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On the study of extremes with dependent random

right-censoring

Gilles Stupfler

School of Mathematical Sciences, The University of Nottingham, University Park,

Nottingham NG7 2RD, United Kingdom

Abstract. The study of extremes in missing data frameworks is a recent developing field. In

particular, the randomly right-censored case has been receiving a fair amount of attention in the last

decade. All studies on this topic, however, work under the usual assumption that the variable of

interest and the censoring variable are independent. In this paper, we look instead at the dependent

case. More precisely, we examine the extremes of the response variable (that is, the minimum between

time-to-event and time-to-censoring) and the probability of censoring in the right tail of this vari-

able when the structure of the dependent censoring mechanism is given by an extreme value copula.

Statistically speaking, our results have important consequences on the identifiability problem for the

extremes of the variable of interest: most strikingly, and in contrast to the independent censoring case,

if the censoring variable has a lighter tail than the variable of interest and the dependence structure is

given by a non-independent extreme value copula, then the extremes of the variable of interest appear

to be unrecoverable.

AMS Subject Classifications: 62N01, 62N02.

Keywords: Random right-censoring, dependence, extreme value copula, extreme value index, tail

censoring probability.

1 Introduction

The problem of missing data, and in particular censoring, is frequently encountered in certain fields

of statistical applications. The archetypal example of censoring is arguably the study of the survival

times of patients to a given chronic disease in a medical follow-up study lasting up to a fixed time t.
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If a patient is diagnosed with the disease at time s, then his/her survival time will be known if and

only if he/she dies before time t. If this is not the case, then the only information available is that

his/her survival time is not less than the censoring time t− s. In mathematical terms, the information

available to the practitioner is the pair (Z, δ), where Z is the minimum between the survival time and

censoring time, and δ is the 0-1 variable equal to 1 if and only if the survival time is actually observed.

This situation is one of the most frequent examples of random right-censoring, which shall be our

framework in this paper.

Random right-censoring is also found in actuarial science: in non-life insurance, a claim available to a

claim adjuster is usually right-censored by the policy limit of the contract, while in life insurance any

study that monitors policyholders in a given time period contains right-censored data points, since

many of the subjects still live at the end of the monitoring period. Another example is reliability data

analysis: if a car company collects failure data during the warranty period, then a failure could happen

not only because of a failure in the mechanics of the car, but also because of an accident or driver

error. In the latter case, time-to-accident or time-to-driver-error should be treated as the censoring

time, see Modarres et al. (2009). Random right-censoring should not be confused with other types of

missing data mechanisms such as right-truncation, where no information is available at all when the

random variable of interest is not actually observed: the earliest reference tackling this problem in the

extreme value context is Gardes and Stupfler (2015).

In a random right-censoring framework, a stimulating problem is the estimation of extreme param-

eters of the underlying distribution of the variable of interest. In the aforementioned examples, this

would mean analysing survival times of exceptionally strong/weak patients to a given disease, extreme

losses/payouts in insurance, or failure times for highly resistant/unreliable devices. This subfield of

extreme value statistics has received a good amount of attention in recent years: we refer to Beirlant

et al. (2007), Einmahl et al. (2008), Beirlant et al. (2010), Gomes and Neves (2011), Ndao et al.

(2014), Sayah et al. (2014), Worms and Worms (2014), Brahimi et al. (2015), Beirlant et al. (2016)

and Stupfler (2016). All these papers work under the hypothesis that the variable of interest Y and

the censoring variable T are independent random variables. Among others, this allows for a very

convenient expression of the cumulative distribution function of the observed variable Z, as well as for

a simple discussion of its extreme value properties, which leads to simple estimators of the extreme

parameters of Y . It should be said that since the pioneering paper of Kaplan and Meier (1958) on the

product-limit estimator for the survival function, the assumption of independent censoring is arguably

the standard assumption in the context of random right-censoring.

And yet, cases where there are strong suspicions of dependence between the variable of interest and the
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censoring time have been reported several times over the last decades. An early reference is Lagakos

(1979). In medical studies especially, common causes of the probable violation of the independence

hypothesis include a sizeable number of patient dropouts (Huang and Zhang, 2008 and Jackson et

al., 2014) and the presence of ignored but valuable covariate information (see Zeng, 2004 and Li et

al., 2007). Crucially, using traditional estimators such as the Kaplan-Meier estimator when there is

dependence may yield to invalid inferences, see Fisher and Kanarek (1974), Klein and Moeschberger

(1987), and the introduction of Ebrahimi and Molefe (2003). Moreover, there is the additional issue

of identifiability, in the sense that if the dependence structure is not specified then the distribution of

(Y, T ) cannot be recovered from that of the pair (Z, δ), see Tsiatis (1975). A number of authors have

suggested partial solutions to the problem: some recent efforts include working on covariate models

(Zeng, 2004), fitting specific types of known copulas (Li et al., 2007, Huang and Zhang, 2008), or

assuming weaker assumptions than independence on the pair (X,Y ) (Ebrahimi et al., 2003).

