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ABSTRACT

In the context of black-box numerical codes, it is relevant to use sensitivity analysis in order to
assess the influence of each random input X over the output Y . Goal-oriented sensitivity analysis
states that one must first focus on a certain probability feature θ(Y ) from the distribution of Y

(such as its mean, quantile, or a probability of failure etc...), which would be chosen regarding
a relevant strategy. The wish is to evaluate the impact of each input over θ(Y ). In order to
get supplementary information about sensitivity, we set that θ(Y ) is the α-level quantile of
Y , where α ∈]0, 1[. Throughout some examples, it has been pointed out that in some cases
quantile-oriented sensitivity indices can detect some influence that Sobol indices would not.
Mainly, the influence over each level of quantile displays how an input distribution entirely
propagates through the output. We establish further results for the quantile-oriented indices
properties in order to justify their relevancy. The main contribution of this paper comes when
a statistical estimator for this index is introduced.

KEYWORDS

Sensitivity analysis; goal-oriented sensitivity analysis; output quantiles; kernel-based
estimators

1. Introduction

In computer experiments, sensitivity analysis (SA) aims to quantify the influence of each random
input over the studied output. In many industrial contexts such as safety in nuclear industry
[8], geophysics and oil reservoir, soil pollution (see [10] of interest. Besides, if the study points
out that several inputs do not affect Y , the user can consider neglecting the corresponding input
distributions. This is particularly advantageous when the number of inputs is high and/or each
computation of the code is heavy. On the other hand, if one input happens to be highly influential,
the user could wonder how to reduce its variability [3]. In this case, a significant decrease of the
uncertainty on Y would result. for agricultural examples), complex black-box models are highly
used. The model that is considered writes Y = g(X, Z), where g is a deterministic function, Y is
the output and X the random input whose influence over Y must be quantified. Z regroups all
the other inputs, parameters of the function. Carrying out a SA study provides useful information
about the model. First, it enables the user to understand how each input impacts the output Many
definitions for the influence can be given. For instance, the goal of global sensitivity analysis (GSA)
is to assess how much the variability of an input propagates through the output distribution. This
is the case for the works in [11, 14]. More recently, new indices have been set in [1, 2], respectively
based on importance measures and independence measures. In this paper, we focus on a more
precise interpretation of the influence: the goal-oriented sensitivity analysis (GOSA) introduced
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in [12]. Rather than focusing on the impact of X over Y ’s whole distribution, we only consider
a one-dimension feature from the distribution of Y . GOSA states: if the user sets one feature of
interest, θ(Y ), from the distribution of Y , which can be for instance its expectation, any level of
quantile or probability of exceedance, it is relevant to quantify how an input distribution affects
the value of θ(Y ).

In this study, we understand the influence of the input, X, over θ(Y ) as the amount of variability
of the conditional feature, θ(Y | X). Indeed, we have: if, when we set X to several different values,
θ(Y | X) varies a lot, then X is highly responsible for the value of θ(Y ). In this case, we state
that X is influential over θ(Y ). SA indices with respect to a contrast, introduced in [6], precisely
quantify the variability of θ(Y | X) regarding a relevant distance. In this paper, we focus on the
quantile-oriented versions of these indices. The main contribution of this paper is to provide an
estimator for these indices.

The structure of the paper is as follows. In Section 2, we recall the definition of SA indices with
respect to a contrast for the only case of the quantile-oriented SA. We also prove some of their
properties that confirms their relevancy. In Section 3, we introduce an estimator for these indices
by justifying their construction step by step. To this effect, we enumerate and prove consistency
results for some kernel-based estimators on which we rely. In Section 4, we raise the question of
the choice for the bandwidth. By setting different quantities related to the error of the estimator,
we propose a method to set an efficient bandwidth in practice. This method is approved through
numerical applications to a toy example. Finally, the estimators is computed in Section 5 for
an industrial case. The considered data is taken from runs of a numerical code, CIVA, which
simulates ultrasonic non-destructive examinations over a split in the inner wall of a pipe. We
provide several interpretations of the values that we computed, regarding the respective influence
of the inputs over the output quantiles. A conclusion synthesizes the work.

2. Quantile-Oriented Sensitivity Indices

We study the scalar output Y = g(X, Z), with a real random variable input of interest, X, Z
which denotes the other inputs and g a deterministic function. Given a level of quantile α ∈]0, 1[,
let us recall the quantile-oriented sensitivity indices introduced in [6]:

SX
cα

(Y ) = min
θ∈R

E [cα(Y, θ)] − EX

[
min
θ∈R

E [cα(Y, θ) | X]

]
, (1)

with cα the quantile-oriented simple contrast:

∀y, θ ∈ R cα(y, θ) = (y − θ)(1y≤θ − α).

Indeed, let us remember that quantiles and conditional quantiles can be defined with the mean
contrast:

qα(Y ) = arg min
θ∈R

E [cα(Y, θ)] and qα(Y | X) = arg min
θ∈R

E [cα(Y, θ) | X] , (2)

where qα(Y ) is the α-level of quantile of Y , and qα(Y | X) is the α-level of the conditional
quantile. In order to ensure the uniqueness for qα(Y ) and qα(Y | X), let us set that the density
of Y is strictly positive on its support, as well as its conditional density with respect to X a.s.
The purpose of this index (1) is precisely to quantify the variability of the conditional quantile.
This is suggested in the following properties.
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This index is well defined as long as Y ∈ L1(Ω) in the sense that, as for the first term,

E [cα (Y, qα(Y ))] ≤ E [|Y − qα(Y )|] ≤ ‖Y ‖L1(Ω) + |qα(Y )|, (3)

and we easily prove that |qα(Y )| < +∞ as

‖Y ‖L1(Ω) ≥ E

[
|Y |.1qα(Y )≤Y

]
≥ (1 − α) qα(Y ).

