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SURFACE GROUPS OF DIFFEOMORPHISMS OF THE

INTERVAL

LUDOVIC MARQUIS AND JUAN SOUTO

Abstract. We prove that the group of diffeomorphisms of the interval
[0, 1] contains surface groups whose action on (0, 1) has no global fix
point, is topologically transitive, and such that only countably many
points of the interval (0, 1) have non-trivial stabiliser.

1. Introduction

The goal of this paper is to exhibit surface groups in the group Diff([0, 1])
of diffeomorphisms of the interval. To be precise, let

Diff([0, 1]) = {φ ∈ Diff∞(R)|φ(t) = t for all t /∈ (0, 1)}

be the group of C∞-diffeomorphisms of the real line which are identity out-
side of the unit interval. Equivalently, Diff([0, 1]) is the group of smooth
diffeomorphisms of the interval which are infinitely tangent to the identity
at its endpoints.

Let F2 be the non-abelian free group in two generators. Since F2 acts
smoothly on the closed interval one can construct, considering a countable
collection of disjoint subintervals of [0, 1], subgroups of Diff([0, 1]) isomor-
phic to the direct product of countably many free groups. As was noted by
Baik, Kim and Koberda [3], this implies in turn that Diff([0, 1]) contains
subgroups isomorphic to every fully residually free group, and thus in par-
ticular fundamental groups of closed surfaces. However, the dynamics of the
so-obtained actions on the interval have many rather unpleasant properties.
For instance, there are numerous global fixed points, there are no points
with trivial stabiliser, and the action is not topologically transitive. Our
goal is to prove that there also nicer surfaces groups in Diff([0, 1]):

Theorem 1.1. There are subgroups of Diff([0, 1]) isomorphic to the funda-
mental group of a closed surface of genus 2 whose action on (0, 1) has no
global fix point, is topologically transitive, and such that only countably many
points of the interval (0, 1) have non-trivial stabiliser.

Recall that a group action is topologically transitive if it has a dense orbit.
Observe also that in some sense the Theorem 1.1 is optimal from the point
of view of the quantity of fixed points: Hölder’s theorem [9, 6, 7] implies
that a group which acts by homeomorphism freely on an interval is abelian.
Finally, lets us note that in Theorem 1.1, we consider surfaces of genus 2 just
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for the sake of concreteness. This is moreover no loss of generality because
the fundamental group of a surface of genus 2 contains the fundamental
group of a surface of genus g for all g > 2.

Note now that Theorem 1.1 admits an interpretation in terms of 3-
manifolds. In fact, to every orientation preserving action π1(Σ) y R of
a surface group on the real line one can associate a foliation on Σ × R as
follows. Let Σ̃ be the universal cover of Σ, let π1(Σ) acts on it via deck-
transformations, and consider the product action

π1(Σ) y Σ̃× R, γ · (z, t) 7→ (γ(z), γ(t)).

The quotient manifold is diffeomorphic to Σ×R. Moreover, since this action
preserves the foliation of Σ̃×R whose leaves are the planes Σ̃×{t}, it follows
that the quotient is naturally endowed with a foliation. Since standard
generators of the groups constructed to prove Theorem 1.1 can be chosen
to be as close to the identity as one wishes, one gets for those groups that
the obtained foliation is close to the trivial foliation with leaves Σ × {t}.
Moreover, since the action is trivial outside of the interval [0, 1], it follows
that the obtained foliation is trivial outside of the compact set Σ × [0, 1].
Altogether we have:

Corollary 1.2. The trivial foliation of Σ × R can be smoothly perturbed
within the compact set C = Σ × [0, 1] so that C is saturated and such that
all but countably many leaves in C are simply connected. �

The proof of Theorem 1.1 would be much easier (in fact, the result is
basically folklore among people interested in these questions) if we were
considering the group of homeomorphisms of the interval instead of the
group of diffeomorphisms. In particular, the existence of such foliations as
provided by Corollary 1.2 is known in the topological category. In particular,
it was already known, using a theorem of Calegari [4], that there were such
foliations where each leaf is smooth. The difference between this statement
and that of Corollary 1.2 is that we are now also ensuring that the foliation
is transversely smooth. These might look as a small difference but in general
it is not. For example, if S is a smooth negatively curved surface then the
weak stable manifolds of the geodesic flow on T 1S are always smooth, but
the weak stable foliation is smooth if and only if the metric has constant
curvature [8]. Note that T 1S is a 3-manifold and that the weak stable
foliation has codimension 1.