One may therefore wonder what kind of effect dependence has on the estimation of extreme parame-

ters of Y . As noted above, there are numerous ways to specify dependence; in this paper, we assume

that the dependence structure of the pair (Y, T ) is given by an extreme value copula, which is equiv-

alent to assuming that (Y, T ) has a bivariate extreme value distribution in the sense of Tawn (1988).

The construction and early development of extreme value copulas date back to Galambos (1978) and

Deheuvels (1984), and a recent account is Gudendorf and Segers (2010). This type of copula is par-

ticularly adapted to the description of joint extreme events, i.e. of situations when both Y and T are

extreme, which is precisely the kind of events one has to consider in order to understand the extremes

of the observed variable Z = min(Y, T ), as this is the only way to get back to the extremes of Y . The

focus of this paper is to, assuming standard extreme value conditions on the distribution of Y and T

together with an extreme value copula dependence model, analyse the extreme value properties of Z

first and then of δ given that Z is large, the latter variable indicating how much censoring there is

in the extremes of the sample. We will examine the consequences of our results on the identifiability

of the extremes of Y : in particular, it shall be shown that when the dependence structure of (Y, T )

is given by a non-independent extreme value copula, then the extremes of Y are exactly those of the

observed variable Z when T has a heavier tail than Y , therefore making the problem trivial from the

extreme value perspective. More worryingly from the practical point of view, we shall also show that

the extremes of Y cannot be recovered when T has a lighter tail than Y , although we know from

Einmahl et al. (2008) that this problem has a solution indeed in the independent censoring case.

Let us highlight that the basic assumption of a purely extreme value copula model may appear re-

strictive at first. It is indeed similar in spirit to assuming that, in the univariate case, the underlying

distribution is a Generalised Extreme Value distribution (see de Haan and Ferreira, 2006). This as-
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sumption shall nevertheless prove very useful in identifying several problems that arise when there is

dependence in the censoring mechanism. The idea is that any issue appearing in the present context

can only get worse in a more general model, such as, for instance, the Archimax copula model of

Capéràa et al. (2000). Let us also point out that the very popular bivariate model of Ledford and

Tawn (1996, 1997) would not be appropriate here, because this model assumes that Y and T are unit

Fréchet distributed. To use this model in practice, one therefore has to transform Y and T to a unit

Fréchet distribution, which implies that the distributions of Y and T have at least been estimated

beforehand. This would be an issue in our setting, since we know that consistency of estimators of

the distribution functions of Y and T , such as the Kaplan-Meier estimator, is a difficult problem when

there is dependence in the censoring mechanism. In this paper, our focus is rather that nothing is

known about the distributions of Y and T , and we would like to know whether the extreme value

characteristics of Y can be recovered.

The outline of our paper is as follows. Section 2 gives further details about our assumptions and

especially about our dependence framework. Section 3 gives our main results, first about the extremes

of the observed variable Z and then about the tail censoring probability. Section 4 concludes with

some statistical considerations. Proofs of the main results are deferred to Appendix A, and auxiliary

results and their proofs are relegated to Appendix B.

2 Framework

We assume throughout that the variable of interest Y is partially unobserved, due to the existence

of a right-censoring random variable T . In other words, we only observe the pair (Z, δ), where Z =

min(Y, T ) and δ = I{Y≤T}. Contrary to the standard setup, we also assume that Y and T are not

independent. We describe here the dependence structure of the pair (Y, T ) by the means of a copula

function. The key result in order to do so is Sklar’s theorem (Sklar, 1959), which says that there exists

a copula C with

∀y, t ∈ R, P(Y ≤ y, T ≤ t) = C(FY (y), FT (t)),

in which FY and FT denote the respective cumulative distribution functions of Y and T . A copula C

is simply, in our case, a bivariate distribution function of a pair of standard uniform random variables.

We assumed here that Y and T are not independent, so that the copula C cannot be the independent

copula (u, v) 7→ uv.

