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ABSTRACT

This paper presents a framework to build home automation systems reactive to voice for improved
comfort and autonomy at home. The focus of this paper is on the context-aware decision process
which must reason from uncertain facts inferred from real sensor data. This framework for
building context aware systems uses a hierarchical knowledge model so that different inference
modules can communicate and reason with same concepts and relations. The context-aware
decision module is based on a Markov Logic Network, a recent approach which make it possible
to benefit from formal logical representation and to model uncertainty of this knowledge. In
this work, uncertainty of the decision model has been learned from data. Although some expert
systems are able to deal with uncertainty, the Markov Logic Network approach brings a unified
theory for dealing with logical entailment, uncertainty and missing data. Moreover, the ability to
use a priori knowledge and to learn weights and structure from data make this model appealing to
address the challenge of adaptation of expert systems to new applications. Finally, the framework
has been implemented in an on-line system which has been evaluated in a real smart home with
real naive users. Results of the experiment show the interest of context-aware decision making
and the advantages of a statistical relational model for the framework.
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1 Introduction

In the domain of Ambient Intelligence (AmI), Smart Homes (SH) have emerged to increase users’
experience and control as well as to provide support to people with special needs in their daily
life. To provide this enriched control, these systems perceive their environment and must decide
which actions to apply to the environment. This decision can be made after some specific events
such as a user’s request, a schedule (e.g., programmed task) or a detected risky situation. This
perception is not only useful to trigger a decision but also to adapt the decision to make to the
current circumstances in which such decision must be performed. In the AmI domain, these
circumstances are called the context and systems, that explicitly take the context into account,
are said context-aware. According to (Dey, 2001)), “context is any information that can be used
to characterize the situation of an entity”. The information of the environment that determine
the behaviour of context aware systems depends on the purposes of each application, but in
general, the time, the location of the user, the activity she performs, and her identity are common
elements of the context. In this paper, we present a framework to handle such context in order to
improve decision making in a smart home controlled by voice.

To illustrate the role of context in decision making, let’s take the example of a voice based
controlled smart home. These kinds of control are based on a Voice-User Interface (VUI) which
becomes popular in the smart home domain (Istrate et al., [2008; |Badii and Boudy, |2009j; Hamill
et al.| |2009; [Filho and Moir, |2010; | Gemmeke et al., [2013; |Cristoforetti et al., 2014} due to its
mature technology and because it provides interaction using natural language (Portet et al., 2013;
Vacher et al) [2015)). Moreover, it is well adapted to people with reduced mobility and to some
emergency situations (hands-free and distant interaction) because it does not force the user to
be physically at a particular place in order to operate. In such settings, voice command can be
‘turn on the light’, ‘check the door’, ‘call my daughter’, etc. In that case, context is useful to
disambiguate the order and to make relevant decision. In an utterance such as ‘turn on the light’
in a room with several lamps some of which being dimmed, the user does not tend to specify
which lamps are to be activated and at which intensity (Vacher et al.}[2015)) because she would
expect her interlocutor to guess these correctly. Since it would not be natural to ask the user to
specify all details of an order, decision making systems must evaluate the context to make the
most adequate decision. For instance, if the user is asking to turn on the light when tidying up
the room, the ceiling light at full intensity might be the best decision as the sofa lamp would if
the user was awaking from a nap. This simple example illustrates the need and role of context
for disambiguation and natural interaction.

The analysis of the context is performed when the system recognizes a specific circumstance
which has been specified a priori. Indeed, when designing the functionality of a smart home
a list of situations, circumstances of interest, must be defined. These situations are related to
the services we want to provide to the user and their definition depend mainly on chief goals of
the project, the physical environment, and the preferences and profile of the inhabitants. For
instance, as an objective to guarantee security, the system could be designed to detect a possible
fire within the home, therefore the situation in this case is given by a set of conditions that can
bring to light a fire: a sudden rise of temperature, a detection of smoke, etc. The context in
the same example could be provided by activity of the inhabitant. Whether she is cooking or
sleeping has a big influence on the evaluation of how risky the situation is and the system is
expected to act according to this. Therefore, the situation specifies ‘when’ the system should
act, whereas the context influences ‘how’ the system responds to the user’s needs. Context and



situations representation appear as a challenge in pervasive environments since they consist on
knowledge that should, on the one hand, be easily configured by and for the user to adapt to
new preferences or new settings in the physical environment and, on the other hand, should be
able to handle the uncertainty on the data and to automatically adapt to new situation in the
data. They require the application of knowledge representation models featuring high readability,
modularity and expressiveness.

When executing a command in response to a detected situation, the inference of an appropriate
response might be based on uncertain and imprecise evidence that make unsuitable the application
of simple reactive rules. In real applications, it frequently happens that it is only possible to
have a degree of belief about the current state of the context because complex information,
such as activity recognition, is inferred from indirect sources of data. Therefore, the treatment
of contextual information requires to take in account a measure of belief. This is even more
important when the response should be regulated according to the degree of uncertainty or when
the uncertainty on the context is so high that there is a risk of executing a wrong command.
Alternatives, risks and uncertainty are elements of decision making in real applications that must
be treated in a formal framework to model their influence on the final decision. Nowadays, most
of the methods applied for decision making in smart homes consist of classification algorithms
which infer the right response given the evidence of the environment without modelling the
decision process. Furthermore, due to the complexity and cost of experimentation in smart homes
too few methods have been evaluated in realistic setting, leaving unknown the practical and
user’s experience aspects of these methods. Apart from the uncertainty handling, there is then
a second main requirement in the development of smart homes, the design of decision making
models that specifies formally the variables that take part in a decision process: how they are
influenced by the evidence received from the environment, what are the relations among them
and what are the consequences of the final actions on the system.

To address the above challenges, we present, in this paper, the framework we implemented in the
context of the SWEET-HOME project. The developed system uses the data streams of heterogeneous
sensors installed in a real smart home to infer the current context. The context is inferred either
when the inhabitant utters a vocal order or when a situation which can be risky for the user
is detected. The system relies on an expressive knowledge representation and also includes
elements to model decision process under uncertainty.

The main contributions of this work are:

o a framework for context aware systems using a hierarchical knowledge model that provides
a common base so that different inference methods can share the same concepts and
relations while allowing an efficient organization and interaction between the modules
implementing these methods.

e a decision making method based on a logic model which can handle uncertainty and which
can be learned from data. This method can be linked directly to the domain knowledge
model and allows the inclusion of expert knowledge.

e an evaluation of the whole system on-line; including context-aware controller, speech recog-
nition and home automation components; in a real environment with human participants
performing daily life activities and interacting with the system.

The paper is organised as follows. After a brief overview of the state-of-the-art in Section



Section (3| introduces the smart home considered in the study as well as the definition of the
concepts that are necessary to define a context-aware voice based controller of smart homes.
Section [4] details the architecture of such controller including the knowledge representation and
the information inferred from raw data. The context aware decision making from heterogeneous
data is then presented in Section[5] The controller has been evaluated in realistic conditions with
naive users. These experiments and their results are reported in Section[6} The paper ends with
a discussion of the approach and gives an outlook for further work.

2 Related Work

A common aspect among smart home projects in the literature is that generally the most important
contextual elements are: the location of the user, the activity she performs, her identity and the
time. This information is usually enough to analyse a situation under a specific condition. The
research on context aware systems has recently been enriched by a vast amount of knowledge
representation techniques in order to model the concepts related to this field. Logical approaches
are generally applied for representation in pervasive environments because the facilities they
provide to model relations among entities and also to perform automatic inference. Two families
of approaches can be distinguished: logic programming and description logic.



