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On the study of extremes with dependent random

right-censoring

Gilles Stupfler∗
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Abstract. The study of extremes in missing data frameworks is a recent developing field. In

particular, the randomly right-censored case has been receiving a fair amount of attention in the last

decade. All studies on this topic, however, essentially work under the usual assumption that the

variable of interest and the censoring variable are independent. Furthermore, a frequent characteris-

tic of estimation procedures developed so far is their crucial reliance on particular properties of the

asymptotic behaviour of the response variable Z (that is, the minimum between time-to-event and

time-to-censoring) and of the probability of censoring in the right tail of Z. In this paper, we focus

instead on elucidating this asymptotic behaviour in the dependent censoring case, and, more precisely,

when the structure of the dependent censoring mechanism is given by an extreme value copula. We

then draw a number of consequences of our results, related to the asymptotic behaviour, in this depen-

dent context, of a number of estimators of the extreme value index of the random variable of interest

that were introduced in the literature under the assumption of independent censoring, and we discuss

more generally the implications of our results on the inference of the extremes of this variable.

AMS Subject Classifications: 62G32, 62N01, 62N02.

Keywords: Random right-censoring, dependent censoring, extreme value copula, extreme value

index, tail identifiability, tail censoring probability.

1 Introduction

The problem of missing data, and in particular censoring, is frequently encountered in certain fields

of statistical applications. The archetypal example of censoring is arguably the study of the survival

times of patients to a given chronic disease in a medical follow-up study lasting up to a fixed time t.

If a patient is diagnosed with the disease at time s, then his/her survival time will be known if and

only if he/she dies before time t. If this is not the case, then the only information available is that

his/her survival time is not less than the censoring time t− s. In mathematical terms, the information

available to the practitioner is the pair (Z, δ), where Z is the minimum between the survival time and

censoring time, and δ is the 0-1 variable equal to 1 if and only if the survival time is actually observed.
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This situation is one of the most frequent examples of random right-censoring, which shall be our

framework in this paper.

Random right-censoring is also found in actuarial science: in non-life insurance, Reynkens et al. (2017)

use random right-censoring to model unsettled claims, about which the insurer only knows what has

been paid up to date rather than the ultimate claim amount, i.e. the sum of all payments for the

claim, which is only known when the claim is fully settled. In life insurance, meanwhile, any study

that monitors policyholders in a given time period contains right-censored data points, since many of

the subjects still live at the end of the monitoring period. Another example is reliability data analysis:

if a car company collects failure data during the warranty period, then a failure could happen not only

because of a failure in the mechanics of the car, but also because of an accident or driver error. In

the latter case, time-to-accident or time-to-driver-error should be treated as the censoring time, see

Modarres et al. (2009). Random right-censoring should not be confused with other types of missing

data mechanisms such as right-truncation, where no information is available at all when the random

variable of interest is not actually observed. In a heavy-tailed context and when the right-truncation

point is unknown but non-random, this problem is considered by Aban et al. (2006), while the earliest

reference tackling the random right-truncation problem in the extreme value context is Gardes and

Stupfler (2015).

In a random right-censoring framework, a stimulating problem is the estimation of extreme parameters

of the underlying distribution of the variable of interest, a prime example of which being its extreme

value index. In the aforementioned examples, this would ultimately lead to the analysis of survival

times of exceptionally strong/weak patients to a given disease, extreme losses/payouts in insurance,

or failure times for highly resistant/unreliable devices. This subfield of extreme value statistics has

received a good amount of attention in recent years: we refer to Beirlant et al. (2007), Einmahl et

al. (2008), Beirlant et al. (2010), Gomes and Neves (2011), Ndao et al. (2014), Sayah et al. (2014),

Worms and Worms (2014), Brahimi et al. (2015), Beirlant et al. (2016), Ndao et al. (2016) and

Stupfler (2016). All of these papers work under the hypothesis that the variable of interest Y and

the censoring variable T are independent random variables; in the case of Ndao et al. (2014, 2016)

and Stupfler (2016), the condition is actually conditional independence given a suitable, in practice

low-dimensional, covariate. Among others, the independence assumption allows for a very convenient

expression of the cumulative distribution function of the observed variable Z and, as a result, for a

simple discussion of its extreme value properties. The asymptotic behaviour of Z, and that of δ|Z for

high Z, can then be fruitfully exploited to construct a class of simple estimators of the extreme value

index of Y (see, for instance, Beirlant et al., 2007 and Einmahl et al., 2008). It should be said that

since the pioneering paper of Kaplan and Meier (1958) on the product-limit estimator for the survival

function, the assumption of independent censoring is arguably the standard assumption in the context

of random right-censoring.

And yet, cases in which there are strong suspicions of dependence between the variable of interest and

the censoring time have been reported several times over the last decades. An early reference is Lagakos

(1979). In medical studies especially, a common cause of the probable violation of the independence

hypothesis is a sizeable number of patient dropouts (Huang and Zhang, 2008 and Jackson et al., 2014).

2



Crucially, using traditional estimators such as the Kaplan-Meier estimator when there is dependence

may yield to invalid inferences, see Fisher and Kanarek (1974), Klein and Moeschberger (1987) and the

introduction of Ebrahimi and Molefe (2003). Moreover, there is the additional issue of identifiability,

in the sense that if the dependence structure is completely unspecified then the distribution of (Y, T )

cannot be recovered from that of the pair (Z, δ), see Tsiatis (1975). A number of authors have suggested

partial solutions to tackle the problem of dependence: some recent efforts include fitting specific types

of known copulas (Li et al., 2007 and Huang and Zhang, 2008) or assuming weaker assumptions than

independence on the pair (X,Y ) (Ebrahimi et al., 2003). The integration of valuable, preferably high-

dimensional covariate information may also be helpful if conditional independence given the covariate is

reasonable (see Zeng, 2004, Li et al., 2007 and Hsu and Taylor, 2010). Let us point out that the studies

by Ndao et al. (2014, 2016) and Stupfler (2016) did consider incorporating a low-dimensional covariate

X, but the common idea underpinning these papers is to estimate the conditional extreme value index

of Y given X = x by adapting the procedure of Einmahl et al. (2008), developed for independent

censoring, using kernel-type techniques. The introduction of covariate information is therefore not

motivated by a reduction of the dependence between Y and T ; in fact, these papers ignore altogether

the issue of dependence and its consequences upon the inference about the extremes of the variable of

interest.

Given the importance of the knowledge of the asymptotic behaviour of (Z, δ) for Z large in the con-

struction of extreme value estimators in the independent censoring case, it is natural to think of the

consequences that dependent censoring may have on this asymptotic behaviour. As noted above, there

are numerous ways to specify dependence; in this paper, we assume that the dependence structure of

the pair (Y, T ) is given by an extreme value copula, which is equivalent to assuming that (Y, T ) has

a bivariate extreme value distribution in the sense of Tawn (1988). The construction and early devel-

opment of extreme value copulas date back to Galambos (1978) and Deheuvels (1984), and a recent

account is provided by Gudendorf and Segers (2010). This type of copula is particularly adapted to the

description of joint extreme events, i.e. of situations when both Y and T are extreme, which constitute

precisely the kind of events one has to consider in order to understand the extremes of the observed

variable Z = min(Y, T ), in an effort to then get back to the extremes of Y (that would be the goal of

the statistician in this context). The main results of this paper focus on, assuming standard extreme

value conditions on the distribution of Y and T together with an extreme value copula dependence

model, the analysis of the extreme value properties of Z first and then of the behaviour of δ given that

Z is large, the latter variable indicating how much censoring there is in the extremes of the sample.

The basic assumption of a purely extreme value copula model may appear restrictive at first. It is indeed

similar in spirit to assuming that, in the univariate case, the underlying distribution is a Generalised

Extreme Value distribution (see de Haan and Ferreira, 2006). This assumption shall nevertheless prove

very useful in identifying several problems, such as the inconsistency of certain estimators, that may

arise when there is dependence in the censoring mechanism. The idea is that any estimator (of, say, the

extreme value index of Y ) which would be inconsistent in the present context cannot be expected to

be consistent in general in a wider class of models (such as, for instance, the Archimax copula model of

Capéràa et al., 2000), as any such wider class would contain the extreme value copula model in which
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the estimator is inconsistent. Let us also point out that the very popular bivariate model of Ledford

and Tawn (1996, 1997) would not be appropriate here, because this model assumes that Y and T are

unit Fréchet distributed. To use this model in practice, one therefore has to transform Y and T to a

unit Fréchet distribution, which implies that the distributions of Y and T are known or have at least

been accurately estimated beforehand. This would be an issue in the statistical analysis of extremes

with censoring, since the mindset is rather that nothing is known about the distributions of Y and T

and the problem is to recover the extreme value behaviour of Y .

Let us highlight the main contributions of this paper. We start by, in an extreme value copula dependent

censoring model, investigating the extreme value properties of Z as well as the convergence of the

proportion of censored observations in the right tail of the variable Z. After that, we shall explain how

this investigation shows that a number of estimators of the extreme value index of Y , introduced in the

independent censoring case, become inconsistent in the dependent censoring framework we consider,

whenever T has a lighter tail than Y has. More generally, we will argue that when the dependence

structure of (Y, T ) is given by a non-independent extreme value copula, and if T has a lighter tail than

Y has, then the identifiability of the extreme value index of Y , based on the information provided

jointly by Z and δ|Z for Z large, is unclear. This is in stark contrast with the independent censoring

case, in which we know from Einmahl et al. (2008) that the problem of inferring this parameter

can indeed be solved in a simple way based on the behaviour of the pair (Z, δ) for large Z alone.