Since we want to analyse the extremes of Y , we should do so in a relevant extreme value framework. The

condition we shall introduce, on an arbitrary distribution function F , is one of the many equivalent

versions of the classical extreme value condition saying that the distribution should belong to the
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domain of attraction of some extreme value distribution. As we work in a randomly right-censored

situation, it is convenient to write our extreme value condition in terms of the survival function, which

leads to the following formulation (see Theorem 1.1.6 in de Haan and Ferreira, 2006):

Condition C1(γ): There is γ ∈ R, called the extreme value index of F , and a positive function a such

that the distribution function F satisfies:

lim
t↑τ∗

1− F (t+ xa(t))

1− F (t)
= (1 + γx)−1/γ

for all x with 1 + γx > 0, where τ∗ = sup{x ∈ R, F (x) < 1} is the right endpoint of F .

Since the observed variable is Z = min(Y, T ), it makes sense to assume that the distributions of Y and

T can be included within this extreme value framework, and our main results will then be stated under

the assumption that the distributions of Y and T satisfy conditions C1(γY ) and C1(γT ) respectively.

Because actually

P(Z > z) = P(min(Y, T ) > z) = P(Y > z, T > z)

it follows that the study of the extremes of Z will require a study of the situation when Y and T are

jointly large. A very convenient assumption on the copula C in this context is then to suppose that C

is an extreme value copula (see e.g. Gudendorf and Segers, 2010):

∀(u, v) ∈ (0, 1]2 \ {(1, 1)}, C(u, v) = (uv)A(log(v)/ log(uv))

where A is the so-called Pickands dependence function related to C, i.e. it is a function that maps

[0, 1] into [1/2, 1], is convex and satisfies the inequalities max(t, 1 − t) ≤ A(t) ≤ 1 for all t ∈ [0, 1].

The function A characterises the copula C; the case A(t) = 1 corresponds to the independent copula

C(u, v) = uv (which we therefore exclude), and the case A(t) = max(t, 1 − t) is that of the perfect

dependence copula C(u, v) = min(u, v). In theoretical terms, these copulae arise naturally as limiting

copulae of suitably normalised sequences of componentwise maxima of independent and identically

distributed bivariate pairs (Joe, 1997). In this sense, assuming that (Y, T ) follows a bivariate extreme

value distribution is analogous to, in a univariate context, assuming that the random variable of interest

has a Generalised Extreme Value distribution. Working in such a context, which is a simplified version

of the general case, can help to identify statistical issues, such as non-identifiability or inconsistency

of certain estimators, that would arise in a more general context as well. Our plan here is precisely to

reveal such problems and then draw a couple of statistical consequences of them.

Our first step is to, compared to the independent censoring case, quantify the influence that the

dependence structure induced by C has on the random variable Z. We do this by using a simple

identity linking the survival function FZ(z) = P(Z > z) of Z to the survival functions FY and FT of

Y and T and to the copula C:
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Proposition 1. The survival function of Z is

FZ(z) = FY (z)FT (z) + ϕ(FY (z), FT (z))

where the function ϕ is defined by

∀u, v ∈ [0, 1], ϕ(u, v) = C(1− u, 1− v)− (1− u)(1− v).

In other words, we can write the survival function of Z as what it would be under independence of Y

and T , plus the term ϕ(FY (z), FT (z)) measuring the effect that the dependence structure in C has on

Z. Since the behaviour of FY (z)FT (z) for large z is easy to analyse, Proposition 1 suggests that, to

analyse the extremes of Z, it is enough to understand the behaviour of ϕ(FY (z), FT (z)) for large z.

We now explain clearly what “large z” means here. Let τY and τT be the right endpoints of Y and

T , respectively. In the case when τT < τY then the extremes of Y cannot be recovered because the

distribution of Y is not identifiable past the point τT . In the case τY < τT the extremes of Y are,

under a mild regularity assumption, those of Z, i.e. they can be recovered by standard techniques.

The following result makes this statement precise.

Proposition 2. Assume that τY < τT and C is an extreme value copula whose Pickands dependence

function is continuously differentiable on [0, 1]. Then FZ(z)/FY (z) has a positive and finite limit as

z ↑ τZ = τY .

Note that outside of the extreme value copula model, this result is still true under the regularity

condition on C that the limit

lim
u↓0

C(1− u, 1− v)− (1− u)(1− v)

u

exist and be nonnegative.

We therefore assume in what follows that Y and T have a common right endpoint τ = τY = τT . Note

that distributions with positive extreme value index have an infinite right endpoint, while distributions

with negative extreme value index have a finite right endpoint, see Theorem 1.2.1 in de Haan and

Ferreira (2006). It therefore follows from our basic assumption τY = τT that the extreme value indices

γY and γT should have the same sign.

We may now summarise our hypotheses about the joint behaviour of Y and T in the following condition:

Condition (M): Y and T have a common right endpoint τ = τY = τT and their joint distribution

function is given by

∀y, t ∈ R, P(Y ≤ y, T ≤ t) = C(FY (y), FT (t))
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where C is an extreme value copula whose Pickands dependence function A is not equal to the constant

function 1.