Paper Decision making Context aware Voice | Uncertainty han- | knowledge repre- | Online] Smar{ Multi{ End-user inclusion
based | dling sentation syst. home1 room
Ranganathan and Campbell not covered Predefined situations no no first order logic no no yes no experiment
014 not covered activity no Probabilistic Event | Logic based no no — synthetic data
calculus
Mileo et al.3| 2010' not covered location, person, used | no no Answer set pro- [ no no — synthetic data
object gramming
Hamill et al.3| 2009| action after ‘Yes’/'No’ an- | no yes no predefined dia- | yes no no 9 young speakers
swer logue
Liao and Tu3| 2007| action according to dan- | Predefined situations no probability density | Ontology no no no synthetic data
gerous level function
Katzouris et al.l not activity no Probabilistic Logic no no — synthetic
covered Event calculus based data
(Gomez-Romero et al.J|2012) | action according to situ- | activity predefined situa- | no no ontology yes yes no Video sequence of
ation recognition tions one person
Kofler et al.] actions predefined in on- | predefined situations no no ontology no no — no experiment
tology
Mitra et al.i influence user, device no yes Bayesian no no — synthetic
diagram location model data
Nishiyama et al.l influence predefined situations no yes Bayesian no no — synthetic
diagram model data
Helaoui et al.| not activity no yes Probabilistic yes no — synthetic
covered ontology data
Rodriguez et al‘3| 2014' not activity no yes Fuzzy yes no — synthetic
covered ontology data
Chahuara et al.i MLN based influence di- | location, activity, agita- | yes yes OWL2 and MLN yes yes yes 15 naive users
agram tion, predefined situa-
tions
This study MLN based influence di- | location, activity, agita- | yes yes OWL2 and MLN yes yes yes 37 naive users
agram tion, predefined situa-
tions

Table 1: Summary of the studies related to context awareness in smart homes




With respect to the first method, (Ranganathan and Campbell, 2003) modelled actions to be
executed in a pervasive environment by means of first order predicate calculus whereas (Loke,
2004) applied an extension of Prolog for representation and reasoning with complex situations
which are defined as constraints on sensor readings such as a person occupying a certain room
or a device being activated. (Mileo et al.,[2010) also applied a logic programming approach,
Answer Set Programming, in order to implement a system of prediction of risky situations. Event
calculus, a method to model situations using first order logic, has also been applied in the
development of Smart Homes (Chen et al., 2008; |[Katzouris et al., |2014). The main advantage of
logic programming is that it allows very expressive human readable models.

However, currently the main trend for knowledge representation in smart environments is the
use of ontologies based on Description Logic (DL). Even if DL has a reduced expressiveness
compared with First Order Logic (FOL), it is an ideal framework to model taxonomies and
relations among concepts. Contrary to logic programming, DL is based on the open world
assumption, it means that no conclusion can be obtained about a fact that is not declared;
thus every statement that is not declared remains possible. This feature is important to model
incomplete information since it makes models easier to reuse: when the model must be adapted
to a specific circumstance, the appropriate facts must be included. The Ontology Web Language
(OWL) is the main implementation of DL, and it has been largely applied in pervasive environments
(Wolf et al.,|2008; Rodriguez et al., |2014; Liao and Tu, 2007). (Wolf et al.,|2008) have employed
the facilities ontologies provide for reusability in order to create the OpenAAL middleware that can
be employed for context management in pervasive environments. Another work with ontologies
was presented by (Liao and Tu, 2007)) where temporal events are represented on RDF and the
concepts about the smart home are organized in an ontology. Context-aware systems have also
been developed using ontologies to model the current context for mobile applications (Attard
et al., 2013; [Yilmaz and Erdur, |2012). Fuzzy ontologies have received a lot of attention to
be able to model imprecision and allow inference with vague concepts such as “hot weather”.
(Rodriguez et al.,2014) have presented and application of fuzzy ontologies for activity recognition
in pervasive environments. Another important contribution to make ontologies capable of dealing
with uncertainty is the use of probabilistic models in ontology inference. A notable application of
such approach has been presented by (Helaoui et al., [2013).

Besides context representation and situation detection, the second important aspect in a context
aware system is the decision making process. Also in this part, several logical approaches are
presented in the literature. (Moore et al., 2011) have developed a system that exploit a set of
fuzzy rules in order to find the most appropriate action under a certain condition given by the
context. Similarly, (Kofler et al.l|2012) and (Gémez-Romero et al., 2012) used Description Logic
to define the behaviour of a context-aware system which models context elements (activities) in
an ontology. There are several works applying ECA (Event-Condition-Action) rules based systems
into pervasive environments (Leong et al., 2009; [Yau and Liul |2006), however in these proposals
the system is set a priori to execute an action given a specific configuration (the condition) and
consequently the system does not adapt its behaviour to a degree of belief of the current situation,
thus the concept of risk is not taken into account. Risk in decision making can be represented by
the probability that a decision made can provoke negative effects, and then the risk is a direct
consequence of the uncertainty. Therefore, it is necessary to rely on methods that can treat the
uncertainty of the variables involved in the decision process. Bayesian networks, for instance,
are among the most important methods for decision making with contextual information, as
exemplified by the application presented by (Lacey and MacNamara, |2000) to improve the



mobility of blind people. (Lee and Chol 2012) have modelled uncertainty on context-aware
system by means of Bayesian networks but the method does non include formal elements of
decision making such as risk and utility. Influence Diagrams (ID) is a method based on Bayesian
networks that includes special variables to appropriately model the decision process. Some
research works on context aware systems (Mitra et al.| 2011} [Nishiyama et al., 2011} |Carolis
and Cozzolongo, 2004) have relied on ID in order to model the decision process, treating the
uncertainty and measuring the expected utility of possible actions. However, the expressiveness
of this probabilistic approach is limited since only conditional dependencies among variables
can be represented in the model, besides the fact that it is less human readable than logical
approaches.

Table [1]lists the main attributes of the papers considered in this state of the art. It shows the
variety of models that have been applied for decision making by contrast to the lack experimental
real-time tests in real environments. Even when several approaches have been proposed to
fill the gap between formal models of knowledge representation and inference with uncertain
information, most of these works have been applied to a particular problem of context awareness,
such as activity recognition, and did not consider the problem as a decision making one. In this
work, we propose an approach we use ontologies to represent of concepts that comes into play
during the decision and a set of logical rules. During the decision stage, these logic rules are
used as template to construct an influence diagram based on Markov Logic Networks (MLN), a
statistical method that makes probabilistic inference from a model consisting of weighted logic
rules (Richardson and Domingos, [2006). The remaining of this paper presents this framework
and its application to decision making in a smart home.

3 Decision making in a voice-based controlled Smart Home
context

The typical smart homes considered in the study are the ones that permit voice based interaction.
Voice-User Interface (VUI) in domestic environments has recently gained interest in the speech
processing community as exemplified by the rising number of smart home projects that consider
Automatic Speech Recognition (ASR) in their design (Istrate et al., |2008}; (Charalampos and
Maglogiannis, 2008}; [Popescu et al., 2008} |Badii and Boudy, [2009; |Hamill et al., |2009; Filho and
Moir, [2010; [Lecouteux et al., 2011} |Gemmeke et al., 2013} |Christensen et al., 2013}, |Cristoforetti
et al.,[2014). This kind of interface is particularly adapted to people in loss of autonomy (Portet
et al., [2013} [Vacher et al., 2015)). The smart homes we are considering contains multiple rooms
which are fitted with sensors and actuators such as infra-red presence detectors, electric meter,
Multimedia server, etc. These smart homes are aiming at providing daily living context-aware
decision using the perception of the situation of the user. In a voice based control application,
the smart home should be reactive to vocal or other commands to make the most adequate action
based on context, and could act pro-actively by recognising a specific situation in which an action
must be made (e.g., for security issue). The two examples below illustrate this support:

Scenario 1 The inhabitant wakes up at night and utters the vocal order “Turn on the light”.
This simple command requires context information (location and activity) to realize which light to
turn on and the most appropriate intensity. In this case, the system decides to turn on the bedside
lamp with a middle intensity since the ceiling light could affect her eyes sensitivity at that moment.

Scenario 2 The inhabitant returns to her flat after shopping, forgets to lock the door; and does



her usual activities until night. She prepares to sleep and turns all the lights off but the bedside
lamp as she usually reads before sleeping. After some minutes, she turns off the lamp and, from
the sequence of her interactions with the environment, the system recognizes that she is about
to sleep. The unlocked main door represents a relatively risky situation.The system could send a
message through a speech synthesizer — considering the risk of interrupting her rest— to remind
her to close the door:

The scenarios emphasize the role of contextual information (here activity and location), to provide
the most suited support to the user. We define Location and Activity as follows:

Definition 1 [Location] I(t) € L, where L is the set of predefined locations in the
SH and t € N is the time, specifies where the inhabitant is located.

In this work, a specific area corresponds to a room and we assume a single inhabitant in the
environment.

Definition 2 [Activity] Routine activities performed during daily life; such as, sleep-
ing, cooking, or cleaning. The set of activities is .«/. At an instant t, the activity might
be undetermined; so an activity occurrence is defined in an interval of time [¢;; t,],
A=<a,ty,t, >, considering a € .«/,(t,,t,) €EN? and t, < t,

Furthermore, a larger set of information can be extracted from the raw data. For instance,
agitation, communication, etc. We call these sources of information:

Definition 3 [Source of Information] The system contains a set of variables V that
describe the environment. A source of information is a variable V; € V with domain
Dom(V;) representing the information provided by a sensor or an inference process i.