As we just mentioned, the main issue in the proof of Theorem 1.1 is that
we insist on the smoothness of the action. In fact, continuous and smooth
actions on the interval are rather different. For example, a finitely generated
group acts effectively by homeomorphisms on the interval if and only if it
is left-orderable [6], but this condition is far from ensuring the existence
of smooth actions. For example, Thurston’s stability theorem [11] asserts
that the group of C1-diffeomorphisms on the interval is locally indicable,
meaning that any (non-trivial) finitely generated subgroup surjects on Z.
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In terms of orders, this means that every group acting effectively by C1-
diffeomorphisms on the interval admits what is called a C-order (see [6]
for the relation between orders on groups and one-dimensional dynamics).
However, there are many examples of locally indicable groups which do not
act smoothly on the interval. For example, Navas [10] proved that there
are semi-direct products Z2 oF2 which do not admit effective C1-actions on
[0, 1]. Other examples of this phenomenon are due to Calegari [5].

The reader could be by now thinking that those comments are all nice
and well, but that surface groups are possibly the most flexible groups after
free groups, and that there are many instances in which it is known that
if a group contains a free group then it also contains a surface group. We
agree. For example, using that surface groups are limits of free groups, it was
proved in [2] that a locally compact group G which contains a non-discrete
free group, also contains a surface group. There are several ways to present
the argument from [2] but the simplest form of the argument, and the one
which is most prone to generalisation, goes as follows. First consider the
group π1(Σ) as an amalgamated product

π1(Σ) = F2 ∗Z F2

where the amalgamation is given by identifying the commutators [a, b] =
[a′, b′] for the free bases {a, b} and {a′, b′} of the first and second copies
of F2 respectively. Now, take a, b ∈ G which generate a free group and
such that there is a 1-parameter subgroup (gt) ⊂ G with [a, b] = g1. Now,
definitively if G is a Lie group but also in all cases that come to mind to the
authors, one has that almost all representations

ρt : π1(Σ)→ G, ρt(a) = a, ρt(b) = b, ρt(a
′) = gtag

−1
t , ρt(b

′) = gtbg
−1
t

are faithful. This is a very flexible argument. But we do not know how to
make it work if G = Diff∞([0, 1]) because we do not know how to ensure
that the commutator [a, b] is part of a flow. In fact, centralisers of generic
diffeomorphisms are cyclic groups [1].

In fact, the argument used to prove Theorem 1.1 is of a very different
nature. Basically, if Σ is our closed surface, we will obtain the desired
homomorphism

ρ : π1(Σ)→ Diff∞([0, 1])

as a limit ρ = lim ρn. Here, the approximating homomorphisms ρn will be
constructed inductively in such a way that at each time the corresponding
kernel is contained in a certain subgroup Γn of π1(Σ) satisfying

π1(Σ) = Γ0 . Γ1 . Γ2 . . . . with ∩∞n=1 Γn = {Id} and Γn−1/Γn = Z for all n.

We will obtain ρn as the holonomy of a certain perturbation of the foliation
of Σ× R associated to ρn−1. The basic two ingredients of the construction
of this perturbation are

• that the foliation associated to ρn−1 contains a trivially foliated prod-
uct H2/Γn−1 × In−1 for some interval In−1 ⊂ [0, 1], and
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• that the cohomology class in H1(H2/Γn−1;Z) given by the isomor-
phism Γn−1/Γn = Z is compactly supported.

It is this last point the one which makes us wonder if groups such as the
fundamental group of a hyperbolic 3-manifold M fibering over the circle and
with say H1(M ;Z) = Z can be subgroups of Diff∞([0, 1]).

The paper is organised as follows. In section 2 we construct the filtra-
tion of π1(Σ) mentioned above. Then, in section 3 we prove Theorem 1.1
assuming Proposition 3.1, the key technical step in this paper. In section
4 we recall the dictionary between foliations and their holonomies. This
dictionary is the key to prove Proposition 3.1 in section 5.

Acknowledgements. We would like to thank Bill Breslin and specially
Sang-hyun Kim for very interesting conversations on this topic.

