M loc of martingales.

• D p (0, T ) is the space of all adapted càdlàg processes X such that E sup t∈[0,T ] |X t | p < +∞. For simplicity, we write X * = sup t∈[0,T ] |X t | and X β,p * = sup t∈[0,T ] e βt |X t | p .
• H p (0, T ) is the subspace of all predictable processes X such that

E T 0 |X t | 2 dt p/2
< +∞.

• M p (0, T ) is the subspace of M of all martingales such that E ([M ] T ) p/2 < +∞.

• L p π (0, T ) = L p π (Ω × (0, T ) × U ) is the set of processes ψ ∈ G loc (µ) such that E T 0 U |ψ s (u)| 2 π(du, ds) p/2
< +∞.

• L p µ = L p (U , µ; R d ) is the set of measurable functions ψ : U → R d such that ψ p L p µ = U |ψ(u)| p µ(du) < +∞. • E p (0, T ) = D p (0, T ) × H p (0, T ) × L p π (0, T ) × M p (0, T ).
Let ψ ∈ G loc (µ). Let us recall known results on the (local) martingale N given by

N t = t 0 U ψ s (u) π(du, ds), t ≥ 0. (3) 
It follows that the compensator is given by

[N ] t = t 0 U |ψ s (u)| 2 π(du, ds).
For t ≥ 0 let

N * t = sup r∈[0,t] r 0 U ψ s (u) π(du, ds) .

Now let us define the following norm on

ψ ∈ G loc (µ): if ν is the measure defined on U × [0, T ] by ν = µ ⊗ Leb, then ψ L p (L 2 ν )+L p (L p ν ) = inf ψ 1 +ψ 2 =ψ    E T 0 U |ψ 1 s (u)| 2 µ(du)ds p/2 1/p + E T 0 U |ψ 2 s (u)| p µ(du)ds 1/p .
And for p ∈ [1, 2) and for a measurable function φ defined on U , we put

φ L p µ +L 2 µ = inf φ 1 +φ 2 =φ φ 1 L p µ + φ 2 L 2 µ .
With this norm we can define the Banach space L p µ + L2 µ (for the definition of the sum of two Banach spaces, see for example [START_REF] Kreȋn | Interpolation of linear operators[END_REF]). By the same way we define L p ν + L 2 ν .

Lemma 1

• Burkholder-Davis-Gundy inequality: For all p ∈ [1, ∞) there exist two universal constants c p and C p (not depending on N ) such that for any N defined by (3) and for any t ≥ 0

c p E [N ] p/2 t ≤ E [(N * t ) p ] ≤ C p E [N ] p/2 t Proof. Let ψ 1 ∈ L p (L 2 ν ) and ψ 2 ∈ L p (L p ν ) such that ψ = ψ 1 + ψ 2
. By Jensen's inequality:

E T 0 ψ 1 s p L 2 µ ds = E T 0 U |ψ 1 s (u)| 2 µ(du) p/2 ds ≤ T 1-p 2 E T 0 U |ψ 1 s (u)| 2 µ(du)ds p/2 = T 1-p 2 ψ 1 p
Since these inequalities are true for any ε > 0, we deduce Estimate [START_REF] Kreȋn | Interpolation of linear operators[END_REF].

In particular (4) means that the martingale N is well-defined (see Chapter II in [START_REF] Jacod | Calcul stochastique et problèmes de martingales[END_REF]) provided we can control [N ] in L p/2 (Ω). And from [START_REF] Klimsiak | Dirichlet forms and semilinear elliptic equations with measure data[END_REF]

, P ⊗ Leb-a.s. on Ω × [0, T ], ψ t is in L p µ + L 2 µ if again we control [N ] in L p/2 (Ω). From Lemma 3 below, ψ t is also in L 1 µ + L 2
µ and this implies that for any b ∈ (0, +∞)

E T 0 U |ψ s (u)| 2 1 |ψs(u)|≤b + |ψ s (u)|1 |ψs(u)|>b µ(du)ds < +∞.
This last estimate can be also found in Proposition 3.68 of [START_REF] Jacod | Calcul stochastique et problèmes de martingales[END_REF] 3 in a more general setting.

To illustrate and motivate our purpose, let us consider a stable Lévy process X = (X t , 0 ≤ t ≤ T ). The Lévy measure is µ(du) = 1 |u| 1+α du where u ∈ U = R \ {0} and 0 < α < 2. Then by the Lévy-Khintchine decomposition:

X t = t 0 U u1 |u|<1 π(du, ds) + t 0 U u1 |u|≥1 π(du, ds) = t 0 U u π(du, ds) + t U u1 |u|≥1 µ(du) = t 0 U u π(du, ds). Now X T ∈ L p (Ω) if and only if p < α < 2. We take ξ = X T , Y t = X t , ψ t (u) = u and Y t = ξ - T t U
u π(du, ds).

For any t ∈ [0, T ], p < α, Y t is in L p (Ω) and ψ t ∈ L 2 µ . Nevertheless for any δ > 0, φ 1 t = ψ t 1 |ψt|≤δ belongs to L 2 µ and φ 2 t = ψ t 1 |ψt|≥δ to L p µ . Thus ψ t is in L p µ + L 2 µ .
And it is easy to check that ψ t also belongs to

L 1 µ + L 2 µ .
Conclusion and assumption on f : From now on, we assume that p ∈ (1, 2). Then we have to choose ψ in a suitable integrability space, namely L 1 µ + L 2 µ . From the next Lemma 3, this space contains all spaces L p µ + L 2 µ . Hence in the rest of the paper, our generator f satisfies Condition (H ex ):

(H1) For every t ∈ [0, T ], z ∈ R d×k and every ψ ∈ L 1 µ + L 2 µ the mapping y ∈ R d → f (t, y, z, ψ) is continuous. Moreover there exists a constant α such that

f (t, y, z, ψ) -f (t, y ′ , z, ψ), y -y ′ ≤ α|y -y ′ | 2 .
(H2) For every r > 0 the mapping (ω, t) → sup |y|≤r |f (t, y, 0, 0) -f (t, 0, 0, 0)| belongs to L 1 (Ω × [0, T ], P ⊗ m).

(H3) There exists a constant K such that for any t and y, for any z, z ′ in R d×k and ψ, ψ

′ in L 1 µ + L 2 µ |f (t, y, z, ψ) -f (t, y, z ′ , ψ ′ )| ≤ K |z -z ′ | + ψ -ψ ′ L 1 µ +L 2 µ .
Note that (H1) and (H2) coincide with assumptions (H1) and (H2) in [START_REF] Kruse | BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF], whereas (H3) above replaces the older condition (H3) in [START_REF] Kruse | BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF].

Remark 1 Note that if p ≥ 2, since L p µ + L 2 µ ⊂ L 2
µ , the generator f can be defined on the function set L 2 µ .

The next result will be used several times. Although it is quite simple we did not find a reference. The proof is postponed to the end of this paper. 2 Complete proof for p < 2 of Proposition 3 and Theorem 2

Lemma 3 Let p ∈ [1, ∞) and φ : U → R d be a function in L p µ + L 2 µ . Then φ L p µ +L 2 µ < +∞ if
We say that the Condition (C) holds if P-a.s.

y, f (t, y, z, ψ) ≤ f t + α|y| + K|z| + K ψ L 1 µ +L 2 µ ,
with K ≥ 0 and f t is a non-negative progressively measurable process. Note that compared to [START_REF] Kruse | BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF], we change the norm on ψ. Recall that for y ∈ R d \ {0} we write y = 1 |y| y and 0 = 0. Let us denote F = T 0 f r dr.