Thus one can conclude that E [cα (Y, qα(Y ))] < +∞. As for the second term, it is clear that

min
θ∈R

E [cα(Y, θ) | X] ≤ E [cα (Y, qα(Y )) | X] a.s. (4)

We get after integrating: E [cα (Y, qα(Y | X))] ≤ E [cα (Y, qα(Y ))].
The previous inequality also yields the positiveness of the index. In practice, we normalize it as
we divide it by the first term min

θ∈R

E [cα(Y, θ)]. From now on, we only consider the normalized

expression of the index:

SX
cα

(Y ) =
min
θ∈R

E [cα(Y, θ)] − EX

[
min
θ∈R

E [cα(Y, θ) | X]

]

min
θ∈R

E [cα(Y, θ)]
(5)

It is more meaningful for the user as one can prove the two following properties.

Property 1. The sensitivity index SX
cα

(Y ) verifies:

0 ≤ SX
cα

(Y ) ≤ 1.

Property 2. The sensitivity index SX
cα

(Y ) verifies:

• SX
cα

(Y ) = 0 if and only if qα(Y | X) = qα(Y ) a.s.
• SX

cα
(Y ) = 1 if and only if there exists a real function h such that Y = h(X) a.s.

The first statement of Property 2 justifies the expected meaning of the index regarding the
sensitivity analysis. Indeed, qα(Y | X) = qα(Y ) a.s. reveals that setting X to any of its possible
realizations does not influence the value of the output α-quantile. The second statement is more
global as it states that, as soon as one sets X to any of its possible realizations, the output Y
becomes a constant. This means that in the case where SX

cα
(Y ) = 1, the whole variability of Y is

induced by the variability of X.

Proof. • One has: SX
cα

(Y ) = 0 if and only if min
θ∈R

E [cα (Y, θ)] = E

[
min
θ∈R

E [cα (Y, θ) |X]

]
.

With the equation (4), the previous equivalence brings:

min
θ∈R

E [cα(Y, θ) | X] = E [cα (Y, qα(Y )) | X] almost surely (a.s.).

The uniqueness of the minimum for E [cα(Y, θ) | X] proves that SX
cα

(Y ) = 0 if and only if
qα(Y | X) = qα(Y )a.s.

• One has: SX
cα

(Y ) = 1 if and only if E [ cα (Y, qα(Y | X)) ] = 0, which, given the positiveness
of the function cα, writes cα (Y, qα(Y | X)) = 0 a.s. Therefore SX

cα
(Y ) = 1 is equivalent to

Y = qα(Y | X) a.s. We have that Y is a constant as soon as X is set: X contains all the
variability observed in the output.
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As for the exact interpretation of the index, one can rewrite SX
cα

(Y ) as:

SX
cα

(Y ) = 1 −
E [cα (Y, qα(Y | X))]

E [cα (Y, qα(Y ))]
.

In other words, SX
cα

(Y ) compares the mean distance between Y and its conditional quantile to
the mean distance between Y and its quantile, where the considered distance is the contrast,
cα. For instance, if one computes SX

cα
(Y ) = 0.8, then E [cα (Y, qα(Y | X))] is 5 times smaller

than E [cα (Y, qα(Y ))]. Since qα (Y | X) is statistically “closer” to Y , it must vary significantly.
Therefore, the conditional quantile, qα(Y | X), has a significant variability when SX

cα
(Y ) is close

to one. On the other hand, SX
cα

(Y ) being nearly zero would induce that qα(Y | X) is statistically
as distant (regarding cα) to Y as qα(Y ): qα(Y | X) has not much variability and is statistically
close to qα(Y ).

3. Estimate of the Quantile-Oriented Index

Let us recall that we focus on the quantile-oriented SA index, SX
cα

(Y ) (introduced in [6]), such
that:

SX
cα

(Y ) =
min
θ∈R

E [cα(Y, θ)] − EX

[
min
θ∈R

E [cα(Y, θ) | X]

]

min
θ∈R

E [cα(Y, θ)]

Given a budget of computations n ∈ N, our goal is to provide an estimator for SX
cα

(Y ) from a iid
n-sample

((
X1, Z1, Y 1

)
, ..., (Xn, Zn, Y n)

)
such that:

∀j ∈ {1, ..., n} Y j = g
(
Xj , Zj

)
.

We propose respective estimators for the two terms of the index. Let us focus on the first term
as it is more natural to estimate:

min
θ∈R

E [cα (Y, θ)] .

We propose a classical empirical estimator:

min
θ∈R

1

n

n∑

j=1

cα

(
Y j , θ

)
.

As, for any j ∈ {1, · · · , n},

(
θ 7→

1

n

∑n

j=1
cα

(
Y j , θ

))
is a convex and continuous piecewise linear

function, its minimum is reached on the subset {Y 1, · · · , Y n}. Then finding the minimum only
requires to evaluate this function on these n points and pick the lowest value. It is important to
mention that this minimization is fast to proceed as no run of the code is performed. Let us write
q̂α(Y ), the classical empirical estimator for qα(Y ), defined as follows:

q̂α
n(Y ) := Y (i0) with i0 := ⌊n.α⌋ + 1, (6)
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where
{

Y (1) ≤ · · · ≤ Y (n)
}

is the order statistic of
{
Y 1, · · · , Y n

}
. The expression (6) holds:

q̂α
n(Y ) = arg min

θ∈R

1

n

n∑

j=1

cα

(
Y j , θ

)
,

Proposition 1 provides the consistency of the index first term estimate.

Proposition 1. If Y ∈ L1(Ω), then

min
θ∈R

1

n

n∑

j=1

cα

(
Y j , θ

)
a.s.
−→

n→+∞
E [cα (Y, qα(Y ))] .

Proof. Let us first show that:

1

n

n∑

j=1

cα

(
Y j , q̂α

n(Y )
)

−
1

n

n∑

j=1

cα

(
Y j , qα(Y )

)
as

−→
n→+∞

0 a.s., (7)

with q̂α
n(Y ) introduced in (6). One easily gets:

∀y, θ, θ′ ∈ R |cα (y, θ) − cα (y, θ′) | ≤ max(α, 1 − α)|θ − θ′|

Therefore:

|
1

n

n∑

j=1

[
cα

(
Y j , q̂α(Y )

)
− cα

(
Y j , qα(Y )

)]
| ≤ max(α, 1 − α)|q̂α(Y ) − qα(Y )| a.s..