Definition 4 [System state] If T is the set of possible values of V, a system state is
an assignment v € T making V ={V; =v{,V, =v,,...,V, =v,}

The Situation is then defined by:

Definition 5 [Situation] A situation S C T is defined by a set of constraints C =
{Cfl,C;(Z,...,C,’;m}, where each constraint Cik" establishes a set D; € Dom(V,,) to

constraint the value of a source of information V; . Thus, S = {v/ VCik‘ € C,v, € D;}

For example, in Scenario 2] presented before Vi, V, and Vj, ..., V,, represent the state of the main
door, the user’s location and the state of the blinds and lights. A situation can be defined by
constraints, C},Cg,...,C;, holding the following sets: D; = {open}, D, = {—kitchen},D; =
{off},...,D, ={of f}. Asituation is recognized when all the lights are off, the blinds are closed,
the front door is open and the person is not in the kitchen (assuming the front door is in the
kitchen).

Definition 6 [Temporal Situation] A temporal situation R is defined by a set of
constraints T = {T;, Ty, ..., T;,}, where each T} is a tuple composed of a pair of
situations (S}, S?) and a temporal constraint ry, between S, and S, Ty, =< S, SZ, 1 >.



Consider T; =< S',5?,r > with r = [t;, t;], a temporal situation is recognized when t; < t2—tg <
t; where té is the occurrence time of S'. r, can also be qualitative constraint such as af ter(S;,S,)
or order(S;,S,,S3). For more details about temporal representation and reasoning the reader is
referred to (Artikis et al.,[2012). In the rest of the paper we refer to temporal situations simply
as situations.

The elements defined above compose the context that we define as follows:

Definition 7 [Context] Set of information characterizing the circumstance under
which an inference is made.

This definition is very close to the one given by Dey (Dey, |2001), “any information that can be
used to characterize the situation of an entity”. Context is generally used for disambiguation.
Once a situation is recognized, several decisions can be taken with different effects. The context
provides complementary information to evaluate the circumstance in terms of risk and utility
(safety, efficiency, comfort...). These two notions are defined below:

Definition 8 [Risk] The risk is the probabilistic measure that a given action would
have a negative outcome in the situation under consideration.

Although the definition of risk varies according to the domain of application, in decision making,
risk is often a consequence of uncertainty which is evaluated by listing all the possible outcomes
with their probability of occurrence and their consequences.

Definition 9 [Utility] The utility U € [0, 1] is the degree of preferences of a system
state caused by applying an action.

When uncertainty arise, an action is likely to cause several effects. If the effect leads to a negative
outcome, then the utility U takes a negative value. Hence, risk and utility have a relationship. To
compute the risk for a given action, the probability of all the unwanted states (i.e., those with a
negative value) must be computed.

For example, in Scenario (1 the decision making is triggered by the recognition of the voice
command “turn on the light”. The context is the location (bedroom), the time (middle of the
night) and the activity (sleeping). The action to make could be to switch on the bedside lamp
or the ceiling light or both. The effects could be to decrease or increase comfort. Thus,, the risk
of each action is given by its probability of having an unwanted effect (here, decrease comfort).
The utility is the numerical value associated to each effect.

This illustrates that the action to be taken depends on the context. For instance, in Scenario
since the user just awake in the night, it is better to light the bedside lamp to avoid dazzling, but
the ceiling lamp could be a better choice in a different context (e.g., when tidying up).

From a preliminary user study (Portet et al.,[2013]), it appeared that the main aspects for context-
aware decision are the location of the inhabitant, the current activity and the period of the day.
These informations are useful to eliminate ambiguity in the decision making process. Many
studies have also considered location and activity as fundamental for context-aware inference
(Schilit et al.| [1994; Mileo et al., [2011}; Blachon et al., 2014; |Vacher et al., |2015).
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Figure 1: The SWEET-HOME system: example of a user asking to put on the light.

4 Intelligent Controller of the SWEET-HOME system

To provide assistance at home through voice command, the SWEET-HOME system is composed of
an audio analysis system, called PATSH and an Intelligent Controller. The SWEET-HOME system is
depicted in Figure|l]| It is linked with an home automation network composed of typical home
automation data sensors and actuators (switches, lights, blinds, etc.) and multimedia control
(uPnP). Moreover, the system relies on several microphones per room disseminated into the
ceiling so that voice command is made possible from anywhere in the house in a hands-free way.
Finally, the system should also make easier for the user to connect with her relatives, physician
or caregiver by using a dedicated communication system. In the case of SWEET-HOME this system
is e-lio developed by the Technosen{] company providing home services to the elderly people
through the e-lio box (e.g., video-conferencing, calendar, photos, etc.).

’

In order for the user to be in full control of the system and also in order to adapt to the users
preferences, two ways of commanding the system are possible: voice command or classical tactile
interfaces (i.e., switches). Briefly, the functioning of the system is the following. All sensor data
are acquired continuously by the system in an on-line manne Amongst the raw information, the
raw audio data are analysed by PATSH and then speech as well as sound events are transmitted
to the subsequent stages. The Intelligent Controller analyses continuously the streams of data
and makes decision based on these. If a vocal command is detected and, according to the context
(e.g., user’s location), an home automation command is generated to make the light up, close
the curtains or emit a warning message thanks to a voice synthesizer. The rest of this section
details the general architecture of the controller, the knowledge representation as well as the
different methods implemented for inference of contextual information. The decision making per

Thttp://www.technosens.fr/
2Here, on-line means that each time a new event appears, it is immediately queued for processing.
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se is detailed in Section[5]

4.1 Architecture

The architecture of the intelligent controller is depicted in Figure 2| At the bottom of the figure
external systems are connected to the controller to gather streams of data and send orders to
the home automation system. The microphone data is processed by an audio processing chain
delivering hypotheses about the sound or the sentences being uttered by the user following the
method described in (Sehili et al.,2012). All these streams of information are captured and
interpreted to recognize situations and to make decisions.

The estimation of the current situation is carried out through the collaboration of several proces-
sors, each one being specialized in the treatment of a source of information. All processors share
the knowledge specified in two ontologies and use the same repository of facts. Furthermore,
the access to the knowledge base is executed under a service oriented approach that allows
any processor being registered to be notified only about particular events and to make inferred
information available to other processors. This data and knowledge centred approach ensures
that all the processors are using the same data structure and that the meaning of each piece of
information is clearly defined among all of them.

The intelligent controller performs inference in several stages, from raw input data until the
evaluation of situations. Each event is produced by the arrival of sensor information. These
events are considered of low level as they do not require inference. Once they are stored in
the fact base, processing modules are executed sequentially (e.g., location, then activity, then
situation). Thus, each inference corresponding to a high level event is stored in the database
and used subsequently by the next module. Within the controller architecture, other inference
modules can be added without compromising the processing of the other components.

The following sections describe the knowledge representation and the inference modules.

4.2 Two-level knowledge representation

Ontologies allow the formal representation of knowledge on a domain by means of taxonomies
of concepts and relations among them. They are used for instance in the implementation of
information systems to define shared data schemas among services, and also to create high level
queries. The knowledge base of the system was built using the Ontology Web Language 2 (OWL2)
(OWL2| [2012) which is a set of mark-up languages based on Description Logic (DL) (Baader|
et al., 2008)). Description logics is a family of formal knowledge representation derived from first
order logic aiming at preserving decidability, consistency and satisfiability.

The knowledge of the controller is defined using two semantic layers: the low-level and the
high-level ontologies. The two ontologies were implemented using Protégé, not only for domain
knowledge representation, but also for storing the events resulting from the processing modules.
Furthermore, situations were defined within the ontologies allowing description logic reasoners
to evaluate if a situation is happening (see Section [4.4). Consequently, the importance of the
ontology goes beyond the mere description of the environment.

The low-level ontology is devoted to the representation of raw data and network information



description. State, location, value and URI of switches and actuators are examples of element to
be managed at this level. The high-level ontology represents concepts being used at the reasoning
level. These concepts are organized in 3 main branches: the Abstract Entity, the Physical Entity,
and the Event concept that represents the transient observations of one abstract entity involving
zero or several physical entities (e.g., at 12:03 the dweller is sleeping). Instances in the high-level
ontology are produced by the inference modules (e.g. activity, location, and situations) after
treating information coming from sensors. This separation between low and high levels make it
possible a higher re-usability of the reasoning layer when the sensor network and the home must
be adapted (Klein et al., [2007).