Proposition 3 Let the Condition (C) hold and let be (Y, Z, ψ, M ) ∈ E p (0, T ) be a solution of BSDE (1) and assume moreover that F p is integrable. Then there exists a constant C depending on p, K and T such that

E sup t∈[0,T ] |Y t | p + T 0 |Z t | 2 dt p/2 + ([M ] T ) p/2 + T 0 U |ψ s (u)| 2 π(du, ds) p/2 ≤ CE |ξ| p + T 0 f r dr p .
A comment before the proof. If ψ ∈ L p π , then Inequality (5) and Lemma 2 imply that P-a.s.

ψ ∈ L p ν + L 2 ν and from Lemma 3, ψ ∈ L 1 ν + L 2 ν .
Hence the integrand ψ is in the required function space (see Condition (H3)).

Proof.

Step 1: We prove first that there exist two constants β (depending on K, α and p) and κ p,β such that

E T 0 e βs |Y s | p-2 |Z s | 2 1 Ys =0 ds + E T 0 e βs |Y s-| p-2 1 Y s-=0 d[M ] c s +E T 0 U e βs |ψ s (u)| 2 |Y s-| 2 ∨ |Y s-+ ψ s (u)| 2 p/2-1 1 |Y s-|∨|Y s-+ψs(u)| =0 π(du, ds) +E 0<s≤T e βs |Y s-| 2 ∨ |Y s-+ ∆M s | 2 p/2-1 1 |Y s-|∨|Y s-+∆Ms| =0 |∆M s | 2 +E T 0 e βs |Y s | p ds ≤ κ p,β E(X). (8) 
where

X = e βT |ξ| p + p T 0 e βs |Y s | p-1 f s ds.
In the following let c(p) = p(p -1)/2. For some constant β ∈ R, we apply Itô's formula (see Corollary 1 in [START_REF] Kruse | BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF]) for τ ∈ T T to e βt |Y t | p to obtain

e β(t∧τ ) |Y t∧τ | p + c(p) τ t∧τ e βs |Y s | p-2 |Z s | 2 1 Ys =0 ds + c(p) τ t∧τ e βs |Y s-| p-2 1 Y s-=0 d[M ] c s ≤ e βτ |Y τ | p + p τ t∧τ e βs |Y s-| p-1 Ys-f (s, Y s , Z s )ds -β τ t∧τ e βs |Y s | p ds -p τ t∧τ e βs |Y s-| p-1 Ys-Z s dW s -p τ t∧τ e βs |Y s-| p-1 Ys-dM s -p τ t∧τ e βs |Y s-| p-1 Ys- U ψ s (u) π(du, ds) - τ t∧τ e βs U |Y s-+ ψ s (u)| p -|Y s-| p -p|Y s-| p-1 Ys-ψ s (u) π(du, ds) - t∧τ <s≤τ e βs |Y s-+ ∆M s | p -|Y s-| p -p|Y s-| p-1 Ys-∆M s .
With Condition (C) this becomes

e β(t∧τ ) |Y t∧τ | p + c(p) τ t∧τ e βs |Y s | p-2 |Z s | 2 1 Ys =0 ds + c(p) τ t∧τ e βs |Y s-| p-2 1 Y s-=0 d[M ] c s ≤ e βτ |Y τ | p + τ t∧τ e βs p|Y s | p-1 f s + (pα -β)|Y s | p ds + pK τ t∧τ e βs |Y s | p-1 |Z s |ds +pK τ t∧τ e βs |Y s-| p-1 ψ s L 1 µ +L 2 µ ds -p τ t∧τ e βs |Y s | p-1 Ys Z s dW s -p τ t∧τ e βs |Y s-| p-1 Ys-dM s -p τ t∧τ e βs |Y s-| p-1 Ys- U ψ s (u) π(du, ds) - τ t∧τ e βs U |Y s-+ ψ s (u)| p -|Y s-| p -p|Y s-| p-1 Ys-ψ s (u) π(du, ds) - t∧τ <s≤τ e βs |Y s-+ ∆M s | p -|Y s-| p -p|Y s-| p-1 Ys-∆M s .
Moreover by Young's inequality

pKe βs |Y s | p-1 |Z s | ≤ pK 2 p -1 e βs |Y s | p + c(p) 2 e βs |Y s | p-2 |Z s | 2 1 Ys =0 .
Hence we obtain that

e β(t∧τ ) |Y t∧τ | p + c(p) 2 τ t∧τ e βs |Y s | p-2 |Z s | 2 1 Ys =0 ds + c(p) τ t∧τ e βs |Y s-| p-2 1 Y s-=0 d[M ] c s ≤ e βτ |Y τ | p + τ t∧τ e βs p|Y s | p-1 f s + (pα + pK 2 p -1 -β)|Y s | p ds +pK τ t∧τ e βs |Y s-| p-1 ψ s L 1 µ +L 2 µ ds -p τ t∧τ e βs |Y s | p-1 Ys Z s dW s -p τ t∧τ e βs |Y s-| p-1 Ys-dM s -p τ t∧τ e βs |Y s-| p-1 Ys- U ψ s (u) π(du, ds) - τ t∧τ e βs U |Y s-+ ψ s (u)| p -|Y s-| p -p|Y s-| p-1 Ys-ψ s (u) π(du, ds) - t∧τ <s≤τ e βs |Y s-+ ∆M s | p -|Y s-| p -p|Y s-| p-1 Ys-∆M s . (9) 
In particular we have:

0 ≤ τ t∧τ e βs U |Y s-+ ψ s (u)| p -|Y s-| p -p|Y s-| p-1 Ys-ψ s (u) π(du, ds) ≤ e βτ |Y τ | p + τ t∧τ e βs p|Y s | p-1 f s + (pα + pK 2 p -1 -β)|Y s | p ds +pK τ t∧τ e βs |Y s-| p-1 ψ s L 1 µ +L 2 µ ds -p τ t∧τ e βs |Y s | p-1 Ys Z s dW s -p τ t∧τ e βs |Y s-| p-1 Ys-dM s -p τ t∧τ e βs |Y s-| p-1 Ys- U ψ s (u) π(du, ds), (10) 
where the first inequality is due to convexity. Now since (Y, ψ) ∈ D p × L p π , Inequalities ( 5) and ( 7) and Young's inequality give:

pKE T 0 e βs |Y s-| p-1 ψ s L 1 µ +L 2 µ ds ≤ pKE sup s∈[0,T ] e β(p-1)s/p |Y s-| p-1 T 0 e βs/p ψ s L 1 µ +L 2 µ ds ≤ K(p -1)E sup s∈[0,T ] e βs |Y s | p + KE T 0 e βs/p ψ s L 1 µ +L 2 µ ds p < +∞ and since F p is integrable E T 0 e βs |Y s | p-1 f s ds ≤ E sup s∈[0,T ] e βs |Y s | p + E T 0 e βs/p f s ds p < +∞.
Using a fundamental sequence of stopping times τ k for the local martingale

. 0 e βs |Y s-| p-1 Ys-Z s dW s + dM s + U ψ s (u) π(du, ds)
and taking τ = τ k and the expectation in [START_REF] Lenglart | Présentation unifiée de certaines inégalités de la théorie des martingales[END_REF], this local martingale term will disappear in [START_REF] Lenglart | Présentation unifiée de certaines inégalités de la théorie des martingales[END_REF]. Then since Y ∈ D p (0, T ), by monotone convergence theorem we obtain when k goes to ∞