A classical result states that q̂α(Y )
a.s.
−→

n→+∞
qα(Y ) (see [15] for further details). This proves

(7). As for the second step, since
(
cα

(
Y 1, qα(Y )

)
, ..., cα (Y n, qα(Y ))

)
is a iid n-sample and

min
θ∈R

E [cα(Y, θ)] ∈ L1(Ω) (see (3)), the law of large numbers yields:

1

n

n∑

j=1

cα

(
Y j , qα(Y )

)
a.s.
−→

n→+∞
E [cα (Y, qα(Y ))] . (8)

(7) and (8) together lead to the result of the lemma.

We now focus on the second term:

E

[
min
θ∈R

E [cα (Y, θ) |X]

]
, (9)

which requires much more development to estimate as it contains a double expectation, includ-
ing a conditional expectation, and a minimization problem. In the following we show the suc-
cessive steps on which we relied to build an estimator for this term. First of all, approximating

E

[
min
θ∈R

E [cα (Y, θ) |X]

]
suggests to be able to estimate min

θ∈R

E [cα (Y, θ) |X = x], for x any “likely”

realization of X. We write f the pdf of X and for any x ∈ R, we call a “likely” (or possible) real-
ization of X any real number such that f(x) 6= 0. One could get back to the needed estimator by
calculating the average of the estimators of min

θ∈R

E [cα (Y, θ) |X = x] with a Monte-Carlo approach.

In order to estimate min
θ∈R

E [cα (Y, θ) |X = x], one needs to focus on the conditional expectation.
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One harmful way to proceed would be to sample X,
(
X1, · · · , Xn

)
and successively set X to Xk,

for k ∈ {1, · · · , n}, and compute in each case (Y | X = Xk) a number of times n′ ∈ N and get the

n′-sample
(
(Y | X = Xk)1, · · · , (Y | X = Xk)n′

)
. Even though it could be seem like a classical

approach, both n and n′ would need to be high in this case. As n × n′ calls to g would be needed

to estimate E

[
min
θ∈R

E [cα (Y, θ) |X]

]
, it may be too high regarding a reasonable time budget.

We illustrate in Figure 1 this not desirable method. One additional problem relies on the fact

Y

Xi

Figure 1. High-time consuming approach for the quantile-oriented estimate of SX
cα

(Y ).

that for any k ∈ {1, · · · , n}, the n′-sample
(
(Y | X = Xk)1, · · · , (Y | X = Xk)n′

)
has relevant

information to estimate only E
[
cα (Y, θ) |X = Xk

]
. A usual method to overcome this double-loop

issue is to use a kernel-based estimator. Through the kernel-approach, we justify step by step the
construction of the future estimator for the second term.

Let K be a positive and 2-order kernel, i.e.:

∫
uK(u)du = 0 and 0 6=

∫
u2K(u)du < +∞.

In the following, we assume the kernel K to verify the condition (K):

(K) ≡





K has a compact support ∆K ⊂ R

K ∈ L2(∆K)
∀u ∈ ∆K K(−u) = K(u) ≥ 0
K is a second-order kernel.

We introduce the following estimator for the function (Cx : θ 7→ E [cα (Y, θ) |X = x]), for any
likely x ∈ R:

∀θ ∈ R Ĉx(θ) :=
1

nf(x)

n∑

j=1

cα

(
Y j , θ

)
Khn

(
Xj − x

)
, (10)

where Khn
is set as follows:

Khn
(x) :=

1

hn
K

(
x

hn

)
.

(hn) is the bandwidth sequence: ∀n ∈ N hn > 0. We provide the sketch of proof for the pointwise
consistency of the estimator (10) below. To this effect, we set the condition (J) for the joint density
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((x, y) 7→ f(x, y)) of (X, Y ):

(J) ≡





f is C2 on R
2,

∀k = 1, 2
∫

y2 |∂k
xf(x, y)| dxdy < ∞,

∃ (y 7→ C(y)) ∈ C0, ∃δ > 0 s.t. C(y) ≈
±∞

y−3−δ

and for any y ∈ R, (x 7→ ∂ν
xf(x, y)) is C(y)-Lipschitz.

Proposition 2. If the joint density ((x, y) 7→ f(x, y)) of (X, Y ) verifies (J), K verifies (K) and

x ∈ R s.t. f(x) 6= 0, then we have:

∀θ ∈ R
1

nf(x)




n∑

j=1

cα

(
Y j , θ

)
Khn

(
x − Xj

)

 L2

−→
n→+∞

E [cα (Y, θ) | X = x] ,

with K a 2-order kernel, (hn)n∈N the bandwidth sequence such that hn −→
n→+∞

0 and

n × hn −→
n→+∞

+∞.

As the previous proposition states the pointwise consistency of the estimation for the function
Cx, for x s.t. f(x) 6= 0, we point out that the second term of the SA index (9) also writes

EX

[
min
θ∈R

CX(θ)

]
. As we aim to estimate the minimum, for each x, of the function Cx, we rely

on existing consistency results from quantile regression. In this case, the minimizer, and not the
minimum, is efficiently estimated from the minimizer of Cx [5].

Proposition 3. If the joint density ((x, y) 7→ f(x, y)) of (X, Y ) verifies (J), K verifies (K) and

x ∈ R s.t. f(x) 6= 0, then we have:

arg min
θ

n∑

j=1

cα

(
Y j , θ

)
Khn

(
Xj − x

)
P

−→
n→∞

arg min
θ

E [cα(Y, θ) | X = x] .

One can see that the last estimation is based on the minimization of a certain function. It is not
a real issue as for any j ∈ {1, ..., n}, θ 7→

∑n
j=1 cα

(
Y j , θ

)
Khn

(
x − Xj

)
is a convex piecewise linear

function. Therefore the minimum of such a function is finite, unique and is reached on one element
of

{
Y 1, ..., Y n

}
. At this stage, solving this minimization problem only consists in evaluating the

low time-consuming function
(
θ 7→

∑n
j=1 cα

(
Y j , θ

)
Khn

(
Xj − x

))
for θ = Y 1, ..., Y n and picking

the lowest value. Proposition 3 states that the minimizer of Ĉx is a consistent estimator of the
minimizer of Cx. In order to bring relevant information to our case, we prove a similar consistency
result regarding the minimum of Cx.