This discussion will be formalised using our introduced and dedicated concept of tail identifiability,

adapted to the censoring framework, and refined based on additional asymptotic considerations on the

distribution of (Z, δ) for high Z. We shall then explain why, based on the full information provided

by the distribution of (Z, δ) and if the extreme value copula describing the censoring mechanism is

known, then the extreme value index of Y becomes clearly identifiable, and we shall outline a couple

of possible strategies that may lead to consistent estimators of this extreme value index.

The outline of our paper is as follows. Section 2 gives further details about our assumptions and

especially about our dependence framework. Section 3 gives our main results, first about the extremes

of the observed variable Z in Section 3.1 and then about the tail censoring probability in Section 3.2.

Section 4 gathers statistical considerations deduced from our results about the estimation of the extreme

value index of Y , relative to the inconsistency of certain estimators in Section 4.1 and then more

generally to the identifiability of this parameter based on tail information in Section 4.2. Section 5

concludes by briefly discussing possible ways to design inference techniques and providing ideas for

further work. Proofs of the main results are deferred to Appendix A, and auxiliary results and their

proofs are relegated to Appendix B.

2 Framework

We assume throughout that the variable of interest Y is partially unobserved, due to the existence

of a right-censoring random variable T . In other words, we only observe the pair (Z, δ), where Z =

min(Y, T ) and δ = I{Y≤T}. Contrary to the standard setup, we also assume that Y and T are not

independent. We describe here the dependence structure of the pair (Y, T ) by the means of a copula
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function. The key result in order to do so is Sklar’s theorem (Sklar, 1959), which says that there exists

a copula C with

∀y, t ∈ R, P(Y ≤ y, T ≤ t) = C(FY (y), FT (t)),

in which FY and FT denote the respective cumulative distribution functions of Y and T . A copula C

is simply, in our case, a bivariate distribution function of a pair of standard uniform random variables.

We assumed here that Y and T are not independent, so that the copula C cannot be the independent

copula (u, v) 7→ uv.

Since the ultimate goal of the statistician would be to recover the extremes of Y , we should work in

a relevant extreme value framework. The condition we shall introduce, on an arbitrary distribution

function F , is one of the many equivalent versions of the classical extreme value condition saying that

the distribution should belong to the domain of attraction of some extreme value distribution. As

we are in a randomly right-censored situation, it is convenient to write our extreme value condition

on a distribution function F in terms of the survival function 1 − F , which leads us to the following

formulation (see Theorem 1.1.6 in de Haan and Ferreira, 2006):

Condition C1(γ): There is γ ∈ R, called the extreme value index of F , and a positive function a such

that the distribution function F satisfies:

lim
t↑τ∗

1− F (t+ xa(t))

1− F (t)
= (1 + γx)−1/γ

for all x with 1 + γx > 0, where τ∗ = sup{x ∈ R, F (x) < 1} is the right endpoint of F .

Since the observed variable is Z = min(Y, T ), it makes sense to assume that the distributions of Y

and T can both be included within this extreme value framework, and our main results will then be

stated under the assumption that the distributions of Y and T satisfy conditions C1(γY ) and C1(γT )

respectively. Because actually

P(Z > z) = P(min(Y, T ) > z) = P(Y > z, T > z)

it follows that the study of the extremes of Z, which is intuitively a sensible way to get information

about the extremes of Y , will require a study of the situation when Y and T are jointly extreme. A

very convenient assumption on the copula C in this context is then to suppose that C is an extreme

value copula (see e.g. Gudendorf and Segers, 2010):

∀(u, v) ∈ (0, 1]2 \ {(1, 1)}, C(u, v) = (uv)A(log(v)/ log(uv))

where A is the so-called Pickands dependence function related to C, i.e. it is a function that maps

[0, 1] into [1/2, 1], is convex and satisfies the inequalities max(t, 1− t) ≤ A(t) ≤ 1 for all t ∈ [0, 1]. The

function A characterises the copula C: in particular, the case A(t) = 1 corresponds to the independent

copula C(u, v) = uv (which we therefore exclude), and the case A(t) = max(t, 1−t) is that of the perfect

dependence copula C(u, v) = min(u, v). In theoretical terms, these copulae arise naturally as limiting

copulae of suitably normalised sequences of componentwise maxima of independent and identically

distributed bivariate pairs (Joe, 1997). In this sense, assuming that (Y, T ) follows a bivariate extreme

value distribution is analogous to, in a univariate context, assuming that the random variable of interest
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has a Generalised Extreme Value distribution. Working in such a context, which is a simplified version

of the general case, can help to identify statistical issues, especially regarding the inconsistency of

certain estimators, that would arise in a more general context as well; we will highlight such issues in

Section 4.

Our first step is to, compared to the independent censoring case, quantify the influence that the

dependence structure induced by C has on the distribution of the random variable Z. We do this by

using a simple identity linking the survival function FZ(z) = P(Z > z) of Z to the survival functions

FY and FT of Y and T and to the copula C. Since

FZ(z) = P(Y > z, T > z) = 1− P(Y ≤ z, T ≤ z)− P(Y ≤ z, T > z)− P(Y > z, T ≤ z),

it follows, after straightforward calculations, that we can write

FZ(z) = FY (z)FT (z) + ϕ(FY (z), FT (z)) with ϕ(u, v) = C(1− u, 1− v)− (1− u)(1− v). (1)

In other words, we can write the survival function of Z as what it would be under independence of Y

and T , plus the term ϕ(FY (z), FT (z)) measuring the effect that the dependence structure in C has on

Z. Since the behaviour of FY (z)FT (z) for large z (i.e. when z converges to the right endpoint of Z) is

easy to analyse, Equation (1) suggests that, to analyse the extremes of Z, it is enough to understand

the behaviour of ϕ(FY (z), FT (z)) for large z.

Let now τY and τT be the right endpoints of Y and T , respectively. Since we will focus on the large

values of Z, namely, near its right endpoint τ = min(τY , τT ), we can anticipate that the relative

positions of τY and τT will play a major role in our context. In the case when τT < τY , then the

extremes of Y cannot be recovered because the distribution of Y is not identifiable past the point τT .

In the case τY < τT , we should expect the extremes of Y to be those of Z, meaning that they can be

recovered by standard techniques. The following result makes this statement precise.

Proposition 1. Assume that τY < τT and C is an extreme value copula whose Pickands dependence

function is continuously differentiable on [0, 1]. Then FZ(z)/FY (z) has a positive and finite limit as

z ↑ τZ = τY , the right endpoint of Z.

We therefore assume in what follows that Y and T have a common right endpoint τ = τY = τT .

Note that distributions with a positive extreme value index have an infinite right endpoint, while

distributions with a negative extreme value index have a finite right endpoint, see Theorem 1.2.1 in de

Haan and Ferreira (2006). It therefore follows from our basic assumption τY = τT that the extreme

value indices γY and γT should have the same sign.

We may now summarise our hypotheses about the joint behaviour of Y and T in the following condition:

Condition (H): Y and T have a common right endpoint τ = τY = τT , satisfy conditions C1(γY ) and

C1(γT ) respectively, and their joint distribution function is given by

∀y, t ∈ R, P(Y ≤ y, T ≤ t) = C(FY (y), FT (t))

where C is an extreme value copula whose Pickands dependence function A is twice continuously

differentiable and not equal to the constant function 1.
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In their pioneering paper, Einmahl et al. (2008) use the right-tail behaviour of the observed variable Z,

together with an analysis of the censoring probability given that Z is large, to show that if Y and T are

independent then the extreme value index of Y can be recovered exclusively from the behaviour of (Z, δ)

given that Z is large in a very simple manner under classical extreme value assumptions. A similar idea,

albeit implemented differently, is used by Beirlant et al. (2007). This line of thought was then followed

by Gomes and Neves (2011), Ndao et al. (2014), Brahimi et al. (2015), Beirlant et al. (2016), Ndao

et al. (2016) and Stupfler (2016) in their respective contexts. Our aim in Section 3 below is to carry

out an analogue study in our dependent censoring context and see what influence the introduction

of dependence in the censoring mechanism, via an extreme value copula, has on the distribution of

(Z, δ) given that Z is large. Let us finally highlight that the double differentiability assumption on A

is technically convenient and allows for a unified presentation of our results in Sections 3 and 4; the

results in Section 3 below can be obtained by simply assuming that A is continuously differentiable

(at the expense of extra technical details).

3 Main results

3.1 The extremes of the response variable

Our first step is to analyse the extreme value behaviour of Z, in terms of the extreme value indices

γY and γT of Y and T . This is straightforward in the independent censoring case, because then the

survival function of Z is the product of those of Y and T . Our aim here is to state a corresponding

result in the dependence context (H); recall that this condition entails that the extreme value indices

of Y and T have the same sign.

Theorem 1. Assume that condition (H) holds; if γY = γT , assume further that the ratio FT (z)/FY (z)

has a finite and positive limit as z ↑ τ . We have that:

(i) If γY ≥ 0 and γT ≥ 0, then Z satisfies condition C1(min(γY , γT )).

(ii) If γY ≤ 0 and γT ≤ 0, then Z satisfies condition C1(max(γY , γT )).

The right-tail behaviour of Z is therefore essentially that of the variable with the lightest tail in the

pair (Y, T ), i.e. that of Y in the case when Y has a lighter tail than (or a similar tail to) that of T ,

and that of T when T has a lighter tail than Y has. Let us consider a simple illustrative example.