In their pioneering paper, Einmahl et al. (2008) use the right-tail behaviour of the observed variable

Z, and later an analysis of the censoring probability given that Z is large, to show that the extremes

of Y can be recovered from those of (Z, δ) in a very simple manner under classical extreme value

assumptions. All later works on randomly right-censored extremes follow this line of thought to some

extent. Our aim in this paper is to carry out a similar study and see in particular what influence the

introduction of dependence in the censoring mechanism has on the identifiability of the extremes of

Y . In other words, we shall try to obtain conditions under which we know whether the problem of

recovering the extremes of Y from (Z, δ) has a solution or not.

3 Main results

3.1 The extremes of the response variable

Our first step is to analyse the behaviour of Z in its extremes, in terms of the extreme value indices

γY and γT of Y and T . This is straightforward in the independent censoring case, because then the

survival function of Z is the product of those of Y and T . Our aim here is to state an analogue result

under dependence model (M).

Theorem 1. Assume that condition (M) holds, that A is continuously differentiable on [0, 1], and

suppose that the distributions of Y and T satisfy conditions C1(γY ) and C1(γT ) respectively; if moreover

γY = γT , assume that the ratio FT (z)/FY (z) has a finite and positive limit as z ↑ τ . We have that:

(i) If γY , γT ≥ 0 with γY + γT > 0, then Z satisfies condition C1(min(γY , γT )).

(ii) If γY , γT ≤ 0 with γY + γT < 0, then Z satisfies condition C1(max(γY , γT )).

The extreme behaviour of Z is therefore that of the variable with the lightest tail in the pair (Y, T ),

i.e. that of Y in the case when Y has a lighter tail than (or a similar tail to that of) T , or that of T

when T has a lighter tail than Y . Before drawing some interesting consequences from Theorem 1, let

us consider a simple illustrative example.

Example 1. Suppose that a random variable Y has a unit Pareto distribution, so that FY (y) = 1−y−1

for y > 1. Suppose also that the censoring variable T has a Pareto distribution with tail index γT ,

that is, FT (t) = 1− t−1/γT for t > 1. Finally, assume that the dependence structure of the pair (Y, T )

is described by a logistic copula (also called Gumbel-Hougaard copula; see Gumbel, 1960):

∀u, v ∈ (0, 1], Cθ(u, v) = exp
{
−
[
(− log u)θ + (− log v)θ

]1/θ}
7



where θ ≥ 1 is a constant; here we choose θ > 1, in order to ensure that Y and T are not independent.

Theorem 1 predicts that FZ should be regularly varying with index min(1, γT ); we check this by

analysing the asymptotic behaviour, as z ↑ ∞, of

Cθ(1− FY (z), 1− FT (z)) = exp

{
−
[
(− log(1− z−1))θ + (− log(1− z−1/γT ))θ

]1/θ}
.

If 0 < γT < 1 then

Cθ(1− FY (z), 1− FT (z))

1− z−1
= exp

log(1− z−1)

[1 +

(
log(1− z−1/γT )

log(1− z−1)

)θ]1/θ
− 1


= exp

{
−1

θ
zθ(1−γ

−1
T )−1(1 + o(1))

}
= 1 + o

(
z−1/γT

)
because θ > 1 and γT < 1.

If γT = 1 then

Cθ(1− FY (z), 1− FT (z))

1− z−1
= exp

{
log(1− z−1)

(
21/θ − 1

)}
= 1− (21/θ − 1)z−1(1 + o(1)).

If γT > 1 then

Cθ(1− FY (z), 1− FT (z))

1− z−1/γT
= exp

log(1− z−1/γT )

[1 +

(
log(1− z−1)

log(1− z−1/γT )

)θ]1/θ
− 1


= exp

{
−1

θ
zθ(γ

−1
T −1)−γ

−1
T (1 + o(1))

}
= 1 + o

(
z−1
)

because θ > 1 and γT > 1.

Together with the identity

FZ(z) = FY (z)FT (z) + C(1− FY (z), 1− FT (z))− (1− FY (z))(1− FT (z))

= C(1− FY (z), 1− FT (z))− 1 + FY (z) + FT (z)

this entails

FZ(z) =


z−1/γT (1 + o(1)) if γT < 1,

(2− 21/θ)z−1(1 + o(1)) if γT = 1,

z−1(1 + o(1)) if γT > 1.

It follows from this computation that FZ is indeed regularly varying with index min(1, γT ).