Figure [3|shows some concepts and relations of both ontologies. The ABoxes serve as fact bases.
Let’s refer to the Scenario [2| when the inhabitant turns the bedside lamp off to sleep. The
controller updates devices states in the low level ontology and it can be inferred, still at a
low level, that every light in the bedroom is off (current_state (switchl, off),
current_state (switch2, off)). The knowledge base can relate the switch2
state to the beside lamp (has_application (bedLamp, switch2)) which itself is
located in the bedroom (is_located (bedLamp, brl), Bedroom(brl)). In the
high level ontology, the interaction with the switch lamp (switch?2) is stored as a device
event (Device (d_evt1)) having time and room as properties. At this stage, the module
in charge of location is requested and it returns bedroom as the present location of the in-
habitant since the last events, corresponding to switch deactivation, took place in this room
(has_location (1_evtl, bedroom)). Then, the evidence of the inhabitant being in
the bedroom, having all lights turned off, and the evening as the period of the day, can be used
to infer that the current activity is sleeping (has_activity (a_evtl, sleep)). Finally,
these inferences provide the context on which situation recognition is applied. Under the same
scenario, if the inhabitant forgot to close the main door and a situation was defined for this case,
the situation would be labelled as detected in the ontology. Detected situations are treated by the
decision module explained in Section [5

4.3 Raw and inferred information

The raw data captured within the smart home contains information that must be extracted
for enhanced decision making. Four types of abstraction are considered: localisation of the
inhabitant, classification of audio input into speech and sound (i.e., non-speech) events, the
agitation level, and the activity performed by the inhabitant at a certain moment. The system
relies on different methods to infer these high level information which are fired sequentially since
the activity modules requires the other three information as shown in Figure

4.3.1 Speech/sound detection

In this approach, sound events are detected in real time by the PATSH system which is exter-
nal to the Intelligent Controller (Vacher et al., 2013). It is composed of several processing
modules organised into a pipeline that perform the following tasks: (1) multichannel Data acqui-
sition (16bits, 16kHz, 7 channels), (2) Sound detection, (3) Sound/speech discrimination,
(4) Sound classification, (5) Automatic Speech Recognition (ASR) and extraction of voice
commands, and (6) Presentation, communicating the sound event to the Intelligent Controller.



Briefly, the audio events are detected in real-time by an adaptive threshold algorithm based on a
wavelet analysis and a SNR (Signal-to-Noise Ratio) estimation. The events are then classified
into speech or everyday life sound by Gaussian Mixture Models (GMMs). The microphones
being omnidirectional, a sound can be recorded simultaneously by multiple microphones; PATSH
identifies these simultaneous events. In addition, to recognize only vocal orders and not all
sentences uttered in the home, all sound events shorter than 150 ms and longer than 2.2 seconds
were discarded as well as those whose SNR was below 0 dB. These values were chosen after a
statistical study on a dataset (Vacher et al.,2011). Once the sound event is classified as speech
(respectively non-speech sound), the sound object is send to the ASR module to extract voice
commands (respectively to the sound classification module). Due to the focus of the study on the
decision making, the sound classification and the Automatic Speech Recognition (ASR) systems
will not be detailed in the paper (see (Sehili et al.,|2012) for details). The last step of the ASR
was composed of a voice command recognizer. Briefly, the best of the ASR output hypotheses
was phonetised and a distance was computed against all the possible phonetised sentences of
the grammar. For each comparison, the minimal Levenstein distance y(i, j) was computed using
Dynamic Time Warping (DTW). If y(i, j) was above a certain threshold then a voice command
was detected otherwise it was rejected. This approach permits to recover some decoding errors
such as word declination or light variations (the light, the lighting, etc.). In a lot of cases, a
miss-decoded word is orthographically close to the good one (due to the close pronunciation).
Possible voice orders were defined using a very simple grammar as shown on Figure |5} Every
command starts with a unique keyword that permits the system to know whether the person is
talking to the smart home or not. In the following, we will use ‘Nestor’ as keyword. The grammar
was built after a user study that showed that targeted users prefer precise short sentences over
more natural long sentences (Portet et al., 2013). In this study, although most of the seniors
spontaneously controlled the home by uttering sentences, the majority said they wanted to control
the home using keywords.

Once the ASR or the sound classification is performed, the Presentation module translates the
sound objects into XML representation containing: the type of sound (speech or non-speech), the
class of sound or the transcription of the speech, the SNR, the duration and the time of occurrence
as well as the microphone source. This XML representation is sent to the intelligent controller
through a SOAP connection.

4.3.2 Agitation

The agitation is a measure of the frequency of actions of the person in the house. This makes it
possible to distinguish from activities that require many actions (e.g., cleaning the house) from
quieter ones (e.g., sleeping). In our approach, the agitation is estimated not only from infra-red
sensors but also from sound information as well as door contacts. It is obtaining by summing the
number of sensor events (sound, speech, opening of doors, infra-red firing) produced during the
minute preceding the vocal order.

4.3.3 Localisation

In smart homes, cheap localisation can be performed by using infra-red sensors detecting move-
ment but these sensors can lack sensitivity. To improve localisation, our approach fuses information



coming from different data sources namely, infra-red sensors, door contacts and microphones.
The data fusion model is composed of a two-level dynamic network (Chahuara et al., [2011)
whose nodes represent the different location hypotheses and whose edges represent the strength
(i.e., certainty) of the relation between nodes.

4.3.4 Activity recognition

This is one of the most important elements of context in pervasive environments and the most
challenging. We defined previously a set of activities of daily living that are representative
of the routine of the inhabitant. Afterwards, a probabilistic method based on Markov Logic
Networks (MLN) was implemented to recognize the performed activity using sensor information
and the other inferred information (Chahuara et al., 2016)). Initially, sensor data is organised
in temporal windows that are used to generate, in a following step, vectors of special attributes
(e.g. percentage of time in each room, sounds produced within the window). At the end, vectors
become the input of the classifier. The last step consists on the evaluation of every situation
definition, according to previous inference results, to know if a situation of interest takes place or
not. Markov Logic has been proposed by (Helaoui et al.,2011) to perform activity recognition
when several activities are performed simultaneously. This approach could also be integrated in
the framework presented in our work.

4.4 Situation Recognition

As situations are defined as temporal patterns of the system state, ontologies provide an appro-
priate foundation for situation recognition since the facts (i.e., the system state) can be stored
as individuals into the ontology as well as a complete semantic description of the environment
as well. Furthermore, temporal representation can be achieved by means of role properties
among event concepts defining temporal relations such as previous and next which, through
chaining property of OWL2, can generate the after and before relations. Under some restrictions,
Datalogs describing situations as logic rules can be expressed with description logic and stored
into ontologies (Hitzler and Parsia, [2009). This can be achieved by means of Semantic Web
Rule Language (SWRL) which is a logic rules language for the semantic web resulting from the
combination of OWL and RuleML (Rule Markup Language). However, the scope of this approach
is very limited as it does not allow to specify complex definitions. But, even when it is constrained
to safe rules (rules that can only be applied to instances explicitly declared in the ontology), it
overcomes several limitations of DL while having the definitions still as part of the ontology. In
OWL-DL it is no possible, for example, to define a relation as a composition of two other relations,
however in SWRL extends OWL-DL in order to make such a definition possible. In addition,
SWRL built-in functions further extend the semantics of context definitions.

For instance, the situation in which a person is leaving her house without having closed the
windows can be described by the SWRL Rule(1] In this rule the predicate has_associated _object
relates a device event ?d with a specific object (here door), the rule body declares that two
conditions must be fulfilled for the situation to be recognized: the door of the kitchen (main
door of the flat) is open

(takes_place_in(?d,kitchen),state_value(?d,open)), while at least one ( swirb
moreThan(sqwrl : count(?w),0) ) of the windows ?w in the bedroom is open



(Window(?w), located_in(?w, bedroom)). swrlb is the name space for the built-ins predicates
of SWRL while sqwrl are name space for the built-ins of the Semantic Query-Enhanced Web
Rule Language (SQWRL) a SWRL-based language for querying OWL ontologies implemented
in Protégé. In the last part of the body the predicate has_application relates an object in the
flat, in this case the window, with a corresponding sensor (variable ?a). If all the premises are
satisfied, then a

BedroomWindowsOpen is detected.