Example 1. Let γT > 0. Suppose that Y and T have the Pareto distributions

FY (y) = 1− y−1 and FT (t) = 1− t−1/γT for y, t > 1.

In particular, Y (resp. T ) has extreme value index 1 (resp. γT ). Assume that the dependence structure

of the pair (Y, T ) is described by a Gumbel-Hougaard copula (see Gumbel, 1960):

∀u, v ∈ (0, 1], Cθ(u, v) = exp
{
−
[
(− log u)θ + (− log v)θ

]1/θ}
where θ ≥ 1 is a constant; here we choose θ > 1, in order to ensure that Y and T are not independent.

This copula is an extreme value copula, whose Pickands dependence function is

A(x) =
(
xθ + (1− x)θ

)1/θ
for x ∈ [0, 1].
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Theorem 1 predicts that FZ should be regularly varying with index −1/min(1, γT ). We check this by

analysing the asymptotic behaviour, as z →∞, of

Cθ(1− FY (z), 1− FT (z)) = exp

{
−
[
(− log(1− z−1))θ + (− log(1− z−1/γT ))θ

]1/θ}
.

If 0 < γT < 1 then

Cθ(1− FY (z), 1− FT (z))

1− z−1
= exp

log(1− z−1)

[1 +

(
log(1− z−1/γT )

log(1− z−1)

)θ]1/θ
− 1


= exp

{
−1

θ
zθ(1−γ

−1
T )−1(1 + o(1))

}
= 1 + o

(
z−1/γT

)
because θ > 1 and γT < 1.

If γT = 1 then

Cθ(1− FY (z), 1− FT (z))

1− z−1
= exp

{
log(1− z−1)

(
21/θ − 1

)}
= 1− (21/θ − 1)z−1(1 + o(1)).

If γT > 1 then

Cθ(1− FY (z), 1− FT (z))

1− z−1/γT
= exp

log(1− z−1/γT )

[1 +

(
log(1− z−1)

log(1− z−1/γT )

)θ]1/θ
− 1


= exp

{
−1

θ
zθ(γ

−1
T −1)−γ

−1
T (1 + o(1))

}
= 1 + o

(
z−1
)

because θ > 1 and γT > 1.

Together with the identity

FZ(z) = FY (z) + FT (z) + C(1− FY (z), 1− FT (z))− 1

which is a consequence of Equation (1), this entails

FZ(z) =


z−1/γT (1 + o(1)) if γT < 1,

(2− 21/θ)z−1(1 + o(1)) if γT = 1,

z−1(1 + o(1)) if γT > 1.

It follows from this computation that FZ is indeed regularly varying with index −1/min(1, γT ).

Let us now highlight a couple of consequences of Theorem 1 about the tail behaviour of the observed

variable Z in our setup. For ease of exposition, we assume until the end of this section that γY γT > 0,

i.e. Y and T both belong to the same max-domain of attraction, that can be either the Fréchet or

Weibull domain of attraction. It is known (see Einmahl et al., 2008) that in the independent censoring

case, Z then belongs to the common max-domain of attraction of Y and T , with extreme value index

γZ =
γY γT
γY + γT

; in particular, |γZ | < min(|γY |, |γT |).
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In the independent case, the absolute value of the extreme value index of the observed variable Z is

therefore strictly lower than what it is in the dependent case we consider here. This means that in the

dependent case, the right tail of Z is heavier than it is in the independent case. Qualitatively, this is a

consequence of the positive tail dependence between Y and T , due to the dependence structure being

described by an extreme value copula (see Gudendorf and Segers, 2010). It is interesting to note that

the expression of the dependence function itself does not affect the extreme value index of Z at all.

Theorem 1 also has an important corollary relative to the relationship between the extremes of Y and

those of the observed variable Z: whereas the extremes of Z always contain information about those

of Y and those of T in the independent case, they are driven either solely by those of Y or those of T

in the dependent case considered here, no matter how close to independence the dependence structure

is. It should be especially emphasised that in the case when γY γT > 0 and |γT | < |γY |, corresponding

to T having a lighter tail than Y has, then the extreme value index of Z is exactly that of T . The only

cases when this type of behaviour is observed in the independent censoring situation are when either

the right tail of T is much lighter than the right tail of Y (e.g. T is light-tailed while Y is heavy-tailed)

or when τT < τY ≤ ∞, the latter being a case when the problem of recovering the extremes of Y has

no solution since the distribution of Y is then not identifiable past the point τT .

3.2 Tail censoring probability

The second main part of our study focuses on the information available in the censoring indicator δ

given that the observed variable Z is large. In other words, we consider the behaviour of the probability

P (z) := P(δ = 1|Z > z) = P(Y ≤ T |Z > z) for z ↑ τ.

When z is close to τ , the probability 1 − P (z) gives an idea of the probability of censoring in the

extremes of Z. In particular, if P (z) converges to a limit P (τ) as z ↑ τ , the probability 1− P (τ) shall

be called the tail censoring probability.

It should be noted that Einmahl et al. (2008) achieve the study of censoring in the right tail by slightly

different means, as they assume that Y and T have continuous distributions and they consider

p(z) := P(Y ≤ T |Z = z) :=

d

dz
[P(Y ≤ T,Z > z)]

d

dz
[P(Z > z)]

.

They mention (without proof) that under independent censoring and suitable extreme value conditions,

this function has a limit as z ↑ τ ; it is actually straightforward to show that this is the limit of P as well,

essentially by l’Hôpital’s rule. Their statistical arguments, however, use the quantity P (z) instead: in

particular, they develop an estimator of the extreme value index of Y using the sample counterpart of

P (z) for large z. The limit of the function P as z ↑ τ can be expected to play an important role in the

context of extreme value analysis with right-censored data, just as the classical censoring probability

P(Y > T ) does for the estimation of central quantities. In the classical, central setup, a positive

(and less than 1) censoring probability means that the problem has a solution and that traditional

estimators have to be corrected in some way in order to retain consistency. A censoring probability
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equal to 0 happens in totally uncensored cases, in which standard, uncorrected techniques will still

be consistent. Finally, a censoring probability equal to 1 gives rise to a totally censored case, which

is a situation when the estimation problem does not have a solution. In classical, central censoring

problems, the condition that the censoring probability belongs to the interval (0, 1) is thus crucial for

an estimation problem to be both nontrivial and workable. Our purpose here is to show that the tail

censoring probability exists indeed in our dependent censoring setting, and the next section will draw

conclusions from its value that are related to inference about the extreme value index of Y .

Our first step to prove that the limiting tail censoring probability exists is to obtain a convenient

representation of the function P . In all what follows, ∂1C denotes the partial derivative of C with

respect to its first argument. It is easy to show that

∂1C(u, v) =
C(u, v)

u

[
A

(
log v

log u+ log v

)
− log v

log u+ log v
A′
(

log v

log u+ log v

)]
. (2)

Besides, if Y has a continuous distribution with probability density function fY then clearly

∂

∂y
[P(Y ≤ y, T > t)] = [1− ∂1C(FY (y), FT (t))]fY (y).

It follows that if T has a continuous distribution as well, then we can write

P(Y ≤ T,Z > z) = P(Y ≤ T, Y > z) =

∫ τ

z

P(Y ∈ dy, T ≥ y)

=

∫ τ

z

[1− ∂1C(FY (y), FT (y))]fY (y)dy,

resulting in

P (z) =
P(Y ≤ T,Z > z)

P(Z > z)
=

∫ τ

z

[1− ∂1C(FY (y), FT (y))]fY (y)dy

FZ(z)
. (3)

Formula (2) and representation (3) are key to our analysis of the convergence of P , which is the focus

of our second main result.

Theorem 2. Assume that condition (H) holds and suppose moreover that Y and T have continuous

distributions. Then, as z ↑ τ , we have that:

(i) P (z)→ 0 if |γT | < |γY |;

(ii) P (z)→ 1 if |γT | > |γY |;

(iii) P (z)→ Pc if |γT | = |γY | and FT (z)/FY (z)→ c ∈ (0,∞) as z ↑ τ , where:

∀c > 0, Pc =
1− c

c+ 1

1−A
(

c

c+ 1

) {1−A
(

c

c+ 1

)
+

c

c+ 1
A′
(

c

c+ 1

)}
∈ [0, 1].

If moreover A is strictly convex, then Pc ∈ (0, 1).

It follows from this result that, in our dependent censoring context, the tail censoring probability

1− P (τ) = 1− limz↑τ P (z) exists and:

10



• When T has a lighter tail than Y has, then the tail censoring probability is 1;

• When Y has a lighter tail than T has, then the tail censoring probability is 0;

• The only nondegenerate case arises when A is strictly convex and Y and T have proportional

tails, the tail censoring probability then being between 0 and 1 depending on the function A.

By comparison, in the independent case, provided Y and T have continuous distributions that satisfy

conditions C1(γY ) and C1(γT ) respectively, with γY γT > 0 and equal right endpoints, the tail censoring

probability is

1− P (τ) =
γY

γY + γT
∈ (0, 1),

see Einmahl et al. (2008). We illustrate these conclusions further in the example below.

Example 2. Suppose, as in Example 1, that Y and T have the Pareto distributions

FY (y) = 1− y−1 and FT (t) = 1− t−1/γT for y, t > 1.