Let us now highlight a couple of consequences of Theorem 1 about the tail behaviour of the observed

variable Z in our setup. For ease of exposition, we assume until the end of this section that γY γT > 0,

i.e. Y and T both belong to the same max-domain of attraction, that can be either the Fréchet or
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Weibull domain of attraction. It has been shown (see Einmahl et al., 2008) that in the independent

censoring case, Z then belongs to the common max-domain of attraction of Y and T , with extreme

value index

γZ =
γY γT
γY + γT

; in particular, |γZ | < min(|γY |, |γT |).

In the independent case, the absolute value of the extreme value index of the observed variable Z is

therefore strictly lower than what it is in the dependent case. This means that in the dependent case,

the right tail of Z is heavier than it is in the independent case. Qualitatively, this could have been

inferred from the positive tail dependence between Y and T , which is due to the dependence structure

being described by an extreme value copula (see Gudendorf and Segers, 2010). What is surprising is

that the expression of the dependence function itself does not affect the extreme value index of Z at

all.

Theorem 1 also has an important corollary relative to the identifiability of the extremes of Y : whereas

the extremes of Z always contain information about those of Y and those of T in the independent

case, they are driven either solely by those of Y or those of T in the dependent case considered here,

no matter how close to independence the dependence structure is. It should be especially emphasised

that in the case when γY γT > 0 and |γT | < |γY | then the extreme value index of Z is exactly that of

T , which seems to indicate that the extremes of Y are unrecoverable. The only cases when this type

of behaviour is observed in the independent censoring case are when either the right tail of T is much

lighter than the tail of Y (e.g. T is light-tailed while Y is heavy-tailed) or when τT < τY ≤ ∞, both

situations clearly being cases when the problem of recovering the extremes of Y has no solution.

Our next step is to analyse how much censoring there is in the right tail of Z, depending on the extreme

behaviour of Y and T , to confirm whether or not our tentative conclusions are true.

3.2 Tail censoring probability

The second part of our study focuses on the information available in the censoring indicator δ. Since

we are interested in how censoring affects the right tail of Y , we should look at how δ behaves given

that the observed variable Z is large, or equivalently evaluate the probability

P (z) := P(δ = 1|Z > z) = P(Y ≤ T |Z > z).

When z is close to τ , the probability 1 − P (z) gives an idea of the probability of censoring in the

extremes of Z. In particular, if P (z) converges to a limit P (τ) as z ↑ τ , the probability 1− P (τ) shall

be called the tail censoring probability.

It should be noted that Einmahl et al. (2008) achieve the study of censoring in the right tail by slightly
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different means, as they assume that Y and T have continuous distributions and they consider

p(z) := P(Y ≤ T |Z = z) :=

d

dz
[P(Y ≤ T,Z > z)]

d

dz
[P(Z > z)]

=

d

dz
[P(Y ≤ T,Z > z)]

d

dz

[
FZ(z)

] .

They mention (without proof) that under independent censoring and suitable extreme value conditions,

this function has a limit as z ↑ τ ; it is actually straightforward to show that this is the limit of P as

well. Their statistical arguments, however, use the quantity P (z) instead: in particular, they develop

an estimator of the extreme value index of Y using the sample counterpart of P (z) for large z. We

nonetheless shall consider both the functions P (z) and p(z) here and show that, as in the independent

case, they both give rise to a common notion of censoring probability in the tail, but their common

limit is different from what it would be in the independent case. This quantity plays a pivotal role

in our context, just as the classical censoring probability P(Y > T ) does for the estimation of central

quantities. A positive (and less than 1) censoring probability means that the problem has a solution

and that traditional estimators have to be corrected in some way in order to retain consistency. A

censoring probability equal to 0 means that standard, uncorrected techniques will still be consistent:

we will call this case a totally uncensored situation. Finally, a censoring probability equal to 1 gives

rise to a totally censored case, which is a situation when the estimation problem does not have a

solution. The condition that the censoring probability belongs to the interval (0, 1) is thus crucial for

the problem to be both nontrivial and workable.

Our first step to prove that the limiting tail censoring probability exists is to obtain a convenient

representation of the functions p and P . In all what follows, ∂1C (resp. ∂2C) denotes the partial

derivative of C with respect to its first (resp. second) argument: it is easy to show that when A is

continuously differentiable,

∂1C(u, v) =
C(u, v)

u

[
A

(
log v

log u+ log v

)
− log v

log u+ log v
A′
(

log v

log u+ log v

)]

and ∂2C(u, v) =
C(u, v)

v

[
A

(
log v

log u+ log v

)
+

log u

log u+ log v
A′
(

log v

log u+ log v

)]
.