0 ≤ E T 0 e βs U |Y s-+ ψ s (u)| p -|Y s-| p -p|Y s-| p-1 Ys-ψ s (u) π(du, ds) < +∞. (11) 
From Lemma 5 we choose ε > 0 depending on p and K (see (31) for a possible choice of ε) and we fix δ = ϑ(ε, p)|Y s-| if Y s-= 0 (and any δ > 0 if Y s-= 0) where ϑ is defined in Lemma 5. From the norm definition on L 1 µ + L 2 µ and Young's inequality it follows that

pK τ t∧τ e βs |Y s-| p-1 ψ s L 1 µ +L 2 µ ds ≤ pK τ t∧τ e βs |Y s-| p-1 ψ s 1 |ψs|<δ L 2 µ + ψ s 1 |ψs|≥δ L 1 µ ds ≤ pK 2 2ε τ t∧τ e βs |Y s-| p ds + pε 2 τ t∧τ e βs |Y s-| p-2 1 Y s-=0 ψ s 1 |ψs|<δ 2 L 2 µ ds +pK τ t∧τ e βs |Y s-| p-1 ψ s 1 |ψs|≥δ L 1 µ ds. From Lemma 9 in [8] τ t∧τ U e βs |Y s-+ ψ s (u)| p -|Y s-| p -p|Y s-| p-1 Ys-ψ s (u) π(du, ds) ≥ c(p) τ t∧τ U e βs |ψ s (u)| 2 |Y s-| 2 ∨ |Y s-+ ψ s (u)| 2 p/2-1 1 |Y s-|∨|Y s-+ψs(u)| =0 π(du, ds).
and

t∧τ <s≤τ e βs |Y s-+ ∆M s | p -|Y s-| p -p|Y s-| p-1 Ys-∆M s ≥ c(p) t∧τ <s≤τ e βs |∆M s | 2 |Y s-| 2 ∨ |Y s-+ ∆M s | 2 p/2-1 1 |Y s-|∨|Y s-+∆Ms| =0
Therefore from Inequality (9) we deduce the following inequality for any ε ∈ (0, +∞)

e β(t∧τ ) |Y t∧τ | p + c(p) 2 τ t∧τ e βs |Y s | p-2 |Z s | 2 1 Ys =0 ds + c(p) τ t∧τ e βs |Y s-| p-2 1 Y s-=0 d[M ] c s + c(p) 2 τ t∧τ U e βs |ψ s (u)| 2 |Y s-| 2 ∨ |Y s-+ ψ s (u)| 2 p/2-1 1 |Y s-|∨|Y s-+ψs(u)| =0 π(du, ds) +c(p) t∧τ <s≤τ e βs |Y s-| 2 ∨ |Y s-+ ∆M s | 2 p/2-1 1 |Y s-|∨|Y s-+∆Ms| =0 |∆M s | 2 ≤ e βτ |Y τ | p + p τ t∧τ e βs |Y s | p-1 f s ds + τ t∧τ e βs pα -β + pK 2 p -1 + pK 2 2ε |Y s | p ds -p τ t∧τ e βs |Y s-| p-1 Ys-Z s dW s + dM s + U ψ s (u) π(du, ds) - 1 2 τ t∧τ e βs U |Y s-+ ψ s (u)| p -|Y s-| p -p|Y s-| p-1 Ys-ψ s (u) π(du, ds) - 1 2 τ t∧τ e βs U |Y s-+ ψ s (u)| p -|Y s-| p -p|Y s-| p-1 Ys-ψ s (u) µ(du)ds + pε 2 τ t∧τ e βs |Y s-| p-2 1 Y s-=0 ψ s 1 |ψs|<δ 2 L 2 µ ds +pK τ t∧τ e βs |Y s-| p-1 ψ s 1 |ψs|≥δ L 1 µ ds. ( 12 
)
Let us explain how to deal with this inequality.

• For ε > 0 fixed by Lemma 5, we can take β large enough such that

β > pα + pK 2 p -1 + pK 2 2ε
and the term and taking τ = τ k and the expectation in [START_REF] Popier | Limit behaviour of bsde with jumps and with singular terminal condition[END_REF], this local martingale term will disappear.

• From Lemma 3.67 in [START_REF] Jacod | Calcul stochastique et problèmes de martingales[END_REF] and [START_REF] Marinelli | On maximal inequalities for purely discontinuous martingales in infinite dimensions[END_REF] we deduce

0 ≤ E T 0 e βs U |Y s-+ ψ s (u)| p -|Y s-| p -p|Y s-| p-1 Ys-ψ s (u) µ(du)ds < +∞.
This implies P-a.s. that

- 1 2 τ 0 e βs U |Y s-+ ψ s (u)| p -|Y s-| p -p|Y s-| p-1 Ys-ψ s (u) µ(du)ds + pε 2 τ 0 e βs |Y s-| p-2 1 Y s-=0 U |ψ s (u)| 2 1 |ψs(u)|<δ µ(du)ds +pK τ 0 e βs |Y s-| p-1 U |ψ s (u)|1 |ψs(u)|≥δ µ(du)ds = 1 2 τ 0 e βs U [Γ(Y s-, ψ s (u), K, ε, p) -Ψ(Y s-, ψ s (u), p)] µ(du)ds, (13) 
with

Ψ(a, b, p) = |a + b| p -|a| p -p|a| p-2 a, b 1 a =0 (14) Γ(a, b, K, ε, p) = 2Kp|a| p-1 |b|1 |b|≥ϑ(ε,p)|a| + pε|a| p-2 |b| 2 1 |b|<ϑ(ε,p)|a| . ( 15 
)
Recall that we have chosen δ = ϑ(ε, p)|Y s-| if Y s-= 0 (and any δ > 0 if Y s-= 0). From Lemma 5, for any

(ω, s, u) ∈ Ω × [0, T ] × U , Γ(Y s-, ψ s (u), K, ε, p) -Ψ(Y s-, ψ s (u), p) ≤ 0.
Hence the integral (13) is non positive: P-a.s.

τ 0 e βs U [Γ(Y s-, ψ s (u), K, ε, p) -Ψ(Y s-, ψ s (u), p)] µ(du)ds ≤ 0.
• Now in [START_REF] Popier | Limit behaviour of bsde with jumps and with singular terminal condition[END_REF] the only uncontrolled remaining term on the right-hand side will be:

- 1 2 τ t∧τ e βs U |Y s-+ ψ s (u)| p -|Y s-| p -p|Y s-| p-1 Ys-ψ s (u) π(du, ds)
which is a local martingale. Thus it can be cancelled using another fundamental sequence τk .

Thereby [START_REF] Popier | Limit behaviour of bsde with jumps and with singular terminal condition[END_REF] gives for

τ = τ k ∧ τ k E τ 0 e βs β -pα - pK 2 p -1 - pK 2 2ε |Y s | p ds + c(p) 2 E τ 0 e βs |Y s | p-2 |Z s | 2 1 Ys =0 ds + c(p)E τ 0 e βs |Y s-| p-2 1 Y s-=0 d[M ] c s + c(p) 2 E τ 0 U e βs |ψ s (u)| 2 |Y s-| 2 ∨ |Y s-+ ψ s (u)| 2 p/2-1 1 |Y s-|∨|Y s-+ψs(u)| =0 π(du, ds) +c(p)E 0<s≤τ e βs |Y s-| 2 ∨ |Y s-+ ∆M s | 2 p/2-1 1 |Y s-|∨|Y s-+∆Ms| =0 |∆M s | 2 ≤ E e βτ |Y τ | p + pE τ 0 e βs |Y s | p-1 f s ds. (16) 
Recall that X is the quantity

X = e βT |ξ| p + p T 0 e βs |Y s | p-1 f s ds.
Then we can pass to the limit on k in (16), and we obtain the same estimate for τ = T and E(X) on the right-hand side, that is (8).