In the independent case, the tail censoring probability would be

1− P (τ) =
1

1 + γT
∈ (0, 1),

decreasing smoothly from 1 to 0 as the tail of T gets heavier. By contrast, in the dependent case with

Pickands dependence function A(t) = 1− t(1− t), the tail censoring probability is

1− P (τ) =


1 if γT < 1,

1/2 if γT = 1,

0 if γT > 1,

which, although still a decreasing function of γT , is discontinuous at 1 and piecewise constant.

Due to the nature of the limit P (τ) in our dependent case, the above example is very much represen-

tative of the different situations that can occur, the only degrees of freedom here being the position of

the discontinuity (i.e. the value of γY , taken to be equal to 1 in the above example) and the value of

P (τ) at this discontinuity (which depends on the function A). Again, it should be emphasised that the

Pickands dependence function plays a largely insignificant role in the results, in that it does not affect

the value of P (τ) except at the discontinuity. In particular, the coefficient of upper tail dependence:

λ := lim
t↓0

1

t
(2t− 1 + C(1− t, 1− t)) = 2(1−A(1/2))

(see Gudendorf and Segers, 2010), only appears when Y and T have exactly equivalent tails, and in

that case

1− P (τ) = 1− 1

λ

{
λ

2
+

1

2
A′
(

1

2

)}
=

1

2
− A′(1/2)

2λ
.

One reason behind this is the following: recall that the upper tail dependence coefficient is

λ = lim
u↑1

P(U > u|V > u)

11



where (U, V ) is a random pair with distribution function C (see again Gudendorf and Segers, 2010).

In other words, the upper tail dependence coefficient measures extremal dependence in the direction

of the 45-degree line. Now (U, V ) := (FY (Y ), FT (T )) is such a random pair and

FZ(z) = P(Y > z, T > z) = P(U > FY (z), V > FT (z))

and P (z) = P(Y ≤ T |Y > z, T > z) = P(Y ≤ T |U > FY (z), V > FT (z)).

We should therefore only expect the upper tail dependence coefficient to appear in this problem if FY (z)

and FT (z) are equivalent for large z. More generally though, the fact that the actual expression of the

function A has no influence in our results outside of the very specific case of similar tails is worthy of

note.

We conclude this section by underlining what is arguably the essential difference, as far as the tail

censoring probability is concerned, between the independent and our dependent censoring case. For

independent censoring, when the right tails of Y and T are of the same type, the tail censoring

probability is

1− P (τ) =
γY

γY + γT
∈ (0, 1).

In particular, on average, a positive proportion of the highest values of Z are known to come from

the variable of interest Y , meaning that the extremes of Y are indeed observed in practice and thus

can be recovered by an adapted technique. By contrast, in our dependent censoring case, then the

tail censoring probability 1 − P (τ) is 1 as soon as T has a lighter tail than Y has; in other words, a

vanishingly small proportion of the highest observations from Z will come from Y in this case. This

suggests in particular that, without any further information on the tails of Y and T , the problem of

inferring the extreme value index of Y from (Z, δ) given that Z is large has no clear solution. We now

seek to clarify these ideas in the next section.

4 Statistical consequences

In this section, we first explain what impact our main results can be expected to have on a class

of estimators of the extreme value index of Y in our dependent framework. We then draw general

conclusions regarding the identifiability of γY from the information provided by the distribution of

(Z, δ) for large Z.

4.1 On the large-sample behaviour of a class of estimators of γY

Our results imply that a dependent censoring mechanism entails consequences, in terms of consistency

of estimators, that can be as serious in the study of extremes of the variable of interest as they are in

the study of its central parameters. To illustrate this point, we focus on certain estimators that have

been developed up to now in the literature. For ease of exposition, we work here under the conditions of

Theorem 2 and we further assume that γY γT > 0. The estimators of Beirlant et al. (2007), Einmahl et

al. (2008), Gomes and Neves (2011), Ndao et al. (2014), Brahimi et al. (2015), Beirlant et al. (2016),

Ndao et al. (2016) and Stupfler (2016) are all based on the fact that in the independent censoring
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case,

γZ
P (τ)

=
γY γT
γY + γT

×
{

γT
γY + γT

}−1
= γY .

The common idea these authors use is then to plug a consistent estimator of γZ and a consistent

estimator of P (τ) in the left-hand side above in order to obtain a consistent estimator of γY . One

representative example of such an estimator is obtained as follows: suppose that the available data is

made of independent pairs (Zi, δi), 1 ≤ i ≤ n. Denote by Z1,n ≤ · · · ≤ Zn,n the order statistics of

(Z1, . . . , Zn) and by δ[n−i+1,n] the δ−indicator corresponding to Zn−i+1,n. An empirical estimator of

P (τ) is then

P̂k(τ) :=
1

k

k∑
j=1

δ[n−j+1,n]

where k = k(n)→∞ and k/n→ 0, see Einmahl et al. (2008). Combining this with e.g. the moment

estimator γ̂Z,k of γZ (see Dekkers et al., 1989) results in an estimator γ̂Y = γ̂Z,k/P̂k(τ) of γY which

is consistent under independent censoring if certain general conditions are satisfied. In the dependent

case we consider, however, the equality
γZ
P (τ)

= γY

is only true when the tail of Y is strictly lighter than that of T , in which case we actually have

γZ = γY ; the left-hand side is not even defined for |γY | > |γT | since P (τ) is then equal to 0. This leads

to the inconsistency of the aforementioned estimators when T has a lighter tail than Y has, and more

generally results in a considerable restriction in their applicability in our dependent censoring setup.

Let us also point out that the alternative estimators of Beirlant et al. (2010), Sayah et al. (2014)

and Worms and Worms (2014) do not directly use the ratio of γZ and P (τ) in order to design a

consistent estimator. They are however based on a Kaplan-Meier estimate of FY in its right tail, so

that they would also be seriously affected by a violation of the independent censoring assumption, as

dependence can cause the Kaplan-Meier estimator to become inconsistent (see Fisher and Kanarek,

1974, Klein and Moeschberger, 1987 and Ebrahimi and Molefe, 2003). An adaptation of these methods

therefore requires in particular the construction of an adapted estimator of FY , which necessitates more

information than that brought by the pair (Z, δ) for Z large: we shall return to this in Section 5.

4.2 Tail identifiability

In order to draw some consequences of our results on the problem of inferring the extreme value

index of Y from the behaviour of (Z, δ) conditional on Z being large, we start by introducing a

dedicated concept of tail identifiability. Recall that a statistical model {Pθ, θ ∈ Θ}, where Pθ denotes

a distribution described by a parameter θ belonging to a parameter space Θ, is called identifiable if

the mapping θ 7→ Pθ specifying the model is one-to-one, i.e.

Pθ1 = Pθ2 ⇒ θ1 = θ2.

In the statistical literature, the phrases “identifiable statistical model” and “identifiable parameter” are

very often used interchangeably: a parameter (of a model) is then said to be identifiable if two different

values of the parameter yield two different models. Here, our interest lies primarily in the extreme
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value index γY of Y . A complication is that γY does not completely specify the distribution of Y in

general; to put it differently, two distributions can have the same extreme value index and still not

be identical (such as a Pareto distribution and a nontrivial mixture of this same Pareto distribution

with a uniform distribution). However, the extreme value index precisely describes the type of tail a

distribution has, by the following simple observation: if U and V satisfy conditions C1(γU ) and C1(γV )

respectively, and U and V have an equal right endpoint τ , then

lim
x↑τ

P(U > x)

P(V > x)
= 1⇒ γU = γV .

This assertion is essentially a consequence of Theorem 1.2.6 in de Haan and Ferreira (2006).

This simple remark is the basis for our concept of tail identifiability in the random censoring frame-

work, which we define below. Note that this definition bears no relationship to the concept of tail

identifiability of a family of copulas introduced in Ding (2010, 2012).

Definition 1. Let Kτ be the class of joint distributions of (Y, T ) such that τY = τT = τ and the

distributions of Y and T satisfy conditions C1(γY ) and C1(γT ) respectively. Let Mτ ⊂ Kτ . We say

that γY is tail identifiable in the random censoring model Mτ if, whenever the distributions of (Y1, T1)

and (Y2, T2) both belong to Mτ then, denoting by Zi = min(Yi, Ti) and δi = I{Yi≤Ti}, we have[
lim
z↑τ

P(Z1 > z)

P(Z2 > z)
= 1 and lim

z↑τ

[
P(δ1 = 1|Z1 > z)− P(δ2 = 1|Z2 > z)

]
= 0

]
⇒ γY1 = γY2 .

The above definition thus essentially says that γY is tail identifiable if its value can be inferred from the

first meaningful asymptotics in the distribution of (Z, δ) given that Z is large; in practice, γY will be

tail identifiable if its value can be computed from the extreme value index of Z and the tail censoring

probability. Since the extreme value condition C1(γ) itself only gives information about the first-order

asymptotics of a survival function near its right endpoint, Definition 1 appears to be a reasonable

definition for our purpose. Finally, we note that, as we should expect, γY is tail identifiable in the

submodel of Kτ restricted to independent censoring and γY γT > 0: this is because in that particular

case, γY = γZ/P (τ).

We shall now summarise Theorems 1 and 2 with a corollary in terms of tail identifiability of γY in our

random censoring model.

Corollary 1. For a fixed τ , let Mτ be the class of joint distributions of (Y, T ) satisfying condition

(H), and such Y and T have continuous distributions. Let further

• M<
τ denote the submodel of Mτ in which |γY | < |γT |;

• M>
τ denote the submodel of Mτ in which |γY | > |γT |;

• M=
τ denote the submodel of Mτ in which γY = γT and FT (z)/FY (z) has a finite positive limit

as z ↑ τ .