Rule 1

DeviceEvent(?d), has_associated_object(?d, door), takes_place_in(?d, kitchen),
state_value(?d, open), Window(?w), located_in(?w, bedroom),Application(?a),
has_application(?w,?a),current_state(?a,open), swirb:moreThan(sqwrl:count(?w), 0)

— current_state(BedroomWindowsOpen, detected)

Following similar principle, the situation in scenario |2 can be modelled by Rule

Rule 2

DeviceEvent(?1), has_associated_object(?l, light), takes_place_in(?1, bedroom),

state_value(?l, off), Window(?w), located_in(?w, bedroom),Application(?al),
has_application(?w,?al),current_state(?al,open), swirb:equals(sqwrl:count(?w), 0), Blind(?b),
located_in(?b, bedroom),Application(?a2), has_application(?b,?a2),current_state(?a2,open),
swlrb:equals(sqwrl:count(?b), 0), Door(?d), located_in(?d, kitchen),Application(?a3),
has_application(?b,?a3),current_state(?a3,open), swlrb:equals(sqwrl:count(?d), 1)

— current_state(MainDoorOpen, detected)

5 Decision Making using Markov Logic Network

The decision making module is the main component of the intelligent controller. When a situation
is recognized, this module employs the high level knowledge in order to construct dynamically a
decision model that takes into account the context and its degree of uncertainty.

For instance, When the user asks to turn on the light “Nestor turn on the light”, it does not
specify the desired level of illumination (i.e., strong or soft) or which lamp to be lit (e.g., bedside
or ceiling lamp). For the user, this information is implicit and indeed another human being
would probably infer correctly the user’s goal. But for the system, this lack of information must
be recovered from its knowledge of the context: the controller must infer the location of the
participant to turn on the light in the room where the participant stands and it must infer her
activity to determine the appropriate illumination or lamp in the room (e.g., if she is asleep then
the bedside lamp might be more appropriate than the ceiling one). In this example, the context
is made of two inferred parameters from sensor data: the location and the activity.

In SWEET-HOME, the actions that the intelligent controller can make are the following:

o turn on/off the {light, radio}



close/open the {blinds, curtains}

give the {temperature, time}

warn about {open windows, unlocked door}

order the e-lio system to call a specific number or to make a emergency call.

These actions constitute a subset of a larger set of possible actions resulting from a user study
(Portet et al.,[2013)). This study showed that the user (in that case, elderly people) were more
interested by actions providing more security and avoiding dangerous manipulations. Actions
saving time or related to food were not liked by the participants. For instance, automation of
coffee machine was unanimously disliked given that it is an activity they want to keep actively
doing as they have time to do so and it is part of a social activity (making coffee for their visitors).
Of course, this set of actions must be adapted to any user and home, but this predefined list was
useful for the evaluation of the system.

In this section we briefly describe the decision problem by influence diagram models and how it
has been modelled by Markov Logic Network.

5.1 Modelling the decision making by Influence Diagrams

Influence diagrams (Howard and Matheson, |1981) are probabilistic models used to represent
decision problems. They extend Bayesian networks — composed only of state nodes — by the
inclusion of two types of node: action and utility. An action node is a variable corresponding to a
decision choice (e.g., turning the light on or warning the user). The state nodes represent the
variables in the problem domain that are affected by the actions. Utility nodes (see Definition [9)
are variables that represent the utility value obtained as consequence of applying the decided
actions. For instance, turning the light on at full intensity when the person is asleep would have
a negative utility.

Formally, given a set of actions .« and an assignment of choices a € .«/, the expected utility EU
for a is computed by:

EU(a) = ZP(X|a,e)U(X) €))
X

where X is a set of state nodes, U(X) is the utility value of X and e is the evidence (e.g., the
context). The process of finding the “best” decision consists of solving the Maximum Expected
Utility (MEU) problem which demands to compute the EU of every possible assignment of a.

Upese = argmax E U(a) )

Figure [6] shows an example of Influence Diagram, based on the Scenario [I} In this case, the
setting of action variables, represented by rectangular nodes, indicates which lights are operated
and their intensity. Oval nodes are the state nodes, some of which are affected by the decision,
while the others belong to the context (within the dashed area). Two variables influence directly
the utility: the comfort of the inhabitant and the suitability of the activated lights location that
ideally should be the same as the inhabitant. Note that this location is not easy to determine



in some cases since the inhabitant could be moving in the smart home while uttering the vocal
order.

The interest of influence diagrams is essentially its ability to easily represent the structure of a
decision problem and the dependencies between variables. However, it is limited to propositional
variables while a decision model could benefit from relational knowledge (e.g., turning on a light
next to the room of the dweller). Yet, first order rules, though very expressive, cannot make it
possible for an expert to express uncertainty. To overcome these limitations, we propose to model
the decision process by a Markov Logic Network.

5.2 Markov Logic Networks (MLN)

MLN (Richardson and Domingos, |2006) combines first-order logic and Markov Networks, an
undirected probabilistic graphical model. A MLN is composed of a set of first-order formulas each
one associated to a weight that expresses a degree of truth. This approach softens the assumption
that a logic formula can only be true or false. A formula in which each variable is replaced by
a constant is ground and if it consists of a single predicate it is a ground atom. A set of ground
atoms is a possible world. All possible worlds in a MLN are true with a certain probability which
depends on the number of formulas they agree with and the weights of these formulas.

Let’s consider F a set of first-order logic formulas, i.e. a knowledge base, w; € R the weight of the
formula f; € F, and C a set of constants (in our case, input data). During the inference process
(Richardson and Domingos, [2006), the MLN predicates are grounded and a Markov network
M ¢ is constructed where each random variable corresponds to a ground atom. The probability
of a possible world P(X = x) can then be estimated using Equation

P(X =x) = Yexp (3 o wini(x)) 3)

where Z =Y. 4 eXp (Z f.eF w;n; (x’ )) is a normalisation factor, y the set of possible worlds,

and n;(x) is the number of true groundings of the i‘" clause in the possible world x.

Because computing Z involves grounding the whole network in each possible world, exact
inference in MLN is intractable in most cases, so Markov Chain Monte Carlo methods are applied
(Richardson and Domingos, 2006).

MLN models acquisition consists in two independent tasks: structure learning and weight learning.
Structure can be obtained by applying machine learning methods, such as Inductive Logic
Programming, or rules written by human experts. Weight learning is an optimisation problem
that requires learning data. Weight learning can be achieve by maximizing the likelihood wrt a
learning set x. If the ith formula is satisfied n;(x) times in x, then by using equation (3)), the
derivative of the log-likelihood wrt the weight w; is given by equation (4).

3iwi log P, (X = x) = n;(x) _;PW(X = x")n;(x) 4

Where x’ is a possible world in x. The sum is thus performed over all the possible worlds x’ and
P, (X = x')is P(X = x’) computed using the vector w = (wq,...,w;,...). The maximisation of the
likelihood is performed by an iterative process converging towards an optimal w. Unfortunately,



computing equation is intractable in most cases. Thus, approximation method are used in
practice such as the Scaled Conjugate Gradient (Lowd and Domingos, 2007).

Since a Markov network is more general than a Bayesian network, Influence diagrams can also
be implemented by means of MLN (Nath and Domingos, |2009). Nath et al. (Nath and Domingos),
2010) have proposed an algorithm that evaluates all the choices in a set of actions without
executing the whole inference process for each choice resulting in an efficient way to estimate
the optimal assignment. We have considered this approach suitable for implementing decision
making in our framework for two main reasons. Firstly, MLNs are logical rules which can be stored
in an ontological representation, using domain concepts in order to keep a standard vocabulary
besides achieving decision model readability. Secondly, it deals with the uncertainty related to
context variables.

A MLN for the influence diagram of Figure [6] can be defined as follows:

Predicates Domain Type
Intensity {low,high} Action
LightLocation {bedroom,kitchen,toilet. .. } Action
Comfort {low,medium,high} Utility
RightArea {good,bad,acceptable} Utility
Location {bedroom,kitchen,toilet. ..} State
Activity {sleep,eat,clean,dress...} State
Agitation {low,medium,high} State
Rules
3.35 LightLocation(l) A Location(l)
— RightArea(good)

0.12 LightLocation(l1) A Location(I2)A
NextTo(l1,12) — RightArea(acceptable)

2.44 LightLocation(l1) A Location(I2) Al1! =12
— RightArea(low)

1.46  Activity(+a) AAgitation(+d1) AIntensity(+d2)
— Comfort(high)

-0.07  Activity(+a) AAgitation(+d1) A Intensity(+d2)
— Comf ort(medium)

-0.2 Activity(+a) ANAgitation(+d1) A Intensity(+d2)
— Comfort(low)

Utility Values

U(RightArea(bad))=-2 U(RightArea(fair))=0 U(RightArea(good))=2

U(Comfort(low))=-3 U(Comfort(medium))=0 U(Comfort(high))=3

Facts

NextTo(kitchen,bedroom) NextTo(bedroom,study)

In this model, the top part presents the different predicates or arity 1 and the domain of their
term variable. The middle part shows the rules as well as the utility values that model the
influence diagram. The bottom part exhibits an extract of the domain knowledge (here, the
information about the smart home topology). Each rule is weighted so that uncertainty about
this knowledge is taken into account. To illustrate this take for instance the following rules from
the model:

3.35 LightLocation(l1) A Location(l1) — RightArea(good)
0.12 LightLocation(l1) A Location(12) ANextTo(l1,12)
— RightArea(acceptable)

The first rule expresses that if the chosen action is to light on the lamp located in [1
and that the user is also in location [1 then the state variable RightArea takes the value good.