Proposition 4. If the joint density ((x, y) 7→ f(x, y)) of (X, Y ) verifies (J), K verifies (K) and

x ∈ R s.t. f(x) 6= 0, then we have:

min
θ

1

nf(x)

n∑

j=1

cα

(
Y j , θ

)
Khn

(
Xj − x

)
P

−→
n→∞

min
θ∈R

E [cα(Y, θ) | X = x] .

As the second term of the estimator (9) is the expectation of the random variable min
θ∈R

CX(θ),

we set its estimator as the empirical mean of the estimate min
θ∈R

ĈX(θ). In order to do

7



so, we generate an iid m-sample of X,
(
X ′1, . . . , X ′m

)
, with m ∈ N, independent from((

X1, Z1, Y 1
)

, ..., (Xn, Zn, Y n)
)
. We set the estimator for the second term as follows:

1

m

m∑

k=1

min
θ

1

nf(X ′k)

n∑

j=1

cα

(
Y j , θ

)
Khn

(
Xj − X ′k

)
, (11)

which also writes
1

m

∑m

k=1
min
θ∈R

ĈX ′k(θ), or even:

1

m

∑m

k=1

1

nf(X ′k)

n∑

j=1

cα

(
Y j , q̂α

n

(
Y | X ′k

))
Khn

(
Xj − X ′k

)
.

It is important to point out that generating
(
X ′1, . . . , X ′m

)
is completely affordable as we know

its distribution f and it does not require any run of the code. At the end, we set the expression
for the estimator of the index, SX

cα
(Y ):

ŜX
cα

(Y ) := min
θ∈R

1

n

n∑
j=1

cα

(
Y j , θ

)

+
1

m

∑m

k=1
min

θ

1

nf(X ′k)

n∑

j=1

cα

(
Y j , θ

)
Khn

(
Xj − X ′k

)
.

(12)

So far, no consistency result has been proved for ŜX
cα

(Y ). In this paper, we focus on its efficiency
in practice as we try it for two different application cases.

Remark. In Proposition 4, the minimizer of the asymptotic quantity, min
θ∈R

E [cα(Y, θ) | X = x],

is the conditional quantile qα(Y | X = x). To this effect, we introduce the estimator for the
conditional quantile, q̂α

n(Y | X = x), as follows:

q̂α
n(Y | X = x) := arg min

θ∈R

n∑

j=1

cα

(
Y j , θ

)
Khn

(
Xj − x

)
.

4. Optimal Bandwidth Determination

For any Kernel-based estimator, arguments have to be provided in order to choose a relevant
bandwidth. Proposition 4 only suggests the following asymptotic property: n.hn → +∞ while
hn → +∞. Yet in practice n is set and the user must choose h(n) as the minimizer of a quantity

which denotes the error of ŜX
cα

(Y ). This section focuses on mean-squared errors (MSE). The goal
is to find a MSE for a estimator that is possible to express, theoretically, as well as to estimate.

4.1. Theoretical Optimal Bandwidth

As ŜX
cα

(Y ) is a kernel-based estimator, its efficiency strongly relies on the determination of a

relevant bandwidth sequence (h̃n). A classical way to proceed is to set h̃n as the bandwidth

which minimizes the MSE of the estimator. However no expressions for the MSE of ŜX
cα

(Y ) are
available. An other idea is to minimize the error of each term for the second term in the estimator
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(9) e.g. for any x s.t. f(x) 6= 0:

1

nf(x)

n∑

j=1

cα (Y, q̂α
n (Y | x)) Kh(k)

(
Xj − x

)

which is the estimator for (10)

min
θ∈R

Ĉx(θ) = min
θ∈R

E [cα(Y, θ) | X = x] .

Roughly speaking, if one can minimize the error of all the terms, the error of the mean of these
very terms must be low. The MSE of the point-wise estimators min

θ∈R

Ĉx(θ) is given by:

MSE

(
min
θ∈R

Ĉx(θ)

)
= E

[(
min
θ∈R

Cx(θ) − min
θ∈R

Ĉx(θ)

)2
]

=
h2

f(x)
µ2(K)

∫
cα (y, qα (Y | x)) ∂xf(x, y)dy + o(h2)

+
Var (cα (y, qα (Y | x))) R(K)

f(x)nh
+ o(nh),

where R(K) and µ2(K) are inherent constants of the kernel, K:

µ2(K) =

∫
u2K(u)du, and R(K) =

∫
K2. (13)

Since MSE

(
min
θ∈R

Ĉx(θ)

)
relies on unknown parameters, its minimum in h cannot be determined.

Still regarding the same idea, we decide to minimize the error over the minimizer, and not
the minimum, i.e. arg min

θ∈R

E
[
cα(Y, θ) | Xk

]
= qα (Y | x). We assume that if the error over the

minimizer is low, so is the error over the minimum. This is partly due to the fact that we observe
that the convex function (θ 7→ E [cα (Y, θ) | x]) is flat around its minimum. Therefore a small
variation around its minimizer implies a small variation around its minimum. The asymptotic
expression for the MSE of q̂α

k (Y | x) is given in [5], with x ∈ ∆x:

E

[
(qα(Y | x) − q̂α

n (Y | x))2
]

= β(x)2h4
n +

v2(x)

nhn
+ o(h2

n) + o(
1

nhn
),

with:

β(x) =
µ2(K)

2

d2qα(Y | x)

dx2
, v2(x) =

R(K)α(1 − α)

f(x)f(qα(Y | x) | x)
,

where f(· | x) is the pdf of the conditional distribution (Y | X = x). Hence, for the given
n-sample, and x ∈ ∆x, the optimal bandwidth h∗

n(x) = arg min
h>0

MSE(x) writes:

h∗
n(x)5 =

R(K)α(1 − α)

nµ2(K)2(d2qα(x)
dx2 )2f(x)f(qα(x) | x)2

. (14)
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As d2qα(x)
dx2 and f(qα(x) | x) are unknown, the authors in [16] propose to express h∗

n(x) in terms of
hmean(x), the optimal bandwidth for the estimation of m(x) (i.e. which minimizes its asymptotic
MSE), with m the conditional mean function defined as follows:

m : x 7→ E [Y | X = x] .