Then:

(i) γY is tail identifiable in the random censoring models M<
τ and M=

τ .
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(ii) γY is not tail identifiable in the random censoring model M>
τ .

(iii) γY is not tail identifiable in the general random censoring model Mτ .

Corollary 1 has essentially three consequences. The first one is that in general, if the dependence

structure is described by an extreme value copula distinct from the independence copula, then the

parameter γY is not tail identifiable. In other words, the information contained in the first-order

asymptotics of the distribution of the pair (Z, δ), for large Z, is in general not sufficient to identify

the value of γY . The second one is that even if it is known that Y has a heavier tail than T has, the

parameter γY is still not tail identifiable. The third and final consequence is that, if by contrast it is

known that Y does not have a heavier tail than that of T , then Y is indeed tail identifiable; this is a

corollary of Theorem 1, stating that in this case γY is actually the extreme value index of Z.

Statistically speaking, it follows from Corollary 1 that, when there is dependent censoring induced by

an extreme value copula and contrary to the independent censoring case, there is no “obvious” way

to estimate γY consistently based on the highest values of the observed variable in a sample together

with their censoring indicators, if no further information is provided. This result does not, however,

consider what can be obtained by looking at the asymptotics of the functions z 7→ FZ(z) = P(Z > z)

and z 7→ P (z) = P(δ = 1|Z > z) in greater detail. For instance, recalling that, from Equation (1):

FZ(z) = FY (z) + FT (z) + C(1− FY (z), 1− FT (z))− 1,

it can be thought that, although the influence of γY (or equivalently FY (z)) is not necessarily visible in

the first-order asymptotics of the survival function of Z, it may well affect its second-order asymptotics.

Similarly, tail identifiability is only linked to the limit of the function z 7→ P (z) at the endpoint of

Z, but it does not consider the rate of convergence of this function to its limit. In the problematic,

non-tail-identifiable case |γY | > |γT |, when γZ = γT and P (z)→ 0, the equality

P(Y > z|Y ≤ T ) =
FZ(z)P (z)

P(Y ≤ T )

suggests that the rate of convergence of P (z) to 0 should contain information about γY . Our final

result, which is a refinement of Theorems 1 and 2, sheds some light on this by giving asymptotic

expansions of z 7→ FZ(z) and z 7→ P (z) in the case |γY | > |γT |.

Proposition 2. Assume that condition (H) holds and suppose moreover that Y and T have continuous

distributions. If |γY | > |γT | then, as z ↑ τ , we have

FZ(z) = −A′(0)FT (z)

(
1− 1 +A′(0)

A′(0)
FY (z) +

A′′(0)

2A′(0)

FT (z)

FY (z)
+ o(FY (z)) + o

(
FT (z)

FY (z)

))

and P (z) = −
(1 +A′(0) + o(1))

∫ τ

z

FT (t)fY (t)dt+
1

2
(A′′(0) + o(1))

∫ τ

z

(FT (t)/FY (t))2fY (t)dt

A′(0)FT (z)
.

It follows from Proposition 2 that the extreme value behaviour of Y does indeed theoretically have

an influence on the higher-order asymptotic properties of z 7→ FZ(z) and z 7→ P (z). However, this

information is still not sufficient in practice to identify γY , as the next example shows.
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Example 3. Consider the following two models:

• Model 1: Y1 has a Pareto distribution with parameter γY1
= 3, and T1 = T is an equally weighted

mixture of two Pareto distributions with respective parameters 1 and 6/7,

• Model 2: Y2 has a Pareto distribution with parameter γY2
= 3/2, and T2 = T is an equally

weighted mixture of two Pareto distributions with respective parameters 1 and 6/7,

with a common dependence structure given by the Pickands dependence function

A(t) = 1− 1

2
t(1− t); in particular A′(0) = −1

2
and A′′(0) = 1.

Then for any i ∈ {1, 2},
∀t > 1, FTi(t) =

1

2
t−1(1 + t−1/6).

In particular

FT1(z)

FY1(z)
=
z−2/3

2
(1 + o(1)) and

FT2(z)

FY2(z)
=
z−1/3

2
(1 + o(1)) as z → τ =∞,

and it follows from Proposition 2 that, for any i ∈ {1, 2}, we have

FZi(z) =
1

4z

(
1 + z−1/6 + o

(
z−1/6

))
and

Pi(z) := P(δi = 1|Zi > z) =
z−1/3

4
(1 + o (1)) .

The functions z 7→ FZi
(z) (resp. z 7→ Pi(z)) therefore have the same second-order expansion (resp.

asymptotic equivalent) in both models, although γY1
= 3 6= 3/2 = γY2

.

The idea behind the construction of the above example is that, even if γY should theoretically have

an influence on the higher-order asymptotic properties of z 7→ FZ(z), this influence can be completely

masked by the asymptotic behaviour of the survival function of T . For instance, if γY > γT > 0, and

FY (y) = y−1/γY
(
aY + bY y

ρY /γY + o(yρY /γY )
)

as y →∞

and FT (t) = t−1/γT
(
aT + bT t

ρT /γT + o(tρT /γT )
)

as t→∞,

where aY , aT > 0, bY , bT 6= 0 and ρY , ρT < 0, then by Proposition 2

FZ(z) = −A′(0)z−1/γT
(
aT + bT z

ρT /γT + o(zρT /γT )
)

if |ρT | < min

(
γT
γY

, 1− γT
γY

)
.

In other words, the extreme value index γY may not appear at all in the second-order asymptotics

of FZ if the second-order parameter ρT of T is sufficiently close to 0. This discussion carries over

to higher-order asymptotics; if the third-order parameter of T (in the sense of Goegebeur and de

Wet, 2012) is small as well, then FZ and FT will (up to the third asymptotic order) have the same

asymptotic behaviour and in particular, γY will not feature in the asymptotic properties of FZ up to

that order.
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The same kind of phenomenon happens when considering the function P . Calculations similar to those

that lead to Proposition 2 show that, when A is three times differentiable and γY > γT > 0, then one

can push further the asymptotic expansion of P given in Proposition 2 to get

P (z) =
1

FZ(z)

(∫ ∞
z

[
(1 +A′(0)) +

(
A′′(0)

2
+ o(1)

)
FT (t)

FY (t)

]
FT (t)fY (t)dt

+

∫ ∞
z

[
A′′(0)

2
+

(
A(3)(0)

3
−A′′(0) + o(1)

)
FT (t)

FY (t)

](
FT (t)

FY (t)

)2

fY (t)dt

)
.

The function P is then generally regularly varying with index −min(γ−1Y , γ−1T − γ
−1
Y ). Even if γT is

identified, the knowledge of min(γ−1Y , γ−1T − γ
−1
Y ) is not sufficient in general to know γY . Furthermore,

the second-order (and higher-order) terms in FY and FT can once again hide the influence of γY on

the asymptotic behaviour of the function P if they converge to 0 sufficiently slowly. An example, at

the second order, is obtained by altering Example 3 as follows: consider the models

• Model 1: Y1 has a survival function such that

FY1
(y) = y−1/3

(
1 +

1

5
y−1/12 + o(y−1/12)

)
as y →∞

(one such example is FY1(y) = y−1/3(1 +y−1/12)1/5 for y large enough) and T1 = T is an equally

weighted mixture of two Pareto distributions with respective parameters 1 and 6/7,

• Model 2: Y1 has the distribution function

FY2
(y) = y−2/3

(
1− 2

7
y−1/12 + o(y−1/12)

)
as y →∞

(one such example is FY2
(y) = y−2/3(1−y−1/12)2/7 for y large enough) and T2 = T is an equally

weighted mixture of two Pareto distributions with respective parameters 1 and 6/7,

with a common dependence structure given by the Pickands dependence function A(t) = 1− 1

2
t(1− t).

It is then readily checked that, in both models,

FZi
(z) =

1

4z

(
1 + z−1/6 + o

(
z−1/6

))
and

Pi(z) := P(δi = 1|Zi > z) =
z−1/3

4

(
1 +

4

17
z−1/12 + o(z−1/12)

)
.

The functions z 7→ FZi
(z) and z 7→ Pi(z) therefore have the same second-order expansion in both

models, although the extreme value indices of Y1 and Y2 are different. As we argued above, our

arguments can be extended to construct further pairs of models in which higher-order (such as third-

order) expansions of FZ and P coincide, although extreme value indices of Y are different. It is therefore

not clear that the information provided jointly by Z and δ|Z for Z large is generally sufficient to recover

the extreme value index γY .
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5 Discussion and ideas for further work

Our arguments in Section 4.2 show that, when the censoring mechanism is described by a non-

independent extreme value copula, then the information contained in the extremes of Z, and in the

distribution of δ given that Z is high, does not appear to allow one to identify the extreme value index

of Y . Let us stress that our results do not show that the extreme value index of Y cannot be recovered;

they suggest however that, if one wants to estimate the extreme value index of Y , then one should

use more information than what is provided by the distribution of (Z, δ) for Z large. This stands in

contrast with the independent censoring situation, in which the extreme value index of Y is generally

the ratio of the extreme value index of γZ and of the tail proportion of uncensored observations, both

quantities being solely determined by the information provided by Z and δ|Z for Z large.