The number 3.35 translates the fact that the rule is very often true. The second rule states that
if the chosen lamp is close to the location of the inhabitant, then it is an acceptable choice.
However, its weight is low 0.12 meaning that a configuration of variables satisfying this rule is
not very probable. In MLN the influence diagram is a set of weighed formulae. The weights are
learned from data and are relative to each other. In the case of the example, the first rule is true
a majority of the time in the training dataset while the second rule is true only for a few cases.

In the MLN model above the inference process requires some explicit knowledge about the
location of the rooms that is express by the NextTo predicate with no weights, what declares
that they are always true (facts). The + operator before a variable indicates that all possible
values of the variable will be instantiated, thus in the fourth rule, the variables of the predicates
activity,agitation,intensity have respectively 6, 3,2 constants, so this rule will give place to
36 instantiations with constant values. The model combines explicitly two important aspects
of decision making in a context aware system: first, the influence of contextual variables and
decisions made on our variable of interest (Comfort,RighArea); and second, a numerical
assessment of how reliable is the rule that has been learned. If, for example, the person is in
cleaning in the kitchen when uttering the command to turn on the light and the system decides
to activate one in the bedroom, we can note from the model that even if the intensity of the
light is high, the final utility will be penalised by having activated the light of a wrong location.
Indeed, this mistake would have a much higher importance in the third rule than in the second
one because of the difference in weights.

This MLN is a template for constructing a Markov network modelling an influence diagram. The
evidential information required to perform decision inference is composed by the contextual
elements: location, agitation, and activity. As shown Figure |7} once the decision module is
triggered, it gets the evidence from the ontology instances that are used to ground the MLN and
it generates an influence diagram (actually a Markov network). This grounded network is then
used to compute the action that maximizes the expected utility using Equation [5|where RA means
RightArea and LL LightLocation.

EU(@) = > P(RA(x) | @).U(RA(x)) +

x€{bad,fair,good}

P(LL(x) | a).U(LL(x))
xe{low,med.,high}

5)

Decision models are available for each kind of action that are related to an object that may exist
at different places. For instance, when a voice command such as ‘turn on the light’ is received,
then the decision about the lighting is executed, when it is about the blinds the decision model
about the blinds is run and so on.

5.3 Making decision with uncertain evidence

Most decision making processes are designed to use regular (also called hard) evidence resulting
in an observation a of a random variable X, so that it is assumed that the assignment X = a
is true after the observation. However, in some cases the source of the evidence cannot be



completely reliable making the evidence uncertain (Pan et al.,[2006). As presented in Section 4.3}
contextual information is inferred from the sensor data by means of different statistical methods.
As such, this information is often uncertain and we assume such inferences to be provided with
a probability measure. These uncertain results are the input evidence of the decision model.
But, in the decision model, the expected utility is computed without taking the uncertainty of
the evidence into account. For instance, if the activity recognition module gives the following
activities with their probabilities: sleeping (.33), tidying up (.34) and resting (.33), the decision
module will consider only the most probable activity and will possibly make a wrong decision.
To account for the uncertainty in the evidence, we extended the approach by using the Jeffrey’s
rule (Jeffrey, | 1990) to estimate the probability of the best action. Based on this, the probability
of a state node X (e.g., RightArea and LightLocation), given an action a, is computed by
equation [6}

P'(X)= > P(X | Activity, a).P(Activity,) ©6)
i=1

From equations[I]and[6} EU can then be estimated by equation[7} Note that Activity is no more
included in the set of contextual evidence e.

n

EU(a) = >3 P Activity;,a,e).P(Activity,).UX) (7)
X i=1

6 Experiments

The method was experimented in realistic situations in a smart home with naive users interacting
with the environment. This section describes the experimental set up and the results of the
decision making.

6.1 Experimental Environment

The pervasive environment considered was the DoMUs Smart Home designed by the Laboratoire
d’Informatique de Grenoble (LIG) (Gallissot et al.,|2013)). This flat was extensively used in the
SWEET-HOME project for experiments. Figure |8/ shows the details of the flat. It is a thirty square
meters flat including a bathroom, a kitchen, a bedroom and a study room, all equipped with
sensors and actuators such as infra-red movement detectors, contact sensors, video cameras (used
only for annotation purpose), etc. In addition, seven microphones were set in the ceiling for audio
analysis. The flat is fully usable and can accommodate a dweller for several days. The technical
architecture of DoMUS was based on the KNX bus system (www .knx .org), a worldwide ISO
standard (ISO/IEC 14543) for home and building control. Besides KNX, several field buses
coexist in DOMUS, such as UPnP (Universal Plug and Play) for the audio video distribution or
X2D for the detection of the opening (doors, windows, and cupboards). More than 150 sensors,
actuators and information providers are managed in the flat (e.g., lighting, shutters, security


www.knx.org

systems, energy management, heating, etc.). Sounds were recorded independently thanks to a
National Instrument mutichannel acquisition board and analysed using PATSH.

The SWEET-HOME system was run on 2 PCs ; one running the PATSH system (audio analysis) and
another one to run the intelligent controller. e-lio, the communication device used to initiate a
communication between a senior and a relative was placed in the study.

The Domus flat was designed to seem as normal as a standard flat so that the participants moving
in the smart home would behave as naturally as possible.

6.2 Experimental set up and collected data

Two experiments have been carried out in the pervasive environment with people performing
activities of daily living. In both cases, the experimenters organised a detailed visit of the flat
for each participant to ensure that the flat was familiar to the subject. The main objective of
the first experiment was to learn and test the models to infer context, i.e. location, activity,
and agitation. In the second experiment, the models for context awareness were used by the
intelligent controller and the system was tested in decision making scenarios. This section details
the procedures followed for both experiments. In all cases, cameras were used for annotation
purposes only.

6.2.1 First Experiment — The Multimodal SWEET-HOME dataset

In this experiment 21 persons (including 7 women) participated to record sensor data in a daily
living context. The average age of the participants was 38.5years (min 22, max 63), height 1.72m
(min 1.43, max 2.10), and weight 70kg (min 50, max 105). Each individual was asked to perform
each of the following activities: (1) to clean, (2) to undress/dress, (3) to prepare a meal and to
eat, (4) to perform personal hygiene, (5) to have a phone conversation, (6) to perform leisure
activities, (7) to have a nap. In total, for all the participants, more than 26 hours of data have
been acquired. During this experiment no vocal orders were used. Participants used switches in
order to turn on/off the lights, open the blinds and curtains, and to turn on/off electrical devices.
Figure [9]shows the inside of the DoMUs smart home during the experiments.

Every sources of information from the home automation network as well as the audio channels
were recorded. This dataset is called the multimodal SWEET-HOME dataset. It was annotated
(location, activity, interaction, speech and non speech sounds) using the Advene softwareﬂ This
corpus is freely available at http://sweet-home-data.imag.fr/.

Since in this experiment there was no uttered vocal orders, they were artificially included at
moments in which a specific situation was encountered. For instance, at the beginning of an
eating activity a fake utterance was inserted so as if the user had uttered the vocal order to turn
on the light at that moment. Though this is not real utterances, this made it possible to evaluate
the situation at each second in the interval of the first 30 seconds of the activity. The situations
that were included were the following:

1. Situation 1. The user is sitting eating in the kitchen, the most adequate light is the light

Sliris.cnrs.fr/advene


http://sweet-home-data.imag.fr/
liris.cnrs.fr/advene

above the table.