2. A usefull unscrewing of surface groups

Let from now on Σ be a closed hyperbolic surface of genus 2 and identify
its universal cover with the hyperbolic plane H2. Choose a base point ∗ ∈ H2

and denote again by ∗ its image under the cover H2 → Σ. In the same way,
if Γ ⊂ π1(Σ, ∗) is any subgroup then we denote by ∗ the projection of
the base point of H2 to H2/Γ. Here we let π1(Σ, ∗) act on H2 via deck-
transformations. Finally, even if most of the time we do not make this
explicit, curves in Σ and its covers will be assumed to be oriented. In any
case, the chosen orientation will basically play no role in the arguments.

Anyways, in this section we construct a certain decreasing filtration of
the surface group π1(Σ, ∗). More precisely we prove:

Proposition 2.1. There is a decreasing sequence of nested subgroups

π1(Σ, ∗) = Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ . . .
of the fundamental group of Σ satisfying

∩iΓi = {Id}
and such that for all i we have

Γi+1 = {γ ∈ Γi|〈γ, ci〉 = 0}
where ci ⊂ H2/Γi is an (oriented) simple closed curve and where 〈·, ·〉 is the
algebraic intersection number on H2/Γi.

Before launching the proof we need a definition and a simple fact. We
will say that a hyperbolic surface X has genus all over the place if there is
some R > 0 such that for all x ∈ X there are pair of simple curves αx and βx
contained in the ball of radius R centred at x and intersecting transversally
exactly once. In symbols this means that

(2.1) 〈αx, βx〉 = 1 and αx, βx ⊂ BX(x,R).

To prove Proposition 2.1 we will use the following fact:
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Lemma 2.2. Let X = H2/π1(X) be a connected hyperbolic surface, c ⊂ X
a simple closed curve, and Γ = {γ ∈ π1(X)|〈c, γ〉 = 0}. If X has genus all
over the place, then so does Y = H2/Γ as well.

Proof. First note that if c is separating, then there is nothing to be proved
because X = Y in this case. We assume from now on that c is non-
separating.

Suppose first that X is closed of genus g. The cover Y → X is cyclic
and admits a surface of genus g− 1 > 0 as a fundamental domain for this Z
action. So, Y has genus all over the place with R equal twice the diameter
of the fundamental domain. We suppose from now on that X is not closed.

The set K = {x ∈ X|dX(x, c) 6 R + 1} is compact in X. Let K̃ =

π−1(K) ⊂ Y be its preimage under the cover π : Y → X and let K̂ be the

union of K̃ and of all bounded connected components of Y \ K̃. Since the
cover π : Y → X is normal (with deck-transformation group Z), it follows

that K̃ has a compact fundamental domain under the action Z y K̃ ⊂ Y .
This implies then in turn that K̂ also has a compact fundamental domain.
It follows that there is some R′ such that for all y ∈ Y there is y′ ∈ BY (y,R′)
such that dX(π(y′), c) > R + 1. Now, for any such y′ we have that the ball
BX(π(y′), R) centred at its projection π(y′) and with radius R is disjoint of
c and hence lifts isometrically to Y . In symbols this means that

BY (y′, R) '
isometric

BX(π(y′), R).

It follows that BY (y′, R) contains a pair of curves which meet transversally
and exactly once. Since BY (y′, R) ⊂ BY (y,R′ + R) we have thus proved
that Y has genus all over the place, as we had claimed. �

Armed with Lemma 2.2 we are ready to prove Proposition 2.1:

Proof of Proposition 2.1. We start by ordering the nontrivial elements of
π1(Σ) = Γ0 by length, meaning that we choose a total order 6 satisfying
`Σ(γ) 6 `Σ(η) for all γ 6 η. Here `Σ is the hyperbolic length of the shortest
loop of Σ based at ∗ in the homotopy class relative to the base point ∗.
Armed with this order we start the construction of the filtration (Γi) and of
the respective sequence of curves.

We will work inductively, starting with Γ0 = π1(Σ, ∗). Suppose that we
have given Γn and let η be a smallest non-trivial element of Γn with respect
to the order 6. We will construct (Γi) in such a way that η /∈ Γn+2. Note
that this suffices to show that ∩Γi = Id.