Step 2: In this part of the proof we prove that for some constant κ p (depending also on β and K):

E sup t∈[0,T ] e βt |Y t | p = E Y β,p * ≤ κ p E X + T 0 e βs |Y s-| p-1 ψ s L 1 µ +L 2 µ ds .
From [START_REF] Lenglart | Présentation unifiée de certaines inégalités de la théorie des martingales[END_REF] with t = 0 and τ = T , and from the choice of β we have:

0 ≤ T 0 e βs U |Y s-+ ψ s (u)| p -|Y s-| p -p|Y s-| p-1 Ys-ψ s (u) π(du, ds) ≤ X + pK T 0 e βs |Y s-| p-1 ψ s L 1 µ +L 2 µ ds + p sup t∈[0,T ] (|Γ t | + |Θ t | + |Ξ t |) ,
where

Γ t = t 0 e βs |Y s | p-1 Ys Z s dW s , Θ t = t 0 e βs |Y s | p-1 Ys dM s , Ξ t = t 0 e βs |Y s | p-1 Ys U ψ s (u) π(du, ds).
From Theorem 3.15 in [START_REF] Jacod | Calcul stochastique et problèmes de martingales[END_REF], taking the expectation in the previous inequality we obtain:

0 ≤ E T 0 e βs U |Y s-+ ψ s (u)| p -|Y s-| p -p|Y s-| p-1 Ys-ψ s (u) µ(du)ds ≤ E(X) + pKE T 0 e βs |Y s-| p-1 ψ s L 1 µ +L 2 µ ds + pE sup t∈[0,T ] (|Γ t | + |Θ t | + |Ξ t |) . (17) 
Coming back to [START_REF] Popier | Limit behaviour of bsde with jumps and with singular terminal condition[END_REF], the last three terms on the right-hand side are non positive (by the same arguments as in Step 1). From the convexity of |x| p , the last local martingale can be controlled by (17). Hence from the Burkholder-Davis-Gundy inequality we obtain

E Y p,β * ≤ E (X) + pKE T 0 e βs |Y s-| p-1 ψ s L 1 µ +L 2 µ ds + k p E [Γ] 1/2 T + [Θ] 1/2 T + [Ξ]
1/2 T .

The bracket [Γ]

1/2

T can be handled as in [START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF]:

k p E [Γ] 1/2 T ≤ 1 6 E Y p,β * + 3k 2 p 2 E T 0 e βs |Y s | p-2 |Z s | 2 1 Ys =0 ds .
For the other terms since p > 1 we have

k p E [Θ] 1/2 T ≤ k p E T 0 e 2βs |Y s-| 2 ∨ |Y s-+ ∆M s | 2 p-1 1 |Y s-|∨|Y s-+∆Ms| =0 d[M ] s 1/2 ≤ k p E   sup s∈[0,T ] e βs |Y s-| 2 ∨ |Y s-+ ∆M s | 2 p/2 1/2 T 0 e βs |Y s-| 2 ∨ |Y s-+ ∆M s | 2 p/2-1 1 |Y s-|∨|Y s-+∆Ms| =0 d[M ] s 1/2 ≤ 1 6 E Y p,β * + 3k 2 p 2 E T 0 e βs |Y s-| p-2 1 |Y s-| =0 d[M ] c s + 0<s≤T e βs |Y s-| 2 ∨ |Y s-+ ∆M s | 2 p/2-1 1 |Y s-|∨|Y s-+∆Ms| =0 |∆M s | 2   ,
and by the same argument

k p E [Ξ] 1/2 T ≤ 1 6 E Y p,β * + 3k 2 p 2 E T 0 e βs U |ψ s (u)| 2 |Y s-| 2 ∨ |Y s-+ ψ s (u)| 2 p/2-1 1 |Y s-|∨|Y s-+ψs(u)| =0 π(du, ds).
Using (8), we deduce that there exists a constant κ p depending only on p such that

E sup t∈[0,T ] e βt |Y t | p ≤ κ p E X + T 0 e βs |Y s-| p-1 ψ s L 1 µ +L 2 µ ds .
Step 3: Let us derive now a priori estimates for the martingale part of the BSDE. We use Corollary 1 in [START_REF] Kruse | BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF]:

E T 0 e 2βs/p |Z s | 2 ds p/2 = E T 0 e 2βs/p 1 Ys =0 |Z s | 2 ds p/2 = E T 0 e βs/p |Y s | 2-p e βs |Y s | p-2 1 Ys =0 |Z s | 2 ds p/2 ≤ E   sup t∈[0,T ] e βt/p |Y t | p(2-p)/2 T 0 e βs |Y s | p-2 1 Ys =0 |Z s | 2 ds p/2   ≤ E sup t∈[0,T ] e βt |Y t | p (2-p)/2 E T 0 e βs |Y s | p-2 1 Ys =0 |Z s | 2 ds p/2 ≤ 2 -p 2 E sup t∈[0,T ] e βt |Y t | p + p 2 E T 0 e βs |Y s | p-2 1 Ys =0 |Z s | 2 ds ( 18 
)
where we have used Hölder's and Young's inequality with 2-p 2 + p 2 = 1. With Inequality (16) we deduce:

E T 0 e 2βs/p |Z s | 2 ds p/2 ≤ κ p E X + T 0 e βs |Y s-| p-1 ψ s L 1 µ +L 2 µ ds .
The same argument can be used to control [M ] c . For the pure-jump part of [M ] we have using the function u ε defined in the proof of Lemma 7 in [START_REF] Kruse | BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF]:

E   0<s≤T e 2βs/p |∆M s | 2   p/2 = E   0<s≤T e 2βs/p (u ε (|Y s-| ∨ |Y s-+ ∆M s |)) 2-p (u ε (|Y s-| ∨ |Y s-+ ∆M s |)) p-2 |∆M s | 2   p/2 ≤ E    e β * /p u ε (Y * ) p(2-p)/2   0<s≤T (u ε (|Y s-| ∨ |Y s-+ ∆M s |)) p-2 |∆M s | 2   p/2    ≤ E e β * (u ε (Y * )) p (2-p)/2 ×    E   0<s≤T (u ε (|Y s-| ∨ |Y s-+ ∆M s |)) p-2 |∆M s | 2      p/2 ≤ 2 -p 2 E e β * (u ε (Y * )) p + p 2 E   0<s≤T (u ε (|Y s-| ∨ |Y s-+ ∆M s |)) p-2 |∆M s | 2   .
Let ε go to zero. We use a convergence result, which is a direct consequence of the proof of Lemma 9 in [START_REF] Kruse | BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF] to obtain that

E   0<s≤T e 2βs/p |∆M s | 2   p/2 ≤ 2 -p 2 E e β * |Y * | p + p 2 E   0≤s<T e βs (|Y s-| ∨ |Y s-+ ∆M s |) p-2 1 |Y s-|∨|Y s-+∆Ms| =0 |∆M s | 2   ≤ κ p E X + T 0 e βs |Y s-| p-1 ψ s L 1 µ +L 2 µ ds .
The same argument shows that

E T 0 e 2βs/p U |ψ s (u)| 2 π(du, ds) p/2 ≤ κ p E X + T 0 e βs |Y s-| p-1 ψ s L 1 µ +L 2 µ ds .
Step 4: Now we prove the wanted estimate. Recall that we have found a constant κp such that Using Inequality [START_REF] Klimsiak | Dirichlet forms and semilinear elliptic equations with measure data[END_REF] we know that there exists some constant K p,T such that