The next result uses these partial derivatives to provide a convenient expression of p and P .

Proposition 3. Assume that condition (M) holds, that A is twice continuously differentiable on [0, 1],

and that Y and T have continuous distributions with respective probability density functions fY and

fT . Then we have that:

P (z) =
1

FZ(z)

∫ τ

z

[1− ∂1C(FY (t), FT (t))]fY (t)dt

and p(z) =
[1− ∂1C(FY (z), FT (z))]fY (z)

[1− ∂1C(FY (z), FT (z))]fY (z) + [1− ∂2C(FY (z), FT (z))]fT (z)
.
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Interestingly, while P (z) ∈ [0, 1] by definition, it was far less obvious from its definition (and despite its

convenient notation) that p(z) ∈ [0, 1]. It turns out that, in view of Proposition 3 and Lemma 1(iii),

this is indeed the case. Therefore, computing the limit of p(z) as z ↑ τ is, as in the independent

censoring case, indeed worthwhile pursuing in order to obtain a measure of censorship given that the

observed variable is extreme.

Proposition 3 above is the key to our analysis of the asymptotic behaviour of p and P . We may now

state our second main result, on the existence and value of the limit of the function P .

Theorem 2. Assume that condition (M) holds, that A is twice continuously differentiable on [0, 1],

and suppose that Y and T have continuous distributions that satisfy conditions C1(γY ) and C1(γT )

respectively. Then, as z ↑ τ , we have that:

(i) P (z)→ 0 if γY γT ≥ 0 and |γY | > |γT |;

(ii) P (z)→ 1 if γY γT ≥ 0 and |γT | > |γY |;

(iii) P (z)→ Pc if γY γT ≥ 0, |γT | = |γY | and FT (z)/FY (z)→ c ∈ (0,∞) as z ↑ τ , where:

∀c > 0, Pc =
1− c

c+ 1

1−A
(

c

c+ 1

) {1−A
(

c

c+ 1

)
+

c

c+ 1
A′
(

c

c+ 1

)}
∈ [0, 1].

If moreover A is strictly convex, then Pc ∈ (0, 1).

Before commenting upon this result, we show that the function p shares the asymptotic behaviour of

the function P . Because p is computed using the probability density functions fY and fT of Y and

T , we should think of extending our extreme value condition in order to be able to control fY (z) and

fT (z) for large z. To keep things as simple as possible, we introduce the following refined extreme

value condition.

Condition C2(γ): The function F is continuously differentiable in a neighbourhood of its right end-

point τ∗. Moreover, one of the following two conditions holds:

• τ∗ =∞ and there is γ > 0 such that

lim
x↑∞

xF ′(x)

1− F (x)
=

1

γ
;

• τ∗ <∞ and there is γ < 0 such that

lim
x↑τ∗

(τ∗ − x)F ′(x)

1− F (x)
= − 1

γ
.

11



It is a consequence of Theorems 1.1.11 and 1.1.13 in de Haan and Ferreira (2006) that for γ 6= 0,

condition C2(γ) implies condition C1(γ). The former condition excludes the Gumbel max-domain of

attraction, for which γ = 0; it should be noted that the study of the behaviour of the function p when

the distributions of Y and T belong to this domain is much harder, and this is also emphasised in

Einmahl et al. (2008) who, in this case and assuming independent censoring, simply suppose that the

limit of p exists. Outside of the Gumbel domain of attraction, condition C2(γ) is a fairly mild regularity

hypothesis, which is true for all usual examples of distributions used in statistical aspects of extreme

value theory, see p.59 and p.68 in Beirlant et al. (2004) and further examples in de Haan and Ferreira

(2006).

When Y and T satisfy this refined extreme value condition, we can examine the asymptotic behaviour

of the function p. This is the focus of our third main result.

Theorem 3. Assume that condition (M) holds, that A is twice continuously differentiable on [0, 1],

and suppose that Y and T have continuous distributions that satisfy conditions C2(γY ) and C2(γT )

respectively, with γY γT > 0. Then, as z ↑ τ , we have that:

(i) p(z)→ 0 if |γY | > |γT |;

(ii) p(z)→ 1 if |γT | > |γY |;

(iii) p(z) → Pc if |γT | = |γY | and FT (z)/FY (z) → c ∈ (0,∞) as z ↑ τ , with the notation of

Theorem 2.

As a conclusion, the two functions p and P yield, in the limit z ↑ τ , the same limit, as observed in the

independent censoring case. The limit itself, however, is very different compared to what it is in the

latter case:

• When T has a lighter tail than Y , then the tail censoring probability is 1, and the extremes of

Y are totally censored;

• When Y has a lighter tail than T , then the tail censoring probability is 0, and the extremes of

Y are totally uncensored;

• The only nontrivial case arises when A is strictly convex and Y and T have proportional tails,

the tail censoring probability then being between 0 and 1 depending on the function A.