One possible way of incorporating more information into the model is to integrate covariate information

that makes the assumption of conditional independence between censoring time and variable of interest

plausible. While Ndao et al. (2014, 2016) and Stupfler (2016) consider a conditional extreme value

model, they do not consider the question of dependence in the censoring mechanism. The focus of

Ndao et al. (2014) and Stupfler (2016) is rather the analysis of extreme survival times to AIDS

given age at diagnosis. It is unlikely that such a covariate would be enough to eliminate all source

of dependence in the censoring mechanism if it is believed to be present; more relevant information

would include prognostic covariates, which are typically high-dimensional (see Hsu and Taylor, 2010).

It can also happen that the covariate information which could be used by the investigator to alleviate

the dependence is simply not available from the data at hand.

Here, staying within the context of an extreme value copula dependence structure, we show how

assuming that the copula C is fully known could lead to estimators of γY . One possible idea for that

is to come back to the interpretation of γY as a shape parameter for the tail of the survival function

FY . For instance, if γY > 0, then γY can be obtained as a limiting average log-excess:

γY = lim
u→∞

E (log Y − log u |Y > u) .

In other words (see equation (3.2.1) in de Haan and Ferreira, 2006):

γY = lim
u→∞

∫∞
u

(log y − log u) dFY (y)

1− FY (u)
.

In general, we have the relationship

γY = lim
u→τY

I(1)Y (u) + 1− 1

2

1−

[
I
(1)
Y (u)

]2
I
(2)
Y (u)


−1 with I

(k)
Y (u) =

∫ τY
u

(log y − log u)k dFY (y)

1− FY (u)
. (4)

This is the convergence behind the well-known moment estimator of Dekkers et al. (1989). One

consequence of this relationship is that we have an explicit, relatively simple limit relationship linking

γY to FY . Besides, in the context of model (H), the partial derivatives of C exist and are continuous,
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being given by

∂1C(u, v) =
C(u, v)

u

[
A

(
log v

log u+ log v

)
− log v

log u+ log v
A′
(

log v

log u+ log v

)]

and ∂2C(u, v) =
C(u, v)

v

[
A

(
log v

log u+ log v

)
+

log u

log u+ log v
A′
(

log v

log u+ log v

)]
.

These nice expressions and regularity properties guarantee that, if C (or equivalently the Pickands

dependence function A) is known, then FY is identifiable (see Zheng and Klein, 1995 and Carrière, 1995)

and can be consistently estimated by solving iteratively a system of nonlinear differential equations

(Carrière, 1995), or by the so-called Copula-Graphic estimator of Zheng and Klein (1995); see also

Lo and Wilke (2010). The identifiability of FY then guarantees that of γY , by Formula (4), and this

formula also suggests a potential plug-in strategy for the construction of an estimator of γY if FY

has been accurately estimated beforehand, although the particular structure of the aforementioned

estimators of FY may make this task computationally challenging. Let us also note that, while the

Copula-Graphic estimator of Zheng and Klein (1995) has in general only an implicit form, it admits a

simple closed form if the copula C is moreover Archimedean, namely

C(u, v) = φ−1 (φ(u) + φ(v))

where φ : (0, 1]→ [0,∞] is a decreasing convex function satisfying φ(x)→∞ as x→ 0 and φ(1) = 0.

This result is due to Rivest and Wells (2001; see Formula (4) therein). It happens that the Gumbel-

Hougaard copula, introduced in Example 1, is the only non-independent extreme value copula that

is also Archimedean (see Genest and Rivest, 1989). In the independent case, the Copula-Graphic

estimator is actually the classical Kaplan-Meier estimator (see again Rivest and Wells, 2001).

The idea we have just developed was essentially that, since it is not clear that γY can in general be

identified from the information provided by Z and δ|Z for large Z only, a good idea is to look at what

further information the central part of the distribution of Z (and the associated conditional distribution

δ|Z) can bring. If the copula C is moreover known, then FY is identifiable from (Z, δ) and γY can

then at least conceptually be recovered as a (tail) shape parameter for the distribution of Y via, for

instance, Formula (4). The assumption of a known copula is not as costly as it may seem; in general,

the overarching aim of extreme value analysis is to estimate extreme quantiles of Y , or more generally

get some understanding of the distribution of Y in its right tail which is more comprehensive than the

knowledge of its extreme value index. Extreme quantile estimation, in particular, is nothing but the

estimation of the generalised inverse of FY at specific levels, and this inference therefore translates into

inference about FY on part of its range. It is then appropriate, in this context, to make an assumption

adapted to the estimation of FY . The approaches we have just outlined could, however, result in

potentially implicit and/or computationally challenging estimators of γY , whose asymptotic properties

are not yet known and outside the scope of this paper.
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Appendix A: Proofs of the main results

Proof of Proposition 1. Use Equation (1) to get

FZ(z)

FY (z)
= FT (z) +

ϕ(FY (z), FT (z))

FY (z)
.

Set v0 = lim
z↑τY

FT (z) > 0 and apply Lemma 2 to get

lim
z↑τY

ϕ(FY (z), FT (z))

FY (z)
= (1− v0)A′(1).

This is a positive constant, by Lemma 1. Thus

lim
z↑τY

FZ(z)

FY (z)
= v0 + (1− v0)A′(1) > 0

which completes the proof.

Proof of Theorem 1. Apply Lemma 3 to get:

(i) If γY > γT ≥ 0, then τ =∞ and FT (z)/FY (z)→ 0 as z →∞.

(ii) If γT > γY ≥ 0, then τ =∞ and FT (z)/FY (z) = [FY (z)/FT (z)]−1 →∞ as z →∞.

(iii) If 0 ≥ γY > γT , then τ <∞ and FT (z)/FY (z) = [FY (z)/FT (z)]−1 →∞ as z ↑ τ .

(iv) If 0 ≥ γT > γY , then τ <∞ and FT (z)/FY (z)→ 0 as z ↑ τ .

In each of these four cases, the result is then a direct corollary of Lemma 5(i) and (ii). In the case

γY = γT , the result is a consequence of Lemma 5(iii).

Proof of Theorem 2. Recall that

P (z) =

∫ τ

z

[1− ∂1C(FY (t), FT (t))]fY (t)dt

FZ(z)
.

To prove (i), remark that if γY γT ≥ 0 and |γY | > |γT |, then FT (z)/FY (z)→ 0 as z ↑ τ by Lemma 3.

In that case, Lemma 5(i) entails together with Lemma 6(i) that

P (z) =

∫ τ

z

[
(1 +A′(0) + o(1))FT (t) +

1

2
(A′′(0) + o(1))(FT (t)/FY (t))2

]
fY (t)dt

−A′(0)FT (z)(1 + o(1))
. (5)

The first part of the integral in the numerator is controlled by noting that

0 ≤

∫ τ

z

FT (t)fY (t)dt

FT (z)
≤
∫ τ

z

fY (t)dt = FY (z)→ 0 as z → τ.
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To control the second one, we first write

0 ≤ 1

FT (z)

∫ τ

z

(
FT (t)

FY (t)

)2

fY (t)dt ≤
∫ τ

z

{
FT (t)

FY (t)

}{
fY (t)

FY (t)

}
dt.

When γY > 0, and therefore τ =∞, we apply Lemma 3 to obtain that there is ε > 0 such that

0 ≤ 1

FT (z)

∫ ∞
z

(
FT (t)

FY (t)

)2

fY (t)dt ≤
∫ ∞
z

{
fY (t)

FY (t)

}
t−εdt

=

∫ ∞
z

{
d

dt

[
− log(FY (t))t−ε

]
− ε log(FY (t))t−1−ε

}
dt.

Now, by Theorem 1.2.1 in de Haan and Ferreira (2006), the function FY is regularly varying with

index −1/γY . In other words, we can write this function as

FY (t) = t−1/γY LY (t)

where LY is a slowly varying function at infinity. Since log(LY (t))/ log t→ 0 as t→∞ (see Proposition

1.3.6 p.16 in Bingham et al., 1987) we get log(FY (t))t−ε/2 → 0 as t→∞. In particular:∣∣log(FY (t))t−ε
∣∣→ 0 and

∣∣log(FY (t))t−1−ε
∣∣ = o(t−1−ε/2).

Therefore

0 ≤ 1

FT (z)

∫ ∞
z

(
FT (t)

FY (t)

)2

fY (t)dt ≤ log(FY (z))z−ε − ε
∫ ∞
z

log(FY (t))t−1−εdt→ 0 as z →∞

which concludes the proof in this case. When γY < 0 and τ <∞, we apply Lemma 3 again to obtain

that there is ε > 0 such that

0 ≤ 1

FT (z)

∫ τ

z

(
FT (t)

FY (t)

)2

fY (t)dt ≤
∫ τ

z

{
fY (t)

FY (t)

}
(τ − t)εdt.

Use the change of variables T = (τ − t)−1 to obtain

0 ≤ 1

FT (z)

∫ τ

z

(
FT (t)

FY (t)

)2

fY (t)dt ≤
∫ ∞
(τ−z)−1

{
fY (τ − T−1)

FY (τ − T−1)

d

dT
(τ − T−1)

}
T−εdT.

Since by Theorem 1.2.1 in de Haan and Ferreira (2006) the function T 7→ FY (τ − T−1) is regularly

varying with index 1/γY < 0, we can exactly mimic the proof of the case γY > 0 to obtain

1

FT (z)

∫ τ

z

(
FT (t)

FY (t)

)2

fY (t)dt→ 0 as z ↑ τ.