E Y β,p * + T 0 e 2βs/p
E T 0 e βs ψ s p L 1 µ +L 2 µ ds ≤ K p,T E T 0 e 2βs/p U |ψ s (u)| 2 π(du, ds) p/2 .
Young's inequality leads to: with

κp E T 0 e βs |Y s-| p-1 ψ s L 1 µ +L 2 µ ds ≤ (2K p,T ) 1 p-1 (p -
C p = κp + κ p,β (2K p,T ) 1 p-1 (p -1)(κ p ) p p-1 p p p-1 .
The key point is that C p depends on p, T and the regularity constants of the generator f . Then Theorem 2 Under Assumptions (H ex ) and (2), there exists a unique solution (Y, Z, ψ, M ) in E p (0, T ) to the BSDE (1). Moreover for some constant

C = C p,K,T E sup t∈[0,T ] |Y t | p + T 0 |Z t | 2 dt p/2 + T 0 U |ψ s (u)| 2 π(du, ds) p/2 + ([M ] T ) p/2 ≤ CE |ξ| p + T 0 |f (r, 0, 0, 0)|dr p .
Proof. We can follow the proof of Theorem 2 in [START_REF] Kruse | BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF]. If we define

ξ n = q n (ξ), f n (t, y, z, ψ) = f (t, y, z, ψ) -f (t, 0, 0, 0) + q n (f (t, 0, 0, 0)),
with q n (x) = xn/(|x| ∨ n), thanks to Theorem 1 in [START_REF] Kruse | BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF], we have a unique solution (Y n , Z n , ψ n , M n ) in E 2 , and thus in E p for any p > 1. From (H ex ) it can be proved as in [START_REF] Kruse | BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF] that Condition (C) holds:

(Y m t -Y n t ) |Y m t -Y n t | 1 Y m t -Y n t =0 , f m (t, Y m t , Z m t , ψ m t ) -f n (t, Y n t , Z n t , ψ n t ) ≤ |q m (f (t, 0, 0, 0)) -q n (f (t, 0, 0, 0))| + K|Z m t -Z n t | + K ψ m t -ψ n t L 1 µ +L 2 µ .
Proposition 3 shows that

E sup t∈[0,T ] |Y m t -Y n t | p + T 0 |Z m s -Z n s | 2 ds p/2 + ([M m -M n ] T ) p/2 + T 0 U |ψ m s (u) -ψ n s (u)| 2 π(du, ds) p/2 ≤ CE |ξ m -ξ n | p + T 0 |q m (f (r, 0, 0, 0)) -q n (f (r, 0, 0, 0))|dr p .
Thus (Y n , Z n , ψ n , M n ) is a Cauchy sequence in E p (0, T ) and the conclusion follows.

Again the Bichteler-Jacod inequality (5) implies that the sequence (ψ n ) is also a Cauchy sequence in L 1 µ + L 2 µ (or in L p µ + L 2 µ ) and the limit ψ belongs to these Banach spaces.

3 Comparison principle and extension to random terminal time (Theorem 3)

Comparison principle

The comparison principle (Proposition 4 in [START_REF] Kruse | BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF]) holds true under Condition (H comp ), which reinforces Assumption (H3). Now for p ∈ (1, 2) we assume that (H3') f is Lipschitz continuous w.r.t. z with constant K and for each (y, z, ψ, φ

) ∈ R × R k × (L 1 µ + L 2 µ ) 2
, there exists a predictable process κ = κ y,z,ψ,φ : Ω × [0, T ] × U → R such that:

f (t, y, z, ψ) -f (t, y, z, φ) ≤ U (ψ(u) -φ(u))κ y,z,ψ,φ t (u)µ(du)
with P ⊗ Leb ⊗ µ-a.e. for any (y, z, ψ, ψ ′ ),

• -1 ≤ κ y,z,ψ,φ t (u) • |κ y,z,ψ,φ t (u)| ≤ ℓ(u), where ℓ belongs to L ∞ µ ∩ L 2 µ .
We say that (H comp ) is satisfied if (H1)-(H2) and (H3') hold.

Lemma 4 Assumption (H comp ) implies Condition (H ex ), that is f is Lipschitz continuous w.r.t. ψ.

Proof. Indeed for p < 2, we have to take ψ and φ in [START_REF] Kreȋn | Interpolation of linear operators[END_REF], Chapter 3, Theorem 3.1), then for ψ and φ in L 1 µ + L 2 µ , we obtain:

L 1 µ + L 2 µ . Thus if ℓ belongs to L ∞ µ ∩ L 2 µ , the dual space of L 1 µ + L 2 µ (see
|f (t, y, z, ψ) -f (t, y, z, φ)| ≤ ℓ L ∞ µ ∩L 2 µ ψ -φ L 1 µ +L 2 µ .
Then under (H comp ), the proof of Proposition 4 in [START_REF] Kruse | BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF] remains exactly the same.

Random terminal time

Now we assume that τ is a stopping time for the filtration F, which need not be bounded (as in Section 6 of [START_REF] Kruse | BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF]). We want to solve the following BSDE: P-a.s., for all 0 ≤ t ≤ T ,

Y t∧τ = Y T ∧τ + T ∧τ t∧τ f (s, Y s , Z s , ψ s )ds - T ∧τ t∧τ Z s dW s - T ∧τ t∧τ U ψ s (u) π(du, ds) - T ∧τ t∧τ dM s (19) 
with the condition that P-a.s. on the set {t ≥ τ }, Y t = ξ and Z t = ψ t = M t = 0. Note that this equation was denoted (36) in [START_REF] Kruse | BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF].

On the generator, Assumptions (H ex ) still hold with a monotonicity constant α and a Lipschitz constant K, but the growth condition (H2) is replaced by:

∀r > 0, ∀n ∈ N, sup |y|≤r (|f (t, y, 0, 0) -f (t, 0, 0, 0)|) ∈ L 1 (Ω × (0, n)).
(H2") and the condition (2) is replaced by

E e pρτ |ξ| p + τ 0 e pρt |f (t, 0, 0, 0)| p dt < +∞ (20) 
(denoted (H5') in [START_REF] Kruse | BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF], Section 6). We suppose that the constant ρ in (20) satisfies

ρ > ν = α + K 2 p -1 + K 2 2ε ,
where the constant 0 < ε < p-1 2 is given by Lemma 5 and depends only on K and p (see (31) for a value of ε). As in [START_REF] Kruse | BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF] we suppose that Condition (H6) holds, that is ξ is F τ -measurable and

E τ 0 e pρt |f (t, ξ t , η t , γ t )| p dt < +∞,
where ξ t = E(ξ|F t ) and (η, γ, N ) are given by the martingale representation:

ξ = E(ξ) + ∞ 0 η s dW s + ∞ 0 U γ s (u) π(du, ds) + N τ with E ∞ 0 |η s | 2 ds + ∞ 0 U |γ s (u)| 2 π(du, ds) + [N ] τ p/2 < +∞.
Proposition 5 Under conditions (H1), (H2"), (H3), (20) and (H6), the BSDE (19) has at most one solution satisfying