2. Situation 2. The user is washing up the dishes in the kitchen, the most adequate light is
the light above the sink.

3. Situation 3. The user is finishing her nap in the bedroom, the most adequate light is the
bedside lamp.

4. Situation 4. The user is tidying up the kitchen, the most adequate light is the one above
the sink.

5. Situation 5. The user is reading in the bedroom, the most adequate light is the ceiling
light.

6.2.2 Second Experiment — The Interaction SWEET-HOME dataset — Data acquisition for
decision making

This experiment has been performed in similar conditions as for the first one. However, in
this case, participants were asked to utter vocal orders to activate the actuators in the smart
home. The objective of this experiment was to test the intelligent controller on live, including the
context recognition model, in real situations responding to the vocal orders given by the user.
15 persons (including 9 women) participated to the experiment to record all sensors data in a
daily living context. The average age of the participants was 38years (19-62, min-max). At the
end of the study, 11 hours of data was recorded. The following activities were performed by the
participants: (1) to tidy up the home, (2) to prepare a meal and to eat, (3) to have a conversation
by videoconference, (4) to perform leisure activities, (5) to have a nap.

As for the first experiment, the participant were provided with a scenario (divided in 5 parts) to
follow . The scenario was designed to last around 45 minutes but there was no constraint on the
execution time. Four of the five parts of the scenario were designed to make the user perform
daily activities while uttering voice commands. Figure [10[shows the details of the first part of the
scenario. The participant is provided with a list of actions to perform and voice commands to
utter. As it can be seen, the voice commands were provided but not the grammar. Indeed, the
grammar would have been too difficult to manipulate for people unfamiliar with this format.

The remaining part of the scenario was devoted to the command of the e-lio system and to the
simulation of emergency calls. These scenarios allowed us to process realistic and representative
audio events in conditions which are directly linked to usual daily living activities.

Each participant had to use vocal orders to switch the light on or off, open or close blinds, ask
about the temperature and ask to call his or her relative. The instruction was given to the
participants to repeat the order up to 3 times in case of failure. A wizard of Oz was used in case
of persistent problems.

6.3 Situations for Decision Making

Four situations in which the intelligent controller must perform context aware decision making
were considered. Each time the vocal order consisted in uttering “turn on the light”. In each
situation, there are two lights that can be turned on, one brighter than the other:



1. Situation 1. The user is sitting eating in the kitchen, the most adequate light is the light
above the table.

2. Situation 2. The user is tidying up the bedroom, the most adequate light is the ceiling
light.

3. Situation 3. The user is washing up the dishes in the kitchen, the most adequate light is
the light above the sink.

4. Situation 4. The user is finishing her nap in the bedroom, the most adequate light is the
bedside lamp.

These situations occur when the participant utters a vocal order in an ambiguous situation in
which the controller must take into account the contextual information.

6.4 Results
6.4.1 Model learning

Despite the time devoted to the experiment, the dataset was insufficient to learn the weights
for an MLN decision model. The building of a real corpus exclusively composed of decision for
supervised learning would be a tedious and time consuming task. Thus, the training corpus
for weight learning was the result of the simulation of 300 instances, most of which expressing
the best location and intensity but also including configurations that were less appropriate. For
instance, if in most of the situations where the user is eating in the kitchen, the best light is the
one above the table, a light above the sink can also be acceptable. The topology of the flat and
the location of the actuators within it helps to find the best configuration of preferences.

6.4.2 Localisation

One of the most important elements of the context is the localisation (i.e., the ability for the
system to know in which room the person is). In the case of the Multimodal SWEET-HOME dataset,
the performance was of 95% of accuracy. When the localisation was run on the Interaction
dataset, the performance was of 85.36% (SD=3.85%) accuracy on average per subject computed
every second in each record. This means that nearly 15% of the localisation was wrong. However,
when the localisation performance is computed only at the time at which a voice command is
recognised (i.e., the location used by the decision module) the performance reaches 100% in both
datasets. This means that the system was always making a decision using the correct location
information.

6.4.3 Activity Recognition

As discussed before, activity recognition is a difficult task which delivers uncertain information.
In this paper, we focus on the activity recognition during a voice command.



Table 2: Confusion matrix of the activity recognition during decision making for the multimodal
SWEET-HOME dataset (simulated vocal orders)

Target/Hit | Eat  Tidy Sleep Rest Dress Hygiene
Eat 492 138 0 0 0 0
Tidy 193 1027 18 5 1 16
Sleep 0 16 611 30 3 0
Rest 0 0 85 415 31 9

The method used to evaluate the MLN activity classifier was based on Cross-Validation but
used a specific type namely Leave-One-Subject-Out-Cross-Validation (LOSOCV). If the dataset is
composed of records E] from N participants, for each fold, records from N — 1 participants were
used to train the model, while the remaining record was used for evaluating the learned model.
Consequently, testing is done on different individuals from training, and thus LOSOCV prevents
participant over-fitting.

The performance of activity recognition with the multimodal SWEET-HOME dataset (cf. Sec-
tion[6.2.1)) is given Table 2] Recall that simulated voice order were placed within a 30-second
interval at the beginning of any of the 5 situations for each participant. Thus, activity recognition
was evaluated for every second in this 30-second interval. With 21 participants, the total number
of times that activity recognition should have been performed would be 3150. However, Situation
5 was not present in a couple of participants’ record, therefore the number of instances to evaluate
activity recognition was 3090. Table [2| shows the confusion matrix of activity recognition for
the multimodal SWEET-HOME dataset (simulated vocal orders). The obtained overall accuracy is
83%.

The audio events are an important source of information to infer the location of the inhabitant,
since in the first corpus the vocal order did not take place in reality, there were some temporal
windows in which the inferred location was wrong. The location is the most important evidence to
infer the activity since given a certain location, the model will give higher probability to activities
that are normally performed in that location. It explains why tidy and rest activities have been
classified in 25 windows as Hygiene which was always performed in the bathroom which is a
room next to the bedroom. The confusion of activities happening in the same room can also
be high, this is the case of eating and tidying in the kitchen. In both activities the same contact
doors are activated (fridge, shelf), the sounds produced by dishes and cutlery are quite similar,
there is just a slight difference in the level of agitation that can help the classifier to discriminate
these two activities.

For the second experiment, the interaction SWEET-HOME dataset (cf. Section[6.2.2)), that contains
genuine vocal orders the confusion matrix is presented Table [3| There were 60 activity instances
performed during voice commands, they belong to: sleeping, eating and tidying up. However,
our model has been trained to recognize seven activities (the same as (Chahuara et al.,|2011)).
The most important confusion was between eating and tidying up. Both activity were performed
in the kitchen and shared many characteristics such as the noise produced by the dish handling.
The voice commands helped to improve the inference of location, that is why in the second
experiment there are no confusions with the hygiene activity that is performed in the bathroom.
However, there is a confusion in two windows between sleeping and eating, which is produced
by a presence of the person in the kitchen just before going to sleep that is considered in the

“Here ‘record’ means, the full data for one human participant



Table 3: Confusion matrix of the activity recognition during decision making — with vocal orders

Target/Hit | Eat Tidy Sleep Rest
Eat 12 3 0 0
Tidy 6 20 3 1
Sleep 2 0 13 0

Table 4: Correct decision rate with and without activity uncertainty — with the multimodal

SWEET-HOME dataset

Situation MLN without MLN with
/Expected Utility uncertainty uncertainty
Situation 1 78% 71%
Situation 2 86% 94%
Situation 3 79% 86%
Situation 4 92% 89%
Situation 5 84% 91%
Total 84% 86%

temporal window. Even more, eating and sleeping have most of the time a low level of agitation
what also explain their confusion. The overall accuracy was of 75%.

The overall accuracy of the activity recognition was of 83% and 75%. This is not perfect but it is
a reasonable rate given the poverty of the information sources. This also shows the necessity of
taking the activity uncertainty into account in the decision model.

6.4.4 Decision Making

Recall from Section |4.3|that the MLN decision model, apart from the localisation and activity,
includes a third contextual information: the agitation. This variable domain has then been
discretised in three categories: low, medium, and high.

Results obtained with the multimodal SWEET-HOME corpus (simulated vocal orders) are presented
Table [4l For each participant and each situation, a voice command was added to the dataset
leading to 105 decisions to be made. The second column shows the standard EU, for which the
most probable activity is considered as true and others as false. In the third column, the EU is
computed using equation[7} In practice, the accuracy of the location was close to 100%, thus the
uncertainty was mainly due to the activity recognition. It can be seen that the misclassification
between eating and tiding up decreases the performance of the decision making model. However,
in most of the situations, considering the uncertainty of the activity recognition output improves
the decision taken by the intelligent controller.