The relation is approximated as follows:

h∗
n(x) = hmean(x)

[
α(1 − α)

φ (Φ−1 (α))

]1/5

(15)

As for hmean(x), we have from [4]:

hmean(x)5 =
R(K)σ2(x)

nµ2(K)2m′′(x)2f(x)
, (16)

where σ2(x) := Var (Y | X = x). Nevertheless, the problem of unknown parameters still persists
in (16) as σ2(x) and m′′(x) need to be estimated.

4.2. Computation of an Optimal Bandwidth in Practice

The goal is to get an estimate of hmean(x), which mainly relies on a good approximation of the
second-order derivative of m. Based on the development in [13], we suggest to perform a least
squares quadratic fit (in the quoted article, the authors preferred a fourth-order fit, as they needed
to estimate the fourth-order derivative of m). This writes:

∀j ∈ {1, . . . , n}
(
m̂(Xj), m̂′(Xj), m̂′′(Xj)

)
= arg min

(a,b,c)∈R3

n∑

k=1

(
Y k − a − b(Xk − Xj) − c(Xk − Xj)2

)2

However, this is inadequate for regression functions having many oscillations (see [7] for further
details). To this effect, the authors in [7] suggest to partition the range of the X data into N ∈ N

blocks and perform a quadratic fit over each block. In the following, the N blocks, B1, . . . , BN ,
are equally sized, with n divisible by N . We write t = n/N . For each i ∈ {1, . . . , N}, Bi is the
i-th sub-sample of the ordered data, X, i.e.

Bi :=
{

X((i−1)t+1), . . . , X(it)
}

.

We perform the block-wise quadratic fit over the i-th block for its components, as follows , for
any j ∈ {(i − 1)t + 1, . . . , it}:

(
m̂(X(j)), m̂′(X(j)), m̂′′(X(j))

)
= arg min

(a,b,c)∈R3

it∑

k=(i−1)t+1

(
Y (k) − a − b(X(k) − X(j)) − c(X(k) − X(j))2

)2
.

We define the blocked quadratic estimator for σ2(·) of the i-th block below:

σ̂2
Bi

:=
1

t − 3

it∑

k=(i−1)t+1

(
Y ((i−1)t+s) − m̂(X((i−1)t+s))

)2
,

10



which means that we assume σ2(·) to be constant over each block. The latter is as relevant as long
as the blocked fit is efficient. The next issue is to set the best number of blocks, N , in order to get
both satisfying blocked fit and a good estimation of the second derivative of the function m. To
this effect, as suggested in [13], we use Mallows’s CP , introduced in [9], with N ∈ {1, . . . , Nmax}:

CP (N) =
RSS(N)

RSS(Nmax)
(n − 3Nmax) − (n − 6N), (17)

with Nmax to be set in the following and RSS the classical residual sum of squares, defined as
follows:

RSS(N) =
n∑

j=1

(
Y j − m̂(X(j))

)2
,

where m̂(·) corresponds to the N block-division of the initial X data. We introduce the data-

driven best number of blocks, N̂ , as follows:

N̂ := arg min
N∈{1,...,Nmax}

CP (N), (18)

as it guarantees a relevant fit. One can see that the expression in (17) includes a penalty on the
number of blocks, N . Indeed, a high number of blocks would ensure a good fit, but the blocked
estimation for m′′ would rely only on a few elements as the blocks would get small. This may
lead to a very high variance-estimator for m′′. As soon as one has determined N̂ , we can set a
logical estimator for hmean(Xj) from (16), with Xk a component of Bi:

ĥmean(x) :=

[
R(K)

µ2(K)2

σ̂2
Bi

m̂′′(X(j))nf(x)

]1/5

(19)

One gets to the optimal bandwidth estimation for the conditional quantile with (15):

ĥn(x) := ĥmean(x)

[
α(1 − α)

φ (Φ−1 (α))

]1/5

. (20)

We plug the expression (20) into the definition of the estimator, ŜX
cα

(Y ) (12).

Remark. This is a variant to the method displayed in [16]. Indeed they suggest to use the esti-
mate provided [13] for hmean(Xj). However, the problem that they consider in the latter is to de-
termine the best bandwidth regarding the integrated MSE for hmean(X). Therefore, this estimator
cannot be plugged into the expression in (15) as it requires to be pointwise. While the authors in

[13] defined ĥmean(Xk) from integrated parameters, e.g. from estimates for
∫

∆x
m′′(x)f(x)dx and∫

∆x
σ2(x)dx, we defined ĥmean(Xk) from the pointwise (resp. blockwise) parameters, m̂′′(X(j))

(resp. σ̂2
Bi

).
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5. Numerical Results

5.1. Toy Example

In order to test the efficiency of the optimal bandwidth estimation, we apply the method that we
introduce to the following toy example:

Y = X − Z,

with X, Z iid ∼ Exp(1). With n = 103, we generate a n-sample
((

X1, Z1, Y 1
)

, . . . , (Xn, Zn, Y n)
)
.

5.1.1. Estimates for the conditional quantile and the minimum of the mean contrast

Successively, we use the estimated bandwidth introduced in (20) to estimate conditional quan-
tiles (i.e. qα(Y | X = x), for x > 0) and minima of the quantile-oriented mean contrast, cα,
min
θ∈R

E [cα(Y, θ) | X = x], for x > 0. We assess the efficiency of these estimators for only α = 0.5.

Conditional Quantile Estimate

For three different values of x, x1 = 0.5, x2 = 1 and x3 = 2.4, we computed the estimator for the
conditional quantile, i.e. for i = 1, 2, 3:

q̂α
n(Y | X = xi) = arg min

θ∈{Y 1,...,Y n}


 1

nf(xi)

n∑

j=1

cα(Y j , θ)Kĥn(xi)

(
Xj − xi

)

 ,

with ĥn(xi) introduced in (20). The values that we seek to estimate are:

qα(Y | X = x1) ≃ −0.19, qα(Y | X = x2) ≃ 0.31, and qα(Y | X = x3) ≃ 1.71

In order to display the efficiency of this estimator, we repeated the experiments niter = 103 times
and computed the following values, for i = 1, 2, 3:

Mean error(i) :=

√
1

niter

niter∑
(q̂α

n(Y | X = xi) − qα(Y | X = xi))2,

Mean bias(i) :=
1

niter

niter∑ (
q̂α

n(Y | X = xi) − qα(Y | X = xi)
)

,

Mean variance(i) :=
1

niter

niter∑ (
q̂α

n(Y | X = xi) − qα(Y | X = xi) − Mean bias(i)
)2

.