E e pρ(t∧τ ) |Y t∧τ | p + T ∧τ 0 e pρs |Y s | p ds + T ∧τ 0 e pρs |Y s | p-2 |Z s | 2 1 Ys =0 ds +E T ∧τ 0 e pρs |Y s-| p-2 1 Y s-=0 d[M ] c s +E T ∧τ t∧τ U e pρs |Y s-| 2 ∨ |Y s-+ ψ s (u)| 2 p/2-1 1 |Y s-|∨|Y s-+ψs(u)| =0 |ψ s (u)| 2 π(du, ds) +E   0<s≤T ∧τ e pρs |∆M s | 2 |Y s-| 2 ∨ |Y s-+ ∆M s | 2 p/2-1 1 |Y s-|∨|Y s-+∆Ms| =0   < +∞. (21) 
Proof. From the assumption on f , Young's inequality and Lemma 5, we choose ε > 0 and δ = ϑ(ε, p)| y| such that

p| y| p-1 ˇ y(f (s, y, z, ψ) -f (s, y ′ , z ′ , ψ ′ ) -ρ| y| p ≤ p α + K 2 p -1 + K 2 2ε -ρ | y| p + c(p) 2 | y| p-2 1 y =0 | z| 2 + pε 2 | y| p-2 1 y =0 ψ1 | ψ|<δ 2 L 2 µ + pK| y| p-1 ψ1 | ψ|≥δ L 1 µ ≤ c(p) 2 | y| p-2 1 y =0 | z| 2 + pε 2 | y| p-2 1 y =0 ψ1 | ψ|<δ 2 L 2 µ + pK| y| p-1 ψ1 | ψ|≥δ L 1 µ ≤ c(p) 2 | y| p-2 1 y =0 | z| 2 + 1 2 Γ( y, ψ, K, ε, p)
where Γ is defined by (15). Then Itô's formula and the previous inequality give for

0 ≤ t ≤ T e pρ(t∧τ ) | Y t∧τ | p ≤ e pρ(T ∧τ ) | Y T ∧τ | p -p T ∧τ t∧τ e pρs | Y s | p-1 ˇ Y s Z s dW s -p T ∧τ t∧τ e pρs | Y s-| p-1 ˇ Y s-d M s -p T ∧τ t∧τ e pρs | Y s-| p-1 ˇ Y s- U ψ s (u) π(du, ds) - 1 2 T ∧τ t∧τ e pρs U |Y s-+ ψ s (u)| p -|Y s-| p -p|Y s-| p-1 Ys-ψ s (u) π(du, ds) + 1 2 T ∧τ t∧τ e pρs Γ( Y s-, ψ s (u), K, ε, p) -Ψ( Y s-, ψ s (u), p) µ(du)ds (22) 
Ψ being defined by (14). From Lemma 5 the last term is non positive. From the integrability conditions on the solution taking the expectation in (22) leads to

E e pρ(t∧τ ) | Y t∧τ | p ≤ E e pρ(T ∧τ ) | Y T ∧τ | p .
If we replace ρ by ρ ′ with α + K 2 p-1 < ρ ′ < ρ we obtain the same result, and thus we get for any

0 ≤ t ≤ T E e pρ ′ (t∧τ ) | Y t∧τ | p ≤ e p(ρ ′ -ρ)T E e pρ(T ∧τ ) | Y T ∧τ | p .
We let T go to infinity to obtain Y t = 0. Therefore (Y, Z, ψ, M ) and 

(Y ′ , Z ′ , ψ ′ , M ′ )
The constant C depends only on p, K and α. Proof. For each n ∈ N we construct a solution {(Y n , Z n , ψ n , M n ), t ≥ 0}, first on the interval [0, n] using Theorem 2:

Y n t = E(ξ|F n ) + n t 1 [0,τ ] (s)f (s, Y n s , Z n s , ψ n s )ds - n t Z n s dW s - n t U ψ n s (u) π(du, ds) - n t dM n s .
And for t ≥ n (Assumption (H6)):

Y n t = ξ t , Z n t = η t , ψ n t (u) = γ t (u), M n t = N t .
• Step 1: a priori estimate.

Again with Young's inequality and for some δ > 0 sufficiently small and any η > 0

|y| p-1 yf (t, y, z, ψ) ≤ α + δ + K 2 ((p -1) -2δ) + K 2 ε |y| p + (p -1) 2 -δ |y| p-2 1 y =0 |z| 2 + 1 p |f (t, 0, 0, 0)| p pδ p -1 1-p +ε|y| p-2 1 y =0 ψ1 |ψ|≤η 2 L 2 µ + K|y| p-1 ψ1 |ψ|≥η L 1 µ . ( 24 
)
We choose δ > 0 such that α

+ 2δ + K 2 (p-1-2δ) + K 2 ε ≤ ρ.
As in [START_REF] Kruse | BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF], Itô's formula for 0 ≤ t ≤ T ≤ n and arguments used in the proof of Propositions 3 or 5 give:

E e pρ(t∧τ ) |Y n t∧τ | p + pδ T ∧τ 0 e pρs |Y n s | p ds +pδE T ∧τ 0 e pρs |Y n s | p-2 |Z n s | 2 1 Y n s =0 ds + c(p)E T ∧τ 0 e pρs |Y n s-| p-2 1 Y n s-=0 d[M n ] c s +c(p)E   0<s≤T ∧τ e pρs |∆M n s | 2 |Y n s-| 2 ∨ |Y n s-+ ∆M n s | 2 p/2-1 1 |Y n s-|∨|Y n s-+∆M n s | =0   + c(p) 2 E T ∧τ 0 U e pρs |ψ n s (u)| 2 |Y n s-| 2 ∨ |Y n s-+ ψ n s (u)| 2 p/2-1 1 |Y n s-|∨|Y n s-+ψ n s (u)| =0 π(du, ds) ≤ E e pρ(T ∧τ ) |Y n T ∧τ | p + pδ p -1 1-p T ∧τ 0 e pρs |f (s, 0, 0, 0)| p ds . (25) 
•

Step 2: the sequence (Y n ) converges.

Take m > n and define

Y t = Y m t -Y n t , Z t = Z m t -Z n t , ψ t = ψ m t -ψ n t , M t = M m t -M n t .
The argument already used to control the generator (see ( 24)) and suitable modifications (as in the proof of Proposition 3 again) imply that Inequality (43) for n ≤ t ≤ m in [START_REF] Kruse | BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration[END_REF] becomes now: The convergence of the sequence Y n follows.

• Step 3: convergence of the martingale part (Z n , ψ n , M n ).

For the convergence of (Z n , M n ) the arguments are the same. But for ψ n , we control only

E τ 0 U e pρs |ψ m s (u) -ψ n s (u)| 2 π(du, ds) p/2
.

Following the same sketch as in the proof of uniqueness we deduce

E m∧τ 0 e pρs | Y s-| p-2 1 Y s-=0 d[ M ] c s + m∧τ 0 e pρs | Y s | p-2 | Z s | 2 1 Ys =0 ds +E m∧τ 0 U e pρs | ψ s (u)| 2 | Y s-| 2 ∨ | Y s -+ ψ s (u)| 2 p/2-1 1 | Y s-|∨| Y s-+ ψs(u)| =0 π(du, ds) +E   0<s≤m∧τ e pρs |∆ M s | 2 | Y s-| 2 ∨ | Y s-+ ∆ M s | 2 p/2-1 1 | Y s-|∨| Y s-+∆ Ms| =0   ≤ CE τ n∧τ e pρs |f (s, ξ s , η s , γ s )| p ds.
Then we can use again the argument (18) in order to have a Cauchy sequence for the norm:

E τ 0 e 2ρs | Z s | 2 ds p/2 + E τ 0 e 2ρs U | ψ s (u)| 2 π(du, ds) p/2 + E τ 0 e 2ρs d[ M ] s p/2
.