The proof of (i) is then complete.

To prove (ii), we note that in this case FT (z)/FY (z) = [FY (z)/FT (z)]−1 →∞ as z ↑ τ by Lemma 3.

Apply then Lemma 5(ii) together with Lemma 6(ii) to get

P (z) =

∫ τ

z

(A′(1) + o(1))fY (t)dt

A′(1)FY (z)(1 + o(1))
.
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Since A′(1) > 0 by Lemma 1(ii), the numerator is clearly equivalent to A′(1)FY (z), which entails that

P (z)→ 1 as z → τ and concludes the proof of (ii).

Finally, to show (iii), apply Lemma 5(iii) together with Lemma 6(iii) to obtain

P (z) =

∫ τ

z

(
1−

[
A

(
c

c+ 1

)
− c

c+ 1
A′
(

c

c+ 1

)]
+ o(1)

)
fY (t)dt

(c+ 1)

[
1−A

(
c

c+ 1

)]
FY (z)(1 + o(1))

.

If the constant 1−
[
A

(
c

c+ 1

)
− c

c+ 1
A′
(

c

c+ 1

)]
is zero then

P (z) =
o(FY (z))

(c+ 1)

[
1−A

(
c

c+ 1

)]
FY (z)(1 + o(1))

= o(1)→ 0 = Pc as z ↑ τ

as required. Otherwise we clearly have

P (z)→
1−

[
A

(
c

c+ 1

)
− c

c+ 1
A′
(

c

c+ 1

)]
(c+ 1)

[
1−A

(
c

c+ 1

)] = Pc as z ↑ τ,

and this completes the proof.

Proof of Proposition 2. Recall that FT (z)/FY (z)→ 0 as z ↑ τ by Lemma 3. Then, use Lemma 7

together with the equality

FZ(z) = FY (z)FT (z) + ϕ(FY (z), FT (z))

to obtain the statement about FZ(z). The result on P (z) is a reformulation of Equation (5) in the

proof of Theorem 2.

Appendix B: Auxiliary results and proofs

In this Appendix, A denotes a Pickands dependence function, C is the corresponding extreme value

copula

C(u, v) = (uv)A(log(v)/ log(uv))

which we assume not to be equal to the independence copula, and ϕ is the function defined by:

ϕ(u, v) = C(1− u, 1− v)− (1− u)(1− v).

The first lemma gathers a few results about Pickands dependence functions.

Lemma 1. Let A be a Pickands dependence function, and assume that the related copula C is not the

independent copula. Then:

(i) It holds that A(t) < 1 for all t ∈ (0, 1).
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If moreover A is continuously differentiable on [0, 1], then:

(ii) We have A′(0) < 0 and A′(1) > 0.

(iii) We have

∀x ∈ [0, 1], 0 ≤ A(x)− xA′(x) ≤ 1.

These inequalities are all strict on (0, 1) should A be strictly convex.

Proof of Lemma 1. To show (i), assume that there is t0 ∈ (0, 1) such that A(t0) = 1. Recall the

increasing slopes inequality:

∀x, y, z ∈ [0, 1], x < y < z ⇒ A(y)−A(x)

y − x
≤ A(z)−A(x)

z − x
≤ A(z)−A(y)

z − y
.

Apply this first with x = t ∈ (0, t0), y = t0 and z = 1 to get

1−A(t)

1− t
≤ 0

so that A(t) ≥ 1 and therefore A(t) = 1 for all t ∈ (0, t0). Apply now the above set of inequalities with

x = 0, y = t0 and z = t ∈ (t0, 1) to obtain

0 ≤ A(t)− 1

t

so that again A(t) = 1 for all t ∈ (t0, 1). Consequently, A is the constant function 1, which is impossible

since C is not the independent copula.

We turn to the proof of (ii). Since A is continuously differentiable on [0, 1] and convex, its derivative A′

is nondecreasing. Consequently, if A′(0) were nonnegative, then so would be A′(x) for any x ∈ (0, 1],

and thus A would be nondecreasing on [0, 1]. Since A(0) = A(1) = 1, this would entail that A

is the constant function 1, which is a contradiction. Similarly, A′(1) cannot be nonpositive since if

it were, then A would be nonincreasing on [0, 1], which is a contradiction in virtue of the equality

A(0) = A(1) = 1.

We now show (iii). Notice that since A(x) ≥ x, we have

A(x)− xA′(x) ≥ x(1−A′(x)).

Assume that there is x0 ∈ (0, 1) such that A′(x0) > 1. Since A is convex, the function A′ is nonde-

creasing and therefore A′(x) > 1 on [x0, 1]. Integrating yields

1−A(x0) = A(1)−A(x0) =

∫ 1

x0

A′(x)dx > 1− x0

which entails A(x0) < x0 and a contradiction. As a consequence, A′(x) ≤ 1 for all x ∈ (0, 1), and

this should also be true on the closed interval [0, 1] by continuity of A′. Finally, A(x) − xA′(x) ≥
x(1−A′(x)) ≥ 0 for all x ∈ [0, 1]. Use now the increasing slopes inequality to write

∀x, t ∈ (0, 1), x < t⇒ A(x)− 1

x
=
A(x)−A(0)

x− 0
≤ A(t)−A(x)

t− x
.
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Let t ↓ x to get

∀x ∈ (0, 1),
A(x)− 1

x
≤ A′(x)

which entails A(x)− xA′(x) ≤ 1 for all x ∈ (0, 1). Using the continuity of A and A′, this inequality is

of course also true for x ∈ {0, 1}, which concludes the proof of the first set of desired inequalities if A

is convex.

If A is moreover strictly convex, assume that there is x0 ∈ (0, 1) such that A′(x0) ≥ 1. Then A′(x) ≥ 1

on [x0, 1] and integrating yields

∀t ∈ [x0, 1] ∩ [1/2, 1], 1−A(t) = A(1)−A(t) =

∫ 1

t

A′(x)dx ≥ 1− t

which entails A(t) ≤ t and therefore A(t) = t on an interval with nonempty interior, which is a

contradiction by the strict convexity of A. This entails A(x) − xA′(x) ≥ x(1 − A′(x)) > 0 for all

x ∈ (0, 1). Finally, to prove that A(x) − xA′(x) < 1 for all x ∈ (0, 1), we apply again the increasing

slopes inequality: for all x, t ∈ (0, 1),

x < t⇒ A(x)− 1

x
=
A(x)−A(0)

x− 0
<
A(x)−A(x/2)

x/2
<
A(t)−A(x/2)

t− (x/2)
<
A(t)−A(x)

t− x

where all inequality signs are strict because of the strict convexity of A. Let t ↓ x to get

∀x ∈ (0, 1),
A(x)− 1

x
<
A(x)−A(x/2)

x/2
≤ A′(x)

which entails A(x)− xA′(x) < 1 for all x ∈ (0, 1) as required.

The second lemma is an equivalent of ϕ(u, v) as u→ 0 and v → v0 > 0.

Lemma 2. Assume that A is continuously differentiable on [0, 1]. Then, if u→ 0 and v → v0 > 0, we

have that:

ϕ(u, v) = (1− v0)A′(1)u(1 + o(1)).

Proof of Lemma 2. Note that, since u→ 0 and v → v0 > 0,

ϕ(u, v) = (1− u)(1− v)
{

[(1− u)(1− v)]A(log(1−v)/ log([1−u][1−v]))−1 − 1
}

= (1− v0 + o(1))
{

[(1− u)(1− v)]A(log(1−v)/ log([1−u][1−v]))−1 − 1
}
.

Besides, we get, as u→ 0 and v → v0 > 0:

log(1− v)

log([1− u][1− v])
→ 1 and therefore A

(
log(1− v)

log([1− u][1− v])

)
→ A(1) = 1.

In particular:

A

(
log(1− v)

log([1− u][1− v])

)
− 1 =

[
log(1− v)

log([1− u][1− v])
− 1

]
A′(1) + o

(∣∣∣∣ log(1− v)

log([1− u][1− v])
− 1

∣∣∣∣)
=

[
− log(1− u)

log([1− u][1− v])

]
A′(1) + o

(
log(1− u)

log([1− u][1− v])

)
.
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Since as u→ 0 and v → v0 > 0 we have:

1

u
× − log(1− u)

log([1− u][1− v])
→ 1

log(1− v0)
< 0,

we get

log([1− u][1− v])

[
A

(
log(1− v)

log([1− u][1− v])

)
− 1

]
= uA′(1) + o(u).

Because this quantity converges to 0 and

ϕ(u, v) = (1− v0 + o(1))

{
exp

(
log([1− u][1− v])

[
A

(
log(1− v)

log([1− u][1− v])

)
− 1

])
− 1

}
the conclusion readily follows by using a Taylor expansion of the exponential function in a neighbour-

hood of 0.

Lemma 3 is a very useful result about the asymptotic interactions between the survival functions of Y

and T . We state it for the sake of clarity: its proof essentially consists in applying Theorem 1.2.6 in

de Haan and Ferreira (2006) repeatedly.

Lemma 3. Assume that condition (H) holds and that the distributions of Y and T satisfy conditions

C1(γY ) and C1(γT ) respectively. If in addition γY γT ≥ 0 and |γY | > |γT |, then when τ =∞ we have

∃ε > 0,
FT (z)

FY (z)
= O(z−ε) as z →∞.

When otherwise τ <∞, then

∃ε > 0,
FT (z)

FY (z)
= O((τ − z)ε) as z ↑ τ.