The numerical results for the three types of error are listed in Table 1 and displayed in the
histograms of Figure 2. As for Figure 2, we add each time the Gaussian pdf whose expectation is
Mean bias(i) and variance is Mean variance(i). We can see that the estimation of the conditional
quantile is accurate as long as the conditioning value, xi, is likely enough. On the other hand, the
error is quite high when conditioning by x3, with q0.90(X) < x3. In Figure 2, we can observe the
asymptotic normality of the estimation of qα(Y | X = xi) But once again, it seems less accurate
when x is not likely.
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x x1=0.5 x2=1 x3=2.4

Mean error(i) 0.03 0.15 0.92
Mean bias(i) -3.3e−3 -5.4.e−3 -1.5e−2

Mean variance(i) 4.2e−4 7.2e−3 3.3e−2

Table 1. niter repetitions of n-sample in order to generate niter estimates of qα(Y | X = xi), with i = 1, 2, 3 for α = 0.5.
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Figure 2. Distribution of the repetitions of the estimator, q̂α
n (Y | xi), with i = 1, 2, 3 for α = 0.5 and n = 103. The real

value is in green dotted line.
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x x1=0.5 x2=1 x3=2.4

Mean error(i) 3.7e−4 4.8e−4 9.8e−4

Mean bias(i) -1.3e−3 -1.2e−3 -1.5e−3

Mean variance(i) 2.1e−3 3.7e−3 1.5e−2

Table 2. Errors of the niter estimates of m̂in
θ∈R

E

[
cα(Y, θ) | X = xi

]
, with i = 1, 2, 3 for α = 0.5.

Minimum of the quantile-oriented contrast

For three different values of x, x1 = 0.5, x2 = 1 and x3 = 2.4, we computed the estimator for the
minimum of the quantile-oriented contrast, i.e. for i = 1, 2, 3:

m̂in
θ∈R

E

[
cα(Y, θ) | X = xi

]
n

:= min
θ∈{Y 1,...,Y n}


 1

nf(xi)

n∑

j=1

cα(Y j , θ)Kĥn(xi)

(
Xj − xi

)

 .

In [6], the exact expression of E [cα(Y, θ) | X = x], for any x ∈ R and α ∈]0, 1[, is computed.
We have: E [cα(Y, θ) | X = x] = −α log(α), if 1/2 ≤ α. The values that we seek to estimate are
all equal in this case: min

θ∈R

E
[
cα(Y, θ) | X = xi

]
≃ 0.35, for α = 0.5. In order to display the

efficiency of this estimator, we repeated the whole experiments niter = 103 times and computed
the following values, for i = 1, 2, 3:

Mean error(i) :=
1

niter

niter∑
|m̂in

θ∈R

E

[
cα(Y, θ) | X = xi

]
n

− min
θ∈R

E

[
cα(Y, θ) | X = xi

]
|,

Mean bias(i) :=
1

niter

niter∑ (
m̂in
θ∈R

E

[
cα(Y, θ) | X = xi

]
n

− min
θ∈R

E

[
cα(Y, θ) | X = xi

])
,

Mean variance(i) := 1
niter

∑niter

(
m̂in
θ∈R

E
[
cα(Y, θ) | X = xi

]
n − min

θ∈R

E
[
cα(Y, θ) | X = xi

]

− Mean bias(i))2 .

The numerical results for the three types of error are listed in Table 2 and in the histograms of
Figure 3. As for Figure 2, we add each time the Gaussian pdf whose expectation is Mean bias(i)
and variance is Mean variance(i). The error seems even lower than on
qα(Y | xi), which justifies our choice to minimize the error of the minimizer in order to get a good
estimation of the minimum. Mainly, the estimation does not seem to be harmed by the choice of
x, as the different types of error do not really vary whether we choose x1, x2 or x3. We observe
once again in Figure 3 the asymptotic normality for the estimator of min E

[
cα(Y, θ) | X = xi

]
.

Unlike the errors in Table 2, it seems more affected by the choice of x.

5.1.2. Application of the selected bandwidth to the quantile-oriented SA estimator

Given the previous development regarding the determination of an efficient bandwidth for the
estimation of min

θ∈R

E [cα(Y, θ) | X = x], our goal is to integrate it into the expression of the esti-

mator ŜX
cα

(Y ). To do so, let us recall that one can express the second term of the estimator with
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Figure 3. Distribution of the repetitions of the estimators m̂in
θ∈R
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[
cα(Y, θ) | X1 = xi

]
n

, with i = 1, 2, 3 for α = 0.5 and

n = 103. The real value is in green dotted line.
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Ĉx, introduced in (10):

1

m

m∑

k=1

min
θ∈R

ĈX ′k (θ) ,

where min
θ∈R

ĈX ′k is the estimator for min
θ∈R

E [cα(Y, θ) | X = x]. Therefore, for each

k ∈ {1, . . . , m}, we substitute hn by ĥn(X ′k), introduced in (20), into the expression of ĈX ′k . We
finally get:

ŜX
cα

(Y ) := min
θ∈R

1

n

n∑
j=1

cα

(
Y j , θ

)

−
1

m

∑m
k=1 min

θ

1

nf(X ′k)

∑n
j=1 cα

(
Y j , θ

)
Kĥn(X ′k)

(
Xj − X ′k

)
.