Lemma 5 Let K ≥ 0 and let p ∈ (1, 2). Then there exists 0 < ε < p-1 2 such that

∀(a, b) ∈ (R d ) 2 , Ψ(a, b, p) ≥ Γ(a, b, K, ε, p).
Let us emphasize that ε depends on K and p.

Proof. First observe that that for a = 0 the inequality holds for all ε > 0 and b ∈ R d . Assume in the sequel that a = 0. For

t ∈ R, τ 2 ∈ [0, ∞) and ǫ ∈ (0, ∞) let ψ(t, τ 2 , p) = ((1 + t) 2 + τ 2 p/2 -1 -pt and γ(t, τ 2 , K, ǫ, p) = 2Kp t 2 + τ 2 1/2 1 (|t| 2 +τ 2 ) 1/2 ≥ϑ(ε,p) + pε(t 2 + τ 2 )1 (|t| 2 +τ 2 ) 1/2 <ϑ(ε,p) .
For all b ∈ R d there exist a unique t ∈ R and a unique c ∈ R d with a, c = 0 and b = ta + c. If we choose t ∈ R and c ∈ R d in this way and let τ 2 = |c| 2 |a| 2 ≥ 0, we obtain that

Ψ(a, b, p) = |a + b| p -|a| p -p|a| p-2 a, b = (|a + b| 2 ) p/2 -|a| p -pt|a| p = |a| p (|1 + t| 2 + |c| 2 |a| 2 p/2 -|a| p -pt|a| p = |a| p ψ(t, τ 2 , p), and 
Γ(a, b, K, ε, p) = |a| p 2Kp t 2 + τ 2 1/2 1 (|t| 2 +τ 2 ) 1/2 ≥ϑ(ε,p) + |a| p pε(t 2 + τ 2 )1 (|t| 2 +τ 2 ) 1/2 <ϑ(ε,p) = |a| p γ(t, τ 2 , K, ε, p).
Hence the conclusion of the lemma holds if and only if there exists ε ∈ (0, p-1 2 ) such that for all t ∈ R and τ 2 ≥ 0 it holds that ψ(t, τ 2 , p) ≥ γ(t, τ 2 , K, ε, p).

Let h : (0, ∞) → R be the function satisfying for all x ∈ (0, ∞) that h(x) = 1 2 p/2 x p -2 p/2 -1 -p(2K + 1)x.

Since p > 1, the function h tends to +∞ when x → +∞. Hence there exists a constant α(K, p) ≥ 2 such that for all x ≥ α(K, p) it holds that h(x) ≥ 0. Now, for the sequel of the proof, fix ε ∈ (0, p-1

2 ) such that ϑ(ε, K) ≥ α(K, p). First case: Let t ∈ R and τ 2 ≥ 0 such that (t 2 + τ 2 ) 1/2 < ϑ(ε, p). In particular it holds that

τ 2 < ϑ(ε, p) 2 =   1 2 p -1 2ε 2 2-p + 1 2 -1   2 < 1 2 p -1 2ε 2 2-p -1 , (26) 
and consequently that

τ 2 < p -1 2ε 2 2-p -1 = 1 pε 2 2-p ∧ p -1 2ε 2 2-p ∧ p -1 2ε 2 2-p -1 ∧ 1 2ε 2 2-p -1 (27) 
Moreover, it holds that

ε < p -1 2 = p -1 2 ∧ p -1 p ∧ 1 2 . ( 28 
)
We have to show that ψ(t, τ 2 , p) ≥ pε(t 2 + τ 2 ). To this end we consider the function σ : R → R,

σ(s) = ψ(s, τ 2 , p) -pε(s 2 + τ 2 ) = (1 + s) 2 + τ 2 p/2 -1 -ps -pε(s 2 + τ 2 )
for s ∈ R. The first and second derivatives of σ are given by

σ ′ (s) = p (1 + s) 2 + τ 2 p/2-1 (1 + s) -p -2pεs, σ ′′ (s) = p (1 + s) 2 + τ 2 p/2-2 (p -1)(1 + s) 2 + τ 2 -2pε.
Observe that σ ′ (-1) = -p + 2pε and

σ(-1) = τ p -1 + p -pε(1 + τ 2 ) = p -1 -pε + τ p (1 -pετ 2-p ).
Since ε < p-1 p ∧ 1 2 and τ 2 ≤ 1 pε 2 2-p , it holds that σ(-1) > 0 and σ ′ (-1) < 0.

Note that σ ′′ is well defined for all s = -1. Moreover since p -1 < 1, for any s = -1 it holds that

σ ′′ (s) ≥ p(p -1) (1 + s) 2 + τ 2 p/2-1 -2pε =: g(s). Since τ 2 < p-1 2ε 2 2-p we have g(s) = 0 if and only if (1 + s) 2 = p-1 2ε 2 2-p -τ 2 .
Observe that

Ξ(τ 2 , ε, p) = -1 - p -1 2ε 2 2-p -τ 2 < -1.
is the only root of g on (-∞, -1). Moreover, it holds that g(-1) > 0. Hence at least on the interval (Ξ(τ 2 , ε, p), -1), σ ′′ > 0. Thus σ ′ is increasing on (Ξ(τ 2 , ε, p), -1) with σ ′ (-1) < 0; in other words σ is decreasing on (Ξ(τ 2 , ε, p), -1) and σ(-1) > 0. Thereby σ(s) > 0 for all s ∈ (Ξ(τ 2 , ε, p), -1]. Observe that (t 2 + τ 2 ) 1/2 < ϑ(ǫ, p) implies that t > -ϑ(ǫ, p) = -1 2 p -1 2ε

2 2-p + 1 2 + 1 > - 1 2 p -1 2ε 2 2-p + 1 2 -1 > Ξ(τ 2 , ε, p),
where we used (26) for the last inequality. Thus we obtain that σ(t) > 0 if t ≤ -1.

Next assume that t > -1. Observe that

Υ(τ 2 , ε, p) = p -1 2ε 2 2-p -τ 2 -1 > -1
is the only root of g on (-1, ∞). Since τ 2 < p-1 2ε 2 2-p -1 (see ( 27)), it holds that Υ(τ 2 , ε, p) > 0. And on the interval (-1, Υ(τ 2 , ε, p)), σ ′′ > 0, thus σ ′ is increasing there with σ ′ (-1) < 0. Moreover, it holds that σ ′ (0) = p (1 + τ 2 ) p/2-1 -1 ≥ 0.

Hence, there exists a value δ = δ(τ 2 , p, ε) in (-1, 0] such that σ ′ (δ(τ 2 , p, ε)) = 0. And on the interval (-1, Υ(τ 2 , ε, p)), the function σ has a unique minimum m given by m = σ(δ(τ 2 , p, ε)). We want to prove that m ≥ 0. By the very definition σ ′ (δ) = p (1 + δ) 2 + τ 2 p/2-1 (1 + δ) -p -2pεδ = 0

hence (1 + δ) 2 + τ 2 p/2 = 1 + 2εδ 1 + δ (1 + δ) 2 + τ 2 .
This gives that

m = σ(δ) = (1 + δ) 2 + τ 2 p/2 -1 -pδ -pε(δ 2 + τ 2 ) = 1 + 2εδ 1 + δ (1 + δ) 2 + τ 2 -1 -pδ -pε(δ 2 + τ 2 )
= (2 -p)εδ 2 + (2ε + 1 -p)δ + (2 -p)ετ 2 + τ 2 1 -2ε 1 + δ .