Starting with the construction of Γn+1, note that the choice of η as a
smallest non-trivial element in Γn, ensures that η is a shortest homotopically
non-trivial loop in X = H2/Γn based at the base point ∗. In particular, η
is a simple loop, that is, without self-intersections. If η is non-separating
then let cn be a simple closed curve in X which meets η exactly once. This
means that

η /∈ Γn+1
def
= {γ ∈ Γn|〈γ, cn〉 = 0}.
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We can thus suppose that η separates X into two components X1, X2.
Note that if X1 is compact, then it has positive genus because it has

connected boundary η and is a compact subsurface of a hyperbolic surface -
in particular, X1 contains a pair of simple closed curves α1, β1 intersecting
transversally exactly once. We claim that the same is true also if X1 is
not compact. To see that this is the case note first that, using Lemma
2.2 inductively, we get that X has genus all over the place. Let R > 0
be as in the definition of having genus all over the place, choose x1 ∈ X1

with dX(x1, η) > R + 1 and pick one of the pair of simple curves α1, β1 in
BX(x1, R) guaranteed by the definition of having genus all over the place.
Reversing the roles of X1 and X2 we have then proved:

Fact. Both components X1 and X2 of X \η contain a pair {αi, βi} of simple
closed curves which meet transversally and exactly once. �

(a)

(b)

(c)

(d)η

η

η

η

α1

β2

cn

cn+1

cn

cn+1

cn+1

Figure 1. (a) We see the surface Z ⊂ X (the grey is-
lands denote the connected components of X \Z), the curves
η, α1, β1, α2, β2 and the arc J . (b) We see again Z and η,
and now also the curves cn and cn+1. (c) We see again the
same as in (b), but from a different point of view, that is
after applying a mapping class. Finally, in (d) we see the
cover Y = H2/Γn with lifts of η, cn and cn+1, and with the
homeomorphically lifted grey islands. The important point
to note is that curves η and cn+1 in Y intersect exactly once.

Let α1, β1 ⊂ X1 and α2, β2 ⊂ X2 be the four curves provided by the
fact, oriented in such a way that 〈αi, βi〉 = 1 for i = 1, 2. Let also J be an
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embedded arc in X joining the points α1 ∩ β1 and α2 ∩ β2, whose interior
is disjoint of the curves α1, β1, α2 and β2, and which meets η exactly once
(compare with (a) in figure 1). Let cn be the simple curve obtained from
α1 and α2 by surgery along J . In other words, cn is the component of the
boundary of a regular neighborhood of α1 ∪ J ∪ α2 which is not isotopic
to one of the αi. Similarly, let cn+1 be the curve obtained from β1 and β2

via surgery along J (compare with (b) in figure 1). Note that a regular
neighborhood of the union of the curves α1, β1, α2, β2, η and the arc J is a
subsurface Z of X homeomorphic to a surface of genus 2 with 2 boundary
components.

Remark. Although we will not need it below, note that up to reversing the
orientation of α1 and/or α2, and thus of β1 and/or β2, we might assume
that cn is homologous to α1 + α2, and that cn+1 is homologous to β1 − β2.

Continuing with the proof, take now Γn+1 = {γ ∈ Γn|〈γ, cn〉 = 0} and
note that, unfortunately, η ∈ Γn+1. This means that the loop η in X =
H2/Γn lifts to a loop in the cover Y = H2/Γn+1 (see (d) in figure 1 for
a pictorial representation of Y ). However, the so-obtained loop, which we
again denote by η, does not separate Y . Indeed, it meets some lift of cn+1

to Y in a single point. Denoting again this lift by cn+1 we have that

η /∈ Γn+2
def
= {γ ∈ Γn+1 = π1(Y, ∗)|〈γ, cn+1〉 = 0},

as we needed to prove. �

3. Proof of the main theorem assuming the key step

The groups whose existence is claimed in Theorem 1.1 will be constructed
by a limiting process. The key step is the construction of a sequence of
homomorphisms π1(Σ, ∗)→ Diff([0, 1]) as follows.

Proposition 3.1. Let (Γn) be the sequence of groups provided by Proposition
2.1 and fix a finite symmetric generating set S of π1(Σ, ∗).

For all ε > 0 there is a sequence of pairs (ρn, In) where

ρn : π1(Σ, ∗)→ Diff([0, 1])

is a homomorphism and In is an open subinterval of [0, 1], starting with the
trivial homomorphism ρ0 and with the interval I0 = (0, 1), and such that for
all n > 1 the following conditions are satisfied:

(1) The closure of In is contained in In−1, that is In ⊂ In−1.
(2) ρn is Cn-close to ρn−1, meaning that

‖ρn(γ)− ρn−1(γ)‖Cn 6 10−n · ε

for every γ ∈ S. Here, ‖f‖Cn = maxni=0 ‖f (i)‖∞ is the standard
Cn-norm.
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(3) Stabρn(x) = Γn for all x ∈ In, where

Stabρn(x) = {γ ∈ π1(Σ)|ρn(γ)(x) = x}

is the stabiliser of x with respect to the action of π1(Σ, ∗) on [0, 1]
induced by ρn.

(4) For all γ /∈ Γn we have ρn(γ)(In) ∩ In = ∅. In particular,

∂In ⊂ Kn
def
= [0, 1] \

⋃
γ∈π1(Σ,∗)

ρn(γ)(In).

(5) Finally, ρn(γ)(x) = ρn−1(γ)(x) for all γ ∈ π1(Σ, ∗) and all x ∈
Kn−1. In particular, Kn−1 ⊂ Kn.

We will prove Proposition 3.1 in section 5. Assuming it for now, we
conclude the proof of Theorem 1.1.

Proof of the injectivity part of Theorem 1.1. First note that (2) in Proposi-
tion 3.1 implies that the sequence (ρk(γ))k is Cauchy-sequence with respect
to the Cn-norm for all n. It follows that the limit limk→∞ ρk(γ) exists and
that it is smooth. In other words we get that the homomorphism ρk converge
when k →∞ to a homomorphism

ρ : π1(Σ, ∗)→ Diff∞([0, 1]), ρ(γ)
def
= lim

k→∞
ρk(γ).

To prove Theorem 1.1 we only show for the moment that ρ is injective.
To see that this is the case fix n and let x ∈ ∂In. By (4) and (5) in the
proposition we have that

x ∈ ∂In ⊂ Kn ⊂ Kn+1 ⊂ Kn+2 ⊂ . . .

It thus follows from (5) that

ρn(γ)(x) = ρn+1(γ)(x) = ρn+2(γ)(x) = . . . .

for all γ ∈ π1(Σ). This implies that we also have

ρ(γ)(x) = ρn(γ)(x)

for all γ. Now, because of (4) we have that

Stabρ(x) = Stabρn(x) ⊂ Γn

Since ∩Γn = Id, the claim follows. �

The fact that Proposition 3.1 is true for every ε implies that we can choose
the homomorphism ρ as close (on the generators) as we want to the trivial
homomorphism, which in return implies that the foliation given by such a
homorphism ρ is a smooth pertubation of the trivial foliation, so give us
Corollary 1.2.
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4. Review about foliation and holonomy

It remains to prove Proposition 3.1. As we mentioned above, we will do
that in section 5 but first recall briefly the dictionary between actions on
the real line and co-dimension one foliations.

Suppose that we have a locally trivial line bundle π : M → Σ, by which
we mean that M is a smooth fiber bundle with fibers diffeomorphic to R.
If the total space M is endowed with a codimension one smooth foliation
F transversal to the fibers of π, then the distribution {x 7→ TxF} of planes
tangent to F is a smooth flat connection on M . If moreover, every leaf
of F is contained in a compact set of M then the connection is complete,
meaning that parallel transport exists for all times. Note for example that
this condition is satisfied if there is a F-saturated compact C ⊂M such that
the restriction of π to any leaf of F not contained in C is a diffeomorphism
onto Σ. Suppose that such a compact set C exists. It follows thus that the
holonomy representation

ρF : π1(Σ, ∗)→ Diff(π−1(∗))

is well-defined and that its image ρF (π1(Σ, ∗)) fixes every point outside of
π−1(∗)∩C. In other words, if we have an identification of π−1(∗) with R in
such a way that π−1(∗)∩C ⊂ [0, 1], then the holonomy representation takes
values in Diff([0, 1]).

We also note that if we fix γ ∈ π1(Σ, ∗), and if we are given a second
foliation F ′ with the same properties as above, and such that the distribu-
tions {x 7→ TxF} and {x 7→ TxF ′} are Ck-close as sections of Λ2TM →M ,
then the images ρF ′(γ) and ρF (γ) of γ under the new and the old holonomy
representations are also Ck-close to each other.

Turning now the tables, suppose that we are given a representation

σ : π1(Σ, ∗)→ Diff([0, 1])

and recall that we are identifying H2 with the universal cover of Σ. Endow-
ing thus H2 with the deck-transformation action of the fundamental group
π1(Σ, ∗) we consider the product action

(4.1) π1(Σ, ∗) yσ H2 × R, γ · (z, t) 7→ (γ(z), σ(γ)(t))

whose second factor is given by σ. The action (4.1) is discrete, meaning
that that the quotient space Mσ is a manifold. Note now that projection
H2 × R→ H2 induces a map

π : Mσ → H2/π1(Σ, ∗) = Σ.

In fact, π : Mσ → Σ is a locally trivial smooth line bundle over Σ. Moreover,
the total space Mσ is endowed with a codimension one foliation Fσ. To see
that this is the case note that the action (4.1) preserves the foliation of
H2×R whose leaves are of the form H2×{t}. This foliation being preserved
by (4.1), it descends to a foliation Fσ of Mσ.
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These two processes we just described are inverse to each other. In fact,
noting that the foliation Fσ is transversal to the fibers of π, note also that
the image of H2× [0, 1] under the quotient map H2×R→Mσ is a saturated
compact set C such that the restriction of π to any fiber of F not contained in
C is a diffeomorphism onto Σ. Note also that we have obvious identifications
π−1(∗) = ∗×R = R and that under those identifications the set C ∩ π−1(∗)
goes to the closed interval [0, 1]. It follows that the holonomy representation
ρFσ of Fσ takes values in Diff([0, 1]). In fact ρFσ = σ.

Conversely, if we start with a foliation F of the total space of a line
bundle π : M → Σ with the properties above, we consider the associated
holonomy representation ρF , and then construct the associated line bundle
π : MρF → Σ and foliation FρF then we have a bundle isomorphism

M

��

// MρF

}}
Σ

mapping F to FρF .

Remark. Recall that, if z ∈ π−1(∗) then the restriction of π to the leaf Fz of
F containing z is a covering of Σ, whose fundamental group is the subgroup
of π1(Σ, ∗) which is the stabilizer of z.

Restricting to saturated sets. Before concluding this digression, suppose
that we have a line bundle π : M → Σ, a codimension one foliation F
on M transversal to the fibers of π, and a compact set C ⊂ M with the
property that the restriction of π to each leaf which is not contained in C
is a diffeomorphism. Letting as always ∗ 3 Σ be the base point, identify as
above π−1(∗) = R in such a way that π−1(∗)∩C = [0, 1]. Suppose now that
U is an open saturated subset of C and suppose that there is a connected
component J of π−1(∗)∩U with the property that every leaf of F contained
in U meets J .

⊂

J

J U U
M

Σ

Figure 2. Consider the Moebius band M as the total space
of a line bundle with base Σ = S1, foliate M by circles, let
U ⊂ M be a saturated annulus and restrict the foliation to
U - possibly a too simple example, but the only one we can
possibly draw.
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Remark. Such a J exists if U is connected and it can be chosen to be any
connected component of π−1(∗) ∩ U .

Note that since J is an interval, the relative homotopy group π1(U, J) is
isomorphic to the fundamental group of U . Note also that, applying the long
homotopy sequence to the bundle U → Σ, we get that the restriction π|U of
the projection π to the open set U induces an injective homomorphism

(π|U )∗ : π1(U, J)→ π1(Σ, ∗).
The restriction of π to U lifts to an interval bundle

π|U : U → H2/(π|U )∗(π1(U, J))

and the holonomy of the induced foliation F|U is related to the holonomy
of the foliation F as follows:

ρF ((π|U )∗(γ))|J = ρF|U (γ) for all γ ∈ π1(U, J).

In other words, as long as we restrict to the group π1(U, J) and we restrict
the holonomies to J , then the holonomy of M → Σ and the holonomy of
U → Σ agree.

5. Proof of the key step

We are now ready to prove Proposition 3.1. We will construct the desired
pairs (ρn, In) by induction. Since we have already that I0 = (0, 1) and that
ρ0 is the trivial homomorphism, we can assume by induction, that the pair
(ρn−1, In−1) has been already constructed. To construct the next pair we
will consider the foliation Fρn−1 associated to ρn−1, perturb it to a new
foliation, and take the associated holonomy.

Starting thus with the representation ρn−1 we consider as above the prod-
uct action π1(Σ) yρn−1 H2 × R as in (4.1) and let

Mn−1 = Mρn−1 = H2 × R/{(x,t)∼(γ(x),ρn−1(γ)(t))|γ∈π1(Σ,∗)}

be the total space of the associated line bundle π : Mn−1 → Σ. As before,
we have a canonical identification π−1(∗) = R. Denote by C ⊂ Mn−1

the projection of H2 × [0, 1] and note that C is compact. Note also that
C ∩π−1(∗) = [0, 1]. Finally, let Fn−1 = Fρn−1 be the 2-dimensional foliation
associated to ρn−1.

Consider now the obvious embedding

(5.1) H2 × In−1 → H2 × R, (z, t) 7→ (z, t).

By induction we know that (ρn−1, In−1) satisfies (3) in Proposition 3.1,
meaning for starters that Γn−1 acts trivially on In−1. It follows that the
embedding (5.1) descends to a well-defined map

(5.2) φ : H2/Γn−1 × In−1 →Mn−1.

Since (ρn−1, In−1) also satisfies (4) in Proposition 3.1, we also know that
every element of π1(Σ, ∗) \ Γn−1 moves In−1 off itself. It follows that (5.2)
is an embedding. Since the image of (5.1) is saturated under the foliation
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of H2 ×R by planes H2 × {t} we derive that (5.2) maps leaves of the trivial
foliation to leaves of Fn−1 and that its image φ(H2/Γn−1× In−1) ⊂Mn−1 is
saturated.

Anyways, we summarize the situation at hand in the following lemma:

Lemma 5.1. There is an embedding

φ : H2/Γn−1 × In−1 → C ⊂Mn−1

with the following properties:

(a) φ(H2/Γn−1 × {t}) is a leaf of Fn−1 for all t ∈ In−1.
(b) φ({z}× In−1) is contained in a fiber of the projection π : Mn−1 → Σ

for all z ∈ H2/Γn−1.
(c) π(φ({∗}×In−1)) = ∗ and, after our earlier identification π−1(∗) = R,

we have that in fact φ({∗} × In−1) = In−1.
(d) Moreover, φ(H2/Γn−1 × In−1) ∩ π−1(∗) = ∪γ∈π1(Σ,∗)ρn−1(γ)(In−1).

�

The new homomorphism ρn : π1(Σ, ∗) → Diff([0, 1]) will be obtained as
the holonomy of a foliation F on Mn−1, transversal to the fibers of the
projection π : Mn−1 → Σ, and obtained by perturbing Fn−1 within the
image of the embedding φ from Lemma 5.1. We note before going any
further that it follows from Lemma 5.1 (d) that the holonomy ρF of any
such foliation satisfies condition (5) in Proposition 3.1. Using the induction
hypothesis, the holonomy of any such F also satisfies the (4) of proposition
3.1 at the stage n− 1, meaning:

(4’) For any γ /∈ Γn−1 we have ρF (γ)(In−1) ∩ In−1 = ∅.

Well, we start with the construction of a concrete perturbation F of Fn−1.
As we just mentioned, everything is going to happen within the image of φ.

We cannot recall too often that the restriction of Fn−1 to φ(H2/Γn−1 ×
In−1) ' H2/Γn−1 × In−1 is nothing but the foliation whose leaves are the
copies H2/Γn−1 × {t} of the cover H2/Γn−1 of Σ associated to Γn−1. Recall
also that by the very construction of the group Γn in Proposition 2.1, there
is a simple curve c ⊂ H2/Γn−1 such that

Γn = {γ ∈ π1(Σ, ∗)|〈γ, c〉 = 0}.

We might assume that c does not meet the base point ∗. Consider now an
embedding

ψ : S1 × [−1, 1]→ H2/Γn−1 \ {∗}
with ψ(S1 × {0}) = c and the corresponding embedding

(ψ × Id) : (S1 × [−1, 1])× In−1 → H2/Γn−1 × In−1

We are going to perturb the trivial foliation of H2/Γn−1 × In−1 inside the
image of ψ×Id. To do so we replace the trivial foliation of S1× [−1, 1]×In−1

by cylinders S1 × [−1, 1]× {t} by a new foliation by cylinders as suggested
by Figure 3.



13

S1

In−1

−1 1

Figure 3.

In more precise, but definitively more obscure terms, choose a diffeomor-
phism

(5.3) f ∈ Diff(In−1)

with f(y) > y for all y ∈ In−1 and a smooth monotone function g : [−1, 1]→
[0, 1] with g(x) = 0 for x near −1 and g(x) = 1 for x near 1. Now consider
the foliation G of S1 × [−1, 1] × In−1 whose leaf through (θ, y,−1) is the
graph of the function

S1 × [−1, 1]→ In−1, (θ, x) 7→ (1− g(x))y + g(x)f(y).

Now, the foliation G agrees near S1×{−1, 1}×In−1 with the trivial foliation
with leaves S1 × [−1, 1] × {y}. In particular, we can extend the foliation
(ψ×Id)(G) on (ψ×Id)(S1×[−1, 1]×In−1) to a foliationH on H2/Γn−1×In−1

by declaring that H agrees with the trivial foliation outside of (ψ × Id)(G).
We now let Fn be the foliation of Mn−1 which agrees with Fn−1 on Mn−1\

φ(H2/Γn−1 × In−1) and with φ(H) on φ(H2/Γn−1 × In−1). Here φ is, as all
along, the embedding (5.2). Let also

ρn = ρFn : π1(Σ, ∗)→ Diff[0, 1]

be the holonomy of the Fn and let In ⊂ In−1 be a maximal open subinterval
such that f(In−1) ∩ In−1 = ∅. We claim that, if we choose f in (5.3)
sufficiently close to the identity, then the pair (ρn, In) satisfies the claims in
Proposition 3.1.

In fact, as we mentioned earlier, (5) is already satisfied. By choice of
In−1, we are also satisfying (1). Then, if we choose f in (5.3) Cn+10-close
to Id then the associated foliation of G of S1 × [−1, 1]× In−1 is Cn-close to
the trivial foliation by cylinders S1× [−1, 1]×{t}. This implies in turn that
the foliation H on H2/Γn−1× In−1 is again close to the trivial foliation and,
surprise, surprise, this implies again that the perturbed foliation Fn is close
to the unperturbed foliation Fn−1. The off-shot of all this, is that as long
as we choose f sufficiently close to the identity, then (2) in Proposition 3.1
is also satisfied.
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To see that (3) and (4) are satisfied note that, by (4’) above, it suffices
to prove that they both hold if we restrict the holonomy representation
ρn = ρFn to the subgroup Γn. Noting that Γn is nothing but the image of
π1(φ(H2/Γn−1 × In−1), {∗} × In−1) under the restriction of the projection
π : Mn−1 → Σ, we obtain from the discussion at the end of section 4 it
follows that the holonomies of ρn = ρFn of Fn and ρH : Γn → Diff(Īn) of
the foliation H on H2/Γn−1 × In−1 are related by

ρn((π∗(γ))|In = ρH(γ)

for γ ∈ Γn−1 = π1(φ(H2/Γn−1×In−1), {∗}×In−1). The holonomy ρH of the
foliation H is given by

(5.4) ρH(γ) = f 〈γ,c〉

which means that ρH(γ)(In)∩In = ∅ unless 〈γ, c〉 = 0, that is unless γ ∈ Γn.
It also implies that Ker(ρH) = Γn, which means in particular that ρH(γ)
fixes In pointwise if γ ∈ Γn. These observations, combined with (5.4) show
that ρn satisfies (3) and (4) from Proposition 3.1.

This completes the induction step and thus the proof of Proposition 3.1.
�

End of the proof of Theorem 1.1. It remains to show that the induced ac-
tion on [0, 1] has only countably many points with non-trivial stabiliser, that
it has no global fixed points in (0, 1), and that it is topologically transitive.

Note that by points (3) and (5) of Proposition 3.1, the stabilizer of a
point x ∈ Kn r Kn−1 is precisely Γn. Also, the stabilizer of any point
x ∈ [0, 1] rK∞ is trivial by point (4) of Proposition 3.1 and the fact that⋂

Γn = {Id}. It follows that the points in K∞ = ∪nKn are the only points
in (0, 1) with non-trivial stabiliser with respect to the action induced by the
limiting representation. In our construction, K∞ is countable because we
assume that In is a maximal open subset of In−1 with f(In) ∩ In = ∅.

Noting now that Γn is a proper subgroup of π1(Σ, ∗) for n > 1 we get that
the only points on [0, 1] fixed by the whole group are those in K0 = {0, 1}.
In other words, the action on (0, 1) has no global fixed point.

Finally, the orbit of every point in (0, 1) \K∞ is dense, implying that the
action is topologically transitive. �
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