(21)

Let us recall the toy example: Y = X − Z, with X, Z iid ∼ Exp(1). With n = 103, we generate a
n-sample

((
X1, Z1, Y 1

)
, . . . , (Xn, Zn, Y n)

)
. The aim of the following paragraph is to assess the

estimator we defined in (21). The development provided for this “toy example” in [6] gives the
exact expression for the quantile-oriented SA analysis, SX

cα
(Y ):

SX
cα

(Y ) =
(1 − α)(1 − log(2(1 − α))) + α log(α)

(1 − α)(1 − log(2(1 − α)))
if 1/2 ≤ α

SX
cα

(Y ) =
α(1 − log(2α)) + α log(α)

(1 − α)(1 − log(2(1 − α)))
if 1/2 > α

The value that we seek to estimate is: SX
cα

(Y ) = 0.22, 0.30 and 0.49 for α = 0.25, 0.5 and 0.75.
It is important to mention that nothing has been said so far about the value of m, the size of the
sample generated from X ′. It turns out that its value is independent from the size of sample, n.
We consider n to be set prior to the SA study (at least in our case). As we have already stated,
the value n matters more as it requires more runs of the code when it grows. Increasing m just
impacts the number of the minimization problems needed for the estimator. Let us recall that
we have n needed evaluations of a low-time consuming function, and this for each element X ′k of
the m-sample

(
X ′1, . . . , X ′m

)
. In the following, we set m = 103 as we seem to have the following

convergence knowing the n-sample
((

X1, Y 1
)

, . . . , (Xn, Y n)
)
:

1

m

m∑

k=1

min
θ∈R

ĈX ′k (θ) −→
m→∞

EX ′

[
min
θ∈R

ĈX ′ (θ) |
((

X1, Y 1
)

, . . . , (Xn, Y n)
)]

,

with ĈX ′ introduced in (10). Through this, we mean that according to our numerical applications,
increasing m would not improve the quality of the estimator. Indeed, it is certain that increasing
m infinitely will not ensure any consistency for the estimator as long as n is too low. Therefore,
the quality of our estimator mainly relies on the pointwise quality of the estimator min

θ∈R

ĈX ′ (θ),

which depends on the value of n (see Proposition 4). We repeat the experiments niter = 103 times
in order to observe the estimators’ empirical respective distributions. Classical errors that we
observe are listed in Table 3. We display the histograms of the results from these repetitions for
α = 0.5 in Figure 4. We add to the histogram the pdf’s of Gaussian distribution with similar bias
and variance than on the sample. It seems that the samples of ŜX

cα
(Y ) are distributed according

to a Gaussian law.
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Figure 4. Distribution of the repetitions of the estimator ŜX
cα

(Y ) for α = 0.25, 0.5 and 0.75, with n = 103. The real value
is in green dotted line.

ŜX1

cα
(Y ) α = 0.25 α = 0.5 α = 0.75

Mean error 6.1e−2 2.9e−2 5.5e−2

Mean bias 1.2e−2 8.2e−3 1.1e−2

Mean variance 2.0e−3 7.5e−4 1.1e−3

Table 3. Errors of the niter estimates of SX
cα

(Y ).
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ŜX1

cα
(Y ) α = 0.25 α = 0.5 α = 0.75

Mean error 2.0e−1 1.3e−1 2.6e−1

Mean bias 1.2e−1 8.5e−2 1.4e−1

Mean variance 8.0e−1 3.5e−1 7.2e−1

Table 4. niter repetitions of S̃X
cα

(Y ), the empirical estimator of SX
cα

(Y )

Remark. In order to prove the accuracy of this kernel-based approach for the estimate of SX
cα

(Y ),
we compare it with a classical empirical estimator (we mention it in Section 3 as a non-desirable
method, see Figure 1). With the same number of simulations n = 103, we allocate n1 simulations

for the estimation of min
θ∈R

E [cα(Y, θ)] and n2 for EX

[
min
θ∈R

E [cα(Y, θ) | X]

]
, with n = n1 + n2.

Let us generate the iid samples
((

X1, Z1
)

, . . . , (Xn1 , Zn1)
)

of (X, Z), (X ′
1, . . . , X ′

N ) of X and(
Z ′

k′

j
)

k′∈{1,...,N}, j∈{1,...,n2/N}, with n2 divisible by N We introduce the expression for the classical

empirical estimator:

S̃X
cα

(Y ) :=

1
n1

min
θ∈R

∑n1

k=1 cα(Y k, θ) − 1
N

∑N
k′=1

N
n2

min
θ∈R

∑n2/N
j=1 cα(Y j

k′ , θ)

1
n1

min
θ∈R

∑n1

k=1 cα(Y k, θ)
, (22)

with:

∀k ∈ {1, . . . , n1} Y k := g
(
Xk, Zk

)
,

and:

∀k′ ∈ {1, . . . , N}, ∀j ∈ {1, . . . , n2/N} Yk′
j := g

(
X ′

k′ , Z ′
k′

j
)

.

We set n1 = 100, n2 = 900 and N = 30. The whole experiments are repeated niter = 103 times
and the results are displayed in Table 4. Compared to Table 3, the errors are very high in this
case. As expected, the empirical approach for SX

cα
(Y ) estimate seems highly inaccurate.

5.2. Application to Non-Destructive Examination

5.2.1. Presentation

In industries, it is common to carry out Non-Destructive Examinations (NDE) in order to ensure
the integrity of an important structure. The goal is to detect any defect, split or flaw, that could
severely damage the system. It consists in sending a ultrasonic wave through the structure to
study and measure its amplitude after reflection. The main idea is that the amplitude of the wave
increases with the size of the defect, if there is any. To this effect, engineers set a threshold ts > 0
such that one concludes that there is a defect as soon as the measured amplitude is greater than
ts. As for the mathematical framework, we have:

• Y > 0, the amplitude of the signal after examination,
• a > 0, the size of defect,
• X ∈ χ ⊂ R

d, with d = 6, the influential random parameters of the examination. X1, . . . , Xd

are independent.

Y is a deterministic function of a and X. We write g the function so that Y = g(a, X). It is
important to note out that, for any x ∈ R

d, the function (a → f(a, x)) is increasing. Therefore,
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X1 Thickness of the structure
X2 Transverse wave speed
X3 Attenuation coefficient
X4 Rate of refraction
X5 Angle control
X6 Tilt

Table 5. List of the random inputs in the defect detection control.

we understand that the higher the signal is, the more likely it is to have a defect in the inspected
structure. To this effect, engineers set a threshold ts, so that: Y > ts means that a defect has been
detected. In order to assess the capability for the NDE’s to detect any defect by repeating the
experiments a high number of times, engineers use simulators that model the detection process.