By comparison, in the independent case then, provided Y and T have continuous distributions that

satisfy conditions C2(γY ) and C2(γT ) respectively, with γY γT > 0 and equal right endpoints, the tail

censoring probability is

1− P (τ) =
γY

γY + γT
∈ (0, 1),
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see Einmahl et al. (2008). In other words, in the independent censoring case and when the right tails

of Y and T are of the same type, the problem of recovering the extremes of Y always has a solution.

We illustrate these remarks further in the example below.

Example 2. Suppose that a random variable Y has a unit Pareto distribution, so that FY (y) = 1−y−1

for y > 1. Suppose also that the censoring variable T has a Pareto distribution with tail index γT ,

that is, FT (t) = 1− t−1/γT for t > 1. In the independent case, the tail censoring probability would be

1− P (τ) =
1

1 + γT
∈ (0, 1),

decreasing smoothly from 1 to 0 as the tail of T gets heavier, as we would expect. By contrast, in the

dependent case with Pickands dependence function A(t) = 1− t(1− t), the tail censoring probability

is

1− P (τ) =


1 if γT < 1,

1/2 if γT = 1,

0 if γT > 1,

which, although still a decreasing function of γT , is discontinuous at 1 and piecewise constant. In

particular, any case in which γT < 1 is totally censored and recovering the extremes of Y is then

impossible.

Due to the nature of the limit P (τ) in the dependent case, this example is very much representative

of the different behaviours that can occur, the only degrees of liberty here being the position of the

discontinuity (i.e. the value of γY , taken to be equal to 1 in the above example) and the value of

P (τ) at this discontinuity (which depends on the function A). Again, it should be emphasised that the

Pickands dependence function plays a largely insignificant role in the results, in that it does not affect

the value of P (τ) except at the discontinuity. In particular, the coefficient of upper tail dependence:

λ := lim
t↓0

1

t
(2t− 1 + C(1− t, 1− t)) = 2(1−A(1/2))

(see Gudendorf and Segers, 2010), only appears when Y and T have exactly equivalent tails, and in

that case

1− P (τ) = 1− 1

λ

{
λ

2
+

1

2
A′
(

1

2

)}
=

1

2
− A′(1/2)

2λ
.

This actually makes sense: recall that the upper tail dependence coefficient is

λ = lim
u↑1

P(U > u|V > u)

where (U, V ) is a random pair with distribution function C (see again Gudendorf and Segers, 2010).

In other words, the upper tail dependence coefficient measures extremal dependence in the direction
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of the 45-degree line. Now (U, V ) := (FY (Y ), FT (T )) is such a random pair and

FZ(z) = P(Y > z, T > z) = P(U > FY (z), V > FT (z))

and P (z) = P(Y ≤ T |Y > z, T > z) = P(Y ≤ T |U > FY (z), V > FT (z)).

We should therefore only expect the upper tail dependence coefficient to appear in this problem if FY (z)

and FT (z) are equivalent for large z. More generally though, the fact that no parameters quantifying

the amount of dependence in the extremes of (Y, T ) have an influence in our results outside of the very

specific case of similar tails can seem pretty surprising.

4 Conclusion and statistical consequences

In this paper, we analysed the extreme properties of the observed pair in a randomly right-censored

model when there is a dependent censoring mechanism induced by an extreme value copula. The

range of situations where the extremes of the response variable can be recovered was found to be

significantly more limited than in the independent censoring case. It is also interesting to note that

the actual dependence structure in the extreme value copula model only plays a very marginal role in

the determination of the extremes of the observed variable.

Our results imply that a dependent censoring mechanism entails statistical consequences, that can be

as serious in the study of extremes of the variable of interest as they are in the study of its central

parameters. To illustrate this point further, we focus on the estimators that have been developed up

to now in the literature. For ease of exposition, we work here under the extreme value conditions of

Theorem 2. The estimators of Beirlant et al. (2007), Einmahl et al. (2008), Gomes and Neves (2011),

Ndao et al. (2014), Brahimi et al. (2015), Beirlant et al. (2016) and Stupfler (2016) are all based on

the fact that in the independent censoring case,

γZ
P (τ)

=
γY γT
γY + γT

×
{

γT
γY + γT

}−1
= γY .