The next result is an equivalent of ϕ(u, v) as u, v → 0.

Lemma 4. Assume that A is continuously differentiable on [0, 1]. Then, if u, v → 0, we have that:

• ϕ(u, v) = −A′(0)v(1 + o(1)) if v/u→ 0;

• ϕ(u, v) = A′(1)u(1 + o(1)) if v/u→∞;

• ϕ(u, v) = (c+ 1)

[
1−A

(
c

c+ 1

)]
u(1 + o(1)) if v/u→ c ∈ (0,∞).

Proof of Lemma 4. Start by writing, as u, v → 0,

ϕ(u, v) = (1− u)(1− v)
{

[(1− u)(1− v)]A(log(1−v)/ log([1−u][1−v]))−1 − 1
}

=
{

[(1− u)(1− v)]A(log(1−v)/ log([1−u][1−v]))−1 − 1
}

(1 + o(1)).

Since u, v → 0, we get

A

(
log(1− v)

log([1− u][1− v])

)
= A

(
v(1 + o(1))

u(1 + o(1)) + v(1 + o(1))

)
→


A(0) = 1 if v/u→ 0,

A(1) = 1 if v/u→∞,

A(c/(c+ 1)) if v/u→ c ∈ (0,∞).
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In particular:

A

(
log(1− v)

log([1− u][1− v])

)
− 1 =



v

u
A′(0)(1 + o(1)) if v/u→ 0,

−u
v
A′(1)(1 + o(1)) if v/u→∞,

A(c/(c+ 1))− 1 + o(1) if v/u→ c ∈ (0,∞).

Meanwhile

log([1− u][1− v]) =


−u(1 + o(1)) if v/u→ 0,

−v(1 + o(1)) if v/u→∞,

−(c+ 1)u(1 + o(1)) if v/u→ c ∈ (0,∞)

so that

log([1− u][1− v])

[
A

(
log(1− v)

log([1− u][1− v])

)
− 1

]

=


−vA′(0)(1 + o(1)) if v/u→ 0,

uA′(1)(1 + o(1)) if v/u→∞,

(c+ 1) [1−A(c/(c+ 1))]u(1 + o(1)) if v/u→ c ∈ (0,∞).

Since this quantity converges to 0 and

ϕ(u, v) = (1 + o(1))

{
exp

(
log([1− u][1− v])

[
A

(
log(1− v)

log([1− u][1− v])

)
− 1

])
− 1

}
the conclusion readily follows by using a Taylor expansion of the exponential function in a neighbour-

hood of 0.

Lemma 5, which provides an asymptotic equivalent of FZ , is a direct corollary of Lemma 4. Note that

it gives indeed a true asymptotic equivalent of FZ , since A′(0) < 0, A′(1) > 0 and A(t) < 1 for any

t ∈ (0, 1), see Lemma 1(i) and (ii).

Lemma 5. Assume that condition (H) holds and that A is continuously differentiable on [0, 1]. Then,

as z ↑ τ , we have that:

(i) FZ(z) = −A′(0)FT (z)(1 + o(1)) if FT (z)/FY (z)→ 0 as z ↑ τ ;

(ii) FZ(z) = A′(1)FY (z)(1 + o(1)) if FT (z)/FY (z)→∞ as z ↑ τ ;

(iii) FZ(z) = (c+ 1)

[
1−A

(
c

c+ 1

)]
FY (z)(1 + o(1)) if FT (z)/FY (z)→ c ∈ (0,∞).

Proof of Lemma 5. Just use Equation (1) together with Lemma 4.

The next lemma contains an equivalent of the quantity 1 − ∂1C(1 − u, 1 − v) as u, v → 0, and is

fundamental to prove Theorem 2.

Lemma 6. Assume that A is twice continuously differentiable on [0, 1]. Then, if u, v → 0, we have

that:
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(i) 1− ∂1C(1− u, 1− v) = (1 +A′(0))v +
1

2
A′′(0)(v/u)2 + o(v) + o((v/u)2) if v/u→ 0;

(ii) 1− ∂1C(1− u, 1− v)→ A′(1) if v/u→∞;

(iii) 1− ∂1C(1− u, 1− v)→ 1−
[
A

(
c

c+ 1

)
− c

c+ 1
A′
(

c

c+ 1

)]
if v/u→ c ∈ (0,∞).

Proof of Lemma 6. Recall the identity

∂1C(1− u, 1− v) =
C(1− u, 1− v)

1− u
B

(
log(1− v)

log(1− u) + log(1− v)

)
where B(x) = A(x)− xA′(x). We first prove (i). It is straightforward to show that

B(x) = 1− x2

2
A′′(0) + o(x2).

Since in this case we assume v/u→ 0, we get

log(1− v)

log(1− u) + log(1− v)
=
v

u
(1 + o(1)).

Therefore

∂1C(1− u, 1− v) =
C(1− u, 1− v)

1− u

[
1− A′′(0)

2

( v
u

)2
+ o

([ v
u

]2)]
. (6)

It remains to compute an asymptotic expansion of C(1 − u, 1 − v)/(1 − u). To this end, we rewrite

this term as

C(1− u, 1− v)

1− u
= exp

{
A

(
log(1− v)

log(1− u) + log(1− v)

)
[log(1− u) + log(1− v)]− log(1− u)

}
.

Note now that

log(1− v)

log(1− u) + log(1− v)
=

log(1− v)

log(1− u)

(
1 +

log(1− v)

log(1− u)

)−1
=

log(1− v)

log(1− u)

(
1− log(1− v)

log(1− u)
+ o

( v
u

))
.

Plugging this into the Taylor expansion

A(x) = A(0) + xA′(0) +
x2

2
A′′(0) + o(x2) = 1 + xA′(0) +

x2

2
A′′(0) + o(x2)

and rearranging yields

A

(
log(1− v)

log(1− u) + log(1− v)

)
= 1 +

log(1− v)

log(1− u)
A′(0) +

(
log(1− v)

log(1− u)

)2(
A′′(0)

2
−A′(0)

)
+ o

([ v
u

]2)
.

Now

log(1− u) + log(1− v) = log(1− u)

[
1 +

log(1− v)

log(1− u)

]
so that

A

(
log(1− v)

log(1− u) + log(1− v)

)
[log(1− u) + log(1− v)]

= log(1− u)

(
1 +

log(1− v)

log(1− u)
(1 +A′(0)) +

(
log(1− v)

log(1− u)

)2
A′′(0)

2
+ o

([ v
u

]2))
(7)

30



and therefore

A

(
log(1− v)

log(1− u) + log(1− v)

)
[log(1− u) + log(1− v)]− log(1− u)

= (1 +A′(0)) log(1− v) +
[log(1− v)]2

log(1− u)

A′′(0)

2
+ o

(
v2

u

)
.

We combine this with a Taylor expansion of the exponential function in a neighbourhood of 0 to get

C(1− u, 1− v)

1− u
= 1 + (1 +A′(0)) log(1− v) +

[log(1− v)]2

log(1− u)

A′′(0)

2
+ o

(
v2

u

)
= 1− (1 +A′(0))v + o (v) . (8)

Combining (6) and (8) and rearranging terms concludes the proof of (i).

We now turn to the proof of (ii) and (iii): as u and v → 0, we have

∂1C(1− u, 1− v) = B

(
log(1− v)

log(1− u) + log(1− v)

)
(1 + o(1)).

Besides,

B

(
log(1− v)

log(1− u) + log(1− v)

)
= B

(
v(1 + o(1))

u(1 + o(1)) + v(1 + o(1))

)
.

The argument of B here converges to 1 if v/u→∞, and to c/(c+1) if v/u→ c ∈ (0,∞). By continuity

of B, it follows that 1− ∂1C(1− u, 1− v)→ 1−B(1) = A′(1) if v/u→∞, and

1− ∂1C(1− u, 1− v)→ 1−B
(

c

c+ 1

)
= 1−

[
A

(
c

c+ 1

)
− c

c+ 1
A′
(

c

c+ 1

)]
if v/u→ c ∈ (0,∞). This completes the proof.

The final lemma contains, together with Lemma 6, the core result to show Proposition 2.

Lemma 7. Assume that A is twice continuously differentiable on [0, 1]. Then, if u, v → 0 with

v/u→ 0, we have that

ϕ(u, v) = −A′(0)v + v

(
A′(0)u− A′′(0)

2

v

u
+ o(u) + o

( v
u

))
.

Proof of Lemma 7. Recall from the proof of Lemma 4 that

ϕ(u, v) = (1− u)(1− v)
{

[(1− u)(1− v)]A(log(1−v)/ log([1−u][1−v]))−1 − 1
}
.

Now, by (7) in the proof of Lemma 6,[
A

(
log(1− v)

log(1− u) + log(1− v)

)
− 1

]
[log(1− u) + log(1− v)]

= log(1− v)A′(0) +
log2(1− v)

log(1− u)

A′′(0)

2
+ o

(
v2

u

)

= −vA′(0)− v2

u

A′′(0)

2
+ o

(
v2

u

)
.
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Consequently, using a Taylor expansion,

[(1− u)(1− v)]A(log(1−v)/ log([1−u][1−v]))−1 − 1

= exp

([
A

(
log(1− v)

log(1− u) + log(1− v)

)
− 1

]
[log(1− u) + log(1− v)]

)
− 1

= −vA′(0)− v2

u

A′′(0)

2
+ o

(
v2

u

)
.

Multiplying this expansion by (1− u)(1− v) and expanding again concludes the proof.

32