We work with the numerical code CIVA from the company CEA which simulates ultrasonic
controls. We display in Table 5 the different meanings of each input. For N = 30 different sizes
of defect (a1, . . . , aN ), M = 20 simulations are performed with M independent realizations of the
random vector X:




a1
...

aN


 ,




X1,1 . . . X1,M

...
...

XN,1 . . . XN,M .




As the signal Y is function of a and X, we write:

∀k ∈ {1, . . . , N}, j ∈ {1, . . . , M} Y k,j = Y
(
ak, Xk,j

1 , . . . , Xk,j
d

)
.

In order to have a first idea of the inputs’ respective influence, we display in Figure 5 the
scatter plots for the first four inputs, (a, X1, X2, X3), with respect to the output, Y . The idea
is to observe how some aspects of Y ’s distribution can be affected by different values for the
considered input. We can see that a seems far more influential. One could even assume a linear
relationship with Y . As for X1, its only influence that can be assume over Y regards the higher
quantiles, qα(Y ), for α close to 1. Indeed, we observe that mainly the upper tail of Y ’s distribution
seems to be affected by the different values of X1. As for X2 and X3, no significant modification
is to be pointed out. We did not represent the scatter plots for the last 3 inputs as they do not
significantly differ from X2 and X3.

5.2.2. Numerical Results: Quantile-Oriented SA

We perform the numerical results for the estimation of SXi

cα
(Y ), i = 1, . . . , d out of the data set

which we were provided. As mentioned in the previous numerical results, m = 103 still seems to
ensure the following convergence:

1

m

m∑

k=1

min
θ∈R

ĈX ′k (θ) −→
m→∞

EX ′

[
min
θ∈R

ĈX ′ (θ) |
((

X1, Y 1
)

, . . . , (Xn, Y n)
)]

,

with ĈX ′ introduced in (10). We computed estimates introduced in (21) for SX1

cα
(Y ), i = 1, . . . , d,

as well as Sa
cα

(Y ), for different levels of quantile, α ∈]0, 1[. We listed the results in Table 6. The
values of the estimates underline three facts:

• For each input but X1, it seems that there is equal influence over all the quantiles of the
signal, qα(Y ), α ∈]0, 1[. This means that the uncertainty propagation of each input is well
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Figure 5. Scatter Plots of the first four inputs, Y vs a, Y vs Xi, i = 1, . . . , 3.

α a X1 X2 X3 X4 X5 X6

0.1 0.92 0.10 0.15 0.12 0.14 0.12 0.13
0.25 0.89 0.11 0.13 0.11 0.13 0.10 0.14
0.5 0.90 0.13 0.13 0.10 0.13 0.10 0.14
0.75 0.91 0.16 0.13 0.10 0.14 0.09 0.13
0.9 0.87 0.20 0.14 0.11 0.16 0.11 0.14

Table 6. List of the values of the estimates for S·
cα

(Y ), for all the inputs, at different levels of quantiles, α ∈]0, 1[.
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α a X1 X2 X3 X4 X5 X6

0.1 [0.89;0.93] [0.06;0.12] [0.06;0.17] [0.06;0.16] [0.07;0.16] [0.09;0.16] [0.09;0.15]
0.25 [0.88;0.91] [0.08;0.13] [0.07;0.16] [0.09;0.18] [0.06;0.15] [0.09;0.15] [0.08;0.16]
0.5 [0.91;0.92] [0.12;0.15] [0.10;0.17] [0.07;0.12] [0.07;0.15] [0.08;0.15] [0.09;0.14]
0.75 [0.91;0.93] [0.13;0.19] [0.08;0.18] [0.07;0.15] [0.06;0.15] [0.07;0.17] [0.10;0.15]
0.9 [0.86;0.91] [0.18;0.26] [0.06;0.16] [0.07;0.16] [0.05;015] [0.07;0.14] [0.08;015]

Table 7. List of the 90%-Confidence Intervals for the estimates of S·
cα

(Y ) after bootstrap.

spread throughout the whole output distribution (vertical reading).
• X1’s influence seems to be more important for higher levels of quantiles (moving from 0.11

for α = 0.1 to 0.20 for α = 0.9). This confirms the observation made from the corresponding
scatter plot.

• Overall, a is far more influential over the output distribution than every marginal of X,
which is not surprising at all as it is the main the purpose of this detection process. On the
other hand, together the marginals of X seem to be equally influential.

In order to verify the robustness of the estimator for the given data, we perform a bootstrap pro-
cedure. It consists in generating n-samples, niter times, from the initial n-sample by sampling with
replacements. Then, we apply the estimator to all the samples to get

(
S·

cα
(Y )1

BS , . . . , S·
cα

(Y )niter

BS

)

and compare their values. A classical method suggests to set 1 − β-confidence intervals over
S·

cα
(Y ), CIβ(S·

cα
(Y )), with β ∈]0, 0.5[, as follows:

CIβ(S·
cα

(Y )) :=
[
q̂β/2

n (S·
cα

(Y )BS ; q̂1−β/2
n (S·

cα
(Y )BS

]
, (23)

where q̂n is the classical empirical estimator for the quantiles, introduced in (6). The corresponding
90%-confidence intervals are displayed in Table 7. One can conclude that once again, a has a
different behaviour. Indeed, the confidence-intervals for a are pretty thin. This suggests that the
corresponding values are reliable. As for the other inputs, one can see that the initial sample
would require to have n higher to ensure reliable estimators.

6. Conclusion

In this paper, we introduced estimators for the quantile-oriented SA indices with respect to
a contrast. Several side consistency results are proved in order to justify its efficiency. Yet, the
proof for the estimators’ consistency remains a major wish for the future. The computations of the
estimators for the “toy example” suggest that these estimators might have an asymptotic Gaussian
distribution. This would be a significant step forward for their use. Through the applications, we
could see that they provide relevant information that other common methods, such as Sobol
indices, could not detect. It is important to remember that these indices do not have an analogue
to the variance decomposition offered by Sobol indices through the Hoeffding theorem. Thus, it
is for example impossible in practice to set a random input to a unique value after proving that it
is barely influential over the quantile. These indices provide only local information. To this effect,
it should be interesting to set a general methodology when a SA study is needed: for instance,
how and in what order to combine the different indices that we know to solve a precise problem.
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