The common idea these authors use is then to plug a consistent estimator of γZ and a consistent

estimator of P (τ) in the left-hand side above in order to obtain a consistent estimator of γZ . In

particular, an estimator designed this way shall be consistent whenever γY , γT > 0, or whenever γY ,

γT < 0 with the right endpoints τY and τT being equal. In the dependent case however, the equality

γZ
P (τ)

= γY

is only true when the tail of γY is strictly lighter than that of T , in which case we actually have

γZ = γY . This leads to a considerable restriction in the applicability of the aforementioned estimators.
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Moreover, although P (τ) has to be equal to 1 for these estimators to stay consistent, their finite-

sample behaviour might be problematic because of the finite-sample bias in the estimation of P (τ).

To illustrate this, suppose that the available data is made of independent pairs (Zi, δi), 1 ≤ i ≤ n.

Denote by Z1,n ≤ · · · ≤ Zn,n the order statistics of (Z1, . . . , Zn) and by δ[n−i+1,n] the δ−indicator

corresponding to Zn−i+1,n. The standard estimator of P (τ) is then

P̂k(τ) :=
1

k

k∑
j=1

δ[n−j+1,n]

where k = k(n) → ∞ and k/n → 0, see Einmahl et al. (2008). The issue here is that P̂k(τ) is

actually the sample counterpart of P(Y ≤ T |Z ≥ qZ(1− k/n)), where qZ(1− k/n) is the quantile of Z

exceeded with probability k/n. This is not equal to P (τ) in general. As a consequence, if k is chosen

too large, then the estimate P̂k(τ) could suffer from some serious under-estimation bias, leading to

over-estimation of the parameter γY . While this is also a concern in the independent censoring case,

it is all the more inconvenient in the present context since if we knew that we were in the dependent

case discussed here, it would be sufficient to simply use an estimate of γZ as an estimate of γY !

Finally, let us point out that the estimators of Beirlant et al. (2010), Sayah et al. (2014) and Worms

and Worms (2014) do not directly use the ratio of γZ and P (τ) in order to design a consistent estima-

tor. They are however based on a Kaplan-Meier estimate of FY in its right tail, so that they would

also be seriously affected by a violation of the independent censoring assumption, as dependence can

cause the Kaplan-Meier estimator to become inconsistent (see Fisher and Kanarek, 1974, Klein and

Moeschberger, 1987 and Ebrahimi and Molefe, 2003). Furthermore, the construction of the methods

suggested by these papers, and/or the proofs of their consistency, crucially use the independence as-

sumption. For instance, both estimators in Worms and Worms (2014) are based on the computation

of a certain expectation of a function of Z, for which the relationship P(Z > z) = P(Y > z)P(T > z)

is essential, see equations (2) and (11) therein. Consistency of these methods is therefore unclear as

well in a dependent censoring framework.

Appendix A: Proofs of the main results

Proof of Proposition 1. This result is well-known under one of its many equivalent forms; we include

a proof for the sake of completeness. Note that

FZ(z) = P(Z > z) = P(Y > z, T > z)

= 1− P(Y ≤ z, T ≤ z)− P(Y ≤ z, T > z)− P(Y > z, T ≤ z).
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We now rewrite each term as

P(Y ≤ z, T ≤ z) = C(1− FY (z), 1− FT (z))

P(Y ≤ z, T > z) = P(Y ≤ z)− P(Y ≤ z, T ≤ z) = 1− FY (z)− C(1− FY (z), 1− FT (z))

and P(Y > z, T ≤ z) = P(T ≤ z)− P(Y ≤ z, T ≤ z) = 1− FT (z)− C(1− FY (z), 1− FT (z)).

Rearranging yields

FZ(z) = FY (z) + FT (z) + C(1− FY (z), 1− FT (z))− 1

= FY (z)FT (z) + C(1− FY (z), 1− FT (z))− (1− FY (z))(1− FT (z))

which concludes the proof.

Proof of Proposition 2. Use Proposition 1 to get

FZ(z)

FY (z)
= FT (z) +

ϕ(FY (z), FT (z))

FY (z)
.

Set v0 = lim
z↑τY

FT (z) > 0 and apply Lemma 2 to get

lim
z↑τY

ϕ(FY (z), FT (z))

FY (z)
= (1− v0)A′(1).

This is a positive constant, by Lemma 1. Thus

lim
z↑τY

FZ(z)

FY (z)
= v0 + (1− v0)A′(1) > 0

which completes the proof.

Proof of Theorem 1. Apply Lemma 4 to get:

(i) If γY > γT ≥ 0, then τ =∞ and FT (z)/FY (z)→ 0 as z →∞.

(ii) If γT > γY ≥ 0, then τ =∞ and FT (z)/FY (z) = [FY (z)/FT (z)]−1 →∞ as