If ̟ is the function defined on (-1, 0] by ̟(x) = (2 -p)εx 2 + (2ε + 1 -p)x + (2 -p)ετ 2 + τ 2 1 -2ε 1 + x , this function x → ̟(x) has a positive second derivative and since ε < p-1 2 , the first derivative is negative on (-1, 0]. Hence this is a decreasing function and we obtain that for any x ∈ (-1, 0], ̟(x) ≥ ̟(0). Now ̟(0) = τ 2 (1 -pε) ≥ 0. Thus m = σ(δ) = ̟(δ) ≥ 0. Consequently, σ is nonnegative on (-1, Υ(τ 2 , ε, p)). Finally, observe that t < ϑ(ǫ, p) = 1 2 p -1 2ε

2 2-p + 1 2 -1 < Υ(τ 2 , ε, p),
where we used (26) for the last inequality. This implies that σ(t) ≥ 0 also in the case t > -1.

Second case: Let t ∈ R and τ 2 ≥ 0 such that (t 2 + τ 2 ) 1/2 ≥ ϑ(ǫ, p). We have to show that ψ(t, τ 2 , p) ≥ 2Kp(t 2 + τ 2 ) 1/2 . First observe that ψ(t, τ 2 , p) -2Kp t 2 + τ 2 1/2 = (1 + t) 2 + τ 2 p/2 -1 -pt -2Kp t 2 + τ 2 1/2 ≥ (1 + t) 2 + τ 2 p/2 -1 -p(2K + 1) t 2 + τ and therefore from (29) if t 2 + τ 2 ≥ 4 ψ(t, τ 2 , p) -2Kp t 2 + τ 2 1/2 ≥ 1 2 p/2 t 2 + τ 2 p/2 -2 p/2 -1 -p(2K + 1) t 2 + τ 2 1/2 = h((t 2 + τ 2 ) 1/2 ).

Since, we chose ε ∈ (0, p-1

2 ) such that ϑ(ε, K) ≥ α(K, p) and it holds that h ≥ 0 on (α(K, p), ∞), it follows that h((t 2 + τ 2 ) 1/2 ) ≥ 0 and hence ψ(t, τ 2 , p) ≥ 2pK(t 2 + τ 2 ) 1/2 . This completes the proof.

Even if we can not compute α(K, p) explicitely, one can take α(K, p) = (4(2K + 2) + 1)

1 p-1 .
And thus ϑ(ε, p) ≥ α(K, p) if ε ≤ p -1 2 (α(K, p) + 1) 2-p .

(31)

The right-hand side is a decreasing function w.r.t. p ∈ (1, 2) and w.r.t. K ≥ 0. Hence when p is close to one and K is large, ε is be very small.

. 0 e

 0 βs |Y s | p ds can be removed (or put on the left-hand side). Again β depends only on α, K and p. • Using again the fundamental sequence of stopping times τ k for the local martingale . 0 e βs |Y s-| p-1 Ys-Z s dW s + dM s + U ψ s (u) π(du, ds)

2 ≤ κp E X + T 0 e

 20 βs |Y s-| p-1 ψ s L 1 µ +L 2 µ ds where X = e βT |ξ| p + p T 0 e βs |Y s | p-1 f s ds.

p C p E T 0 e 2 E.e 2 ≤ 0 e

 0220 βs |Y s | p-1 f s ds ≤ p C p e β p-1 p * |Y * | p-1 T 0 e βs/p f s ds ≤ 1 e β * |Y * | p + d p T 0 e βs/p f s ds p Therefore we have proved that for any β large enough (with a lower bound depending only on α, K and p) E sup t∈[0,T ] e βt |Y t | p + 2βs/p |ψ s (u)| 2 π(du, ds) CE e βT |ξ| p + T βr/p f r dr p where C just depends on p. This gives the desired estimate.

Proposition 6 0 eU 2 ≤

 602 satisty BSDE (19) and Y = Y ′ . Thus we have the same martingale parts and by orthogonality, Z = ψ = M = 0. Uniqueness of the solution is proved. Under conditions (H1), (H2"), (H3), (20) and (H6), the BSDE (19) has a solution satisfying (21), the right-hand side of the inequality is given by CE e pρτ |ξ| p + τ pρs |f (s, 0, 0, 0)| p ds . |ψ s (u)| 2 π(du, ds) CE e pρτ |ξ| p + τ 0 e pρs |f (s, 0, 0, 0)| p ds .

E 0 e

 0 sup t≥n e pρ(t∧τ ) | Y t∧τ | p + m∧τ n∧τ e pρs | Y s | p ds ≤ CE τ n∧τ e pρs |f (s, ξ s , η s , γ s )| p ds. From the same argument as in the proof of Proposition 5 for t ≤ n E e pρ(t∧τ ) | Y t∧τ | p + E τ pρs | Y s | p ds ≤ Ee pρ(n∧τ ) | Y n | p ≤ CE τ n∧τ e pρs |f (s, ξ s , η s , γ s )| p ds.

  1)(κ p )

												p	p p-1	p p-1	E	0	T	e βs |Y s-| p ds
							+	1 2K p,T	E	0	T	e βs ψ s	p L 1 µ +L 2 µ	ds.
	Now from Inequality (8)										
	E Y β,p *	+	0	T	e 2βs/p Z 2 s ds	p/2	+	0	T	e 2βs/p d[M ] s	p/2
	+	1 2	0	T	e 2βs/p	U	|ψ s (u)| 2 π(du, ds)	p/2	≤ C p E(X)

  2 1/2 . (29) Now for anyt ∈ R, (1 + t) 2 ≥ (t 2 /2) -2, thus for t 2 + τ 2 ≥ 4 (1 + t) 2 + τ 2 p/2 ≥This function tends to zero when x goes to infinity. If τ 2 ≥ 4, then immediately ̺(x) ≥ 0. If not, ̺ is non decreasing and ̺(x) ≥ ̺(2) ≥ -2 p/2 . In any case, for x ≥ 2, ̺(x) + 2 p/2 ≥ 0. With x = (t 2 + τ 2 )/2 ≥ 2, from (30) we obtain that(1 + t) 2 + τ 2 p/2 ≥ t 2 + τ 2 2

	t 2 2	+ τ 2 -2	p/2	=	t 2 + τ 2 2	+	τ 2 2	-2	p/2	.	(30)
	We define the function ̺ on [2, +∞) by										
	̺(x) = x +	τ 2 2	-2	p/2	-x p/2 .				
							p/2				
							-2 p/2			

See the discussion in[START_REF] Marinelli | On maximal inequalities for purely discontinuous martingales in infinite dimensions[END_REF] for the name of this estimate.

With our setting, the process W of[START_REF] Jacod | Calcul stochastique et problèmes de martingales[END_REF] is identically equal to zero.
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Hence it converges to (Z, ψ, M ) and from the two previous steps the limit (Y, Z, ψ, M ) is a solution of the BSDE (19) which satisfies (21) and (23).

From the two previous propositions we deduce the following existence and uniqueness result.

Theorem 3 Under conditions (H1), (H2"), (H3), (20) and (H6), the BSDE (19) has a unique solution satisfying (21) and (23).

Technical results

To prove our results in the previous section we used technical Lemmas 3 and 5. Here we give the proof of these results Proof. (of Lemma 3).

Now for all δ > 0 it holds that

We already know that φ 2 ∈ L p µ and that φ 1 ∈ L 2 µ . Since p < 2 it follows that the second term is in L p µ :

For the third one, observe that if

Thus |φ|1 |φ|>δ ∈ L p µ . Let us now turn to |φ|1 |φ|≤δ . We decompose this term as follows

Again we already know that φ 2 ∈ L p µ and that φ 1 ∈ L 2 µ . Thus the second term is in L 2 µ , since for p < 2:

For the third one, observe that if