Table [5|show the overall correct decision rate for each situation of the corpus with vocal orders.
The worst performance is for situations 2 and 3. This is mainly due to the confusion between
eating and tidying up. However, the eating activity was well recognized and this explain the high
accuracy for situation 1. Overall, the results with and without uncertainty are close. They actually
differ in only 3 instances out of 60, 2 of them are produced when the person is eating in the
kitchen (situation 1). For instance, in Situation 2 for the participant 12, the activity recognition
output was : hygiene(0.20), dressing (0.16), sleeping (0.28), and resting (0.17) while the ground



Table 5: Correct decision rate with and without activity uncertainty — with the interaction
SWEET-HOME dataset

Situation MLN without MLN with
/Expected Utility uncertainty uncertainty
Situation 1 86.6% 100%
Situation 2 73.3% 66.6%
Situation 3 73.3% 73.3%
Situation 4 100% 100%
Total 83.3% 85%

truth was tidying up (0.08) in the kitchen In this example, there is a high uncertainty about
the actual activity, but the most probable activities leading to a high intensity choice for the light,
the controller did choose a high intensity despite the most probable activity was sleeping.

7 Discussion and perspective

Decision making in smart homes involves dealing with uncertain, imprecise, and incomplete data
while at the same time must allow to be checked and adapted by/for human; and so far, not a
single method can overcome all these problems. Therefore, Ambient Intelligence projects must
rely on the integration of several methods sharing a common base and serving each one a specific
purpose (here location-module, activity-module etc.). The presented framework is a stepping
stone towards achieving this goal.

The experimental outcomes shed light on several interesting aspects of the approach for the field
of decision making and expert systems. The statistic-relational model used in this work achieves
a correct decision rate of 85% overall (71% min, 100% max) showing that it is a relevant model
for context-aware decision making from sensors data. The experiment also showed that decision
making models can be learned from data as exemplified by the learning of uncertainty weights
from a training set. These weights are interpretable by humans. Regarding the modelling of
uncertainty in the data (instead of knowledge) the experiment do not exhibit a definite difference
against the condition in which uncertainty in data is not modelled. There is however some cases
where this modelling does provide improvements which calls for further research in the handling
of data and knowledge uncertainty in decision models. Another issue in the current approach is
the necessity to discretise the continuous values in the logic rules to make the approach tractable.
Although it is not problematic in our application (since discretisation is often performed to
improve classification performance (Frank and Witten, |1999)) it might be inadequate for control
from continues values and time constrained decision making. Another outcome of the experiment
is the evaluation methodology which was long and costly to set up but which has permitted
to perform realistic tests of the system. In order to favour reproducibility and comparison of
the research, the collected corpus has been made available to the community. This is the only
available multi-source sensors dataset with voice order we are aware of (Vacher et al., [2014).

The contributions brought by this study are mainly: (1) the description of a framework for
pervasive environments that can be extended to integrate other inference modules than those

51t must be emphasized that the activity recognition is performed using a sliding window. In this window several
instances of activity can intersect, that is why a sleeping and a hygiene activity can both have a high probability



presented in our work, (2) a decision making method that allows the inclusion of expert knowledge
in a declarative fashion while providing very good performance in an uncertain environment as it
has been shown in the experimental section, (3) the experimental evaluation of our framework
in a real environment with people interacting with the system by vocal orders, which is a major
distinction with respect to most works on decision making systems for pervasive environments.

Among the numerous approaches that can be applied to represent knowledge in a pervasive
environment, ontologies were used because they comply with the representation of properties we
delineated as essential requirements for our framework: readability, modularity and expressibility.
The architecture based on this ontological representation is general enough to be adapted and
implemented in different pervasive environments varying in room distribution, sensors, and
environmental conditions. Besides the flexibility for adaptation, different inference modules
among those presented in this work can be integrated while handling their own inference methods
or using the ontology reasoner capabilities as the situation recognition module does in this work.

One of the main objectives of decision making in a smart-home is to take the most appropriate
action with respect to the situation and the user’s goal. In that sense, decision making must be
aware of the context in which a decision must be made. In this, work we model the problem
through an influence diagram which makes it possible to maximize the utility of an action given
the data at hand at the moment of the decision making. The adaptation to the situation is
performed by explicit modelling of the situations of interest that are defined within the ontology.
However, in realistic setting, the building of such model is confronted with several kinds of
uncertainty, two of which being: uncertainty in the knowledge and uncertainty in the input data.

In this work, uncertainty in the decision knowledge is handled using of Markov Logic Networks.
According to the performed experiments, MLN seems very promising since it exhibits a high
correct decision rate. This model has several advantages for the field of expert systems. Firstly,
since MNL is relying on a set of logic formulas it is well suited to intelligent systems where
knowledge is represented by means of logic. This can be exploited by translating some of this
knowledge from one representation to another to, for instance, adds a priori relational knowledge
in the MLN structure. From this perspective, a formal domain knowledge description and logic-
based decision method could lead to higher re-usability of the model in another application.
Secondly, since MLN is also probabilistic model, it can make inference using uncertain knowledge
and with incomplete input. However, as most of probabilistic models, MLN learning requires a
large amount of data to estimate the parameters. Unfortunately, corpora with annotated data in
smart home environment useful for decision making are sparse. Furthermore, to the best of our
knowledge there is no available corpora for decision making from vocal orders. To overcome this
limitation, we took benefit from the capacity of the MLN to handle a priori knowledge. It had
been possible to acquire the structure from expert knowledge and to estimate the weights from a
set of synthetic data. This has proven to be adequate in view of the observed performances of the
system. Though not ideal, given the difficulty and cost of acquiring training data in the smart
home domain, this way seems promising to alleviate the need of large volumes of training data
of purely statistical methods.

As previously stressed, in the smart home environment information is uncertain. Thus, this can
have a great impact on the decision process if input data are seen as certain evidence. Since,
wrong actions must be avoided, the handling of uncertain evidence must be generalised. The
proposed approach is a first step towards this generalisation. Although the decision results with
and without the consideration of the activity uncertainty are very close, it had some really positive



impact in some situations.

To further ameliorate our framework, we intend to work on two improvements: the first one
relates to a tighter integration of the decision model with the ontology. it would indeed be
interesting to address the problem of knowledge maintenance by using an ontology reasoner to
check for coherence of the decision model rules. Such an integration would not be trivial since
MLN rules are first-order logic rule while description logic and safe rules are only a subset of
first-order logic. A second improvement would be to generalise the handling of uncertainty to
uncertain evidence.
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Figure 3: The low and high level ontologies.
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basicCmd = key initiateCommand object |
key emergencyCommand
key = "Nestor"
initiateCommand = "ouvre" | "ferme" | "baisse" | "éteins" | "monte" | "allume" | "descend" |
"appelle" " | "donne"
emergencyCommand = "au secours" | "a 1l’aide"
object = [determiner] ( device | person | organisation)
determiner = "mon" | "ma" | "1/" | "le" | "la" | "les" | "un" | "des" | "du"
device = "lumiere" | "store" | "rideau" | "télé" | "télévision" |
"radio" | "heure" | "température"
person = "fille"™ | "fils" | "femme" | "mari" | "infirmiére" | "médecin" | "docteur"
organisation = "samu" | "secours" | "pompiers" | "supérette" | "supermarché"

Figure 5: Excerpt of the voice orders grammar (terminal symbols are in French)
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Figure 6: Influence diagram for a decision after a vocal order is recognised.
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Figure 7: Influence diagram construction by MLN grounding.
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Figure 8: The DoMUS Smart Home of the LIG (Vacher et al., 2014)



Figure 9: Images captured in the smart home

Go to the kitchen
Ask for the ambient temperature:

Nestor donne la température (Nestor give the temperature)

You can have a snack
Once finished, put the dishes in the sink
Ask for the current time:

WESOR O RIS (Nestor give the time)

You realise that it is late, you must go shopping
before leaving the home, you want to turn off the light:

you also want to close the blinds:

Nestor baisse les stores (Nestor close the blinds)

Finally you leave the home

Figure 10: Excerpt of the first scenario given to the participant

Figure 11: Screenshots of the recording video cameras.



	Introduction
	Related Work
	Decision making in a voice-based controlled Smart Home context
	Intelligent Controller of the Sweet-Home system
	Architecture
	Two-level knowledge representation
	Raw and inferred information
	Speech/sound detection
	Agitation
	Localisation
	Activity recognition

	Situation Recognition

	Decision Making using Markov Logic Network
	Modelling the decision making by Influence Diagrams
	Markov Logic Networks (MLN)
	Making decision with uncertain evidence

	Experiments
	Experimental Environment
	Experimental set up and collected data
	First Experiment — The Multimodal Sweet-Home dataset
	Second Experiment — The Interaction Sweet-Home dataset — Data acquisition for decision making

	Situations for Decision Making
	Results
	Model learning
	Localisation
	Activity Recognition
	Decision Making


	Discussion and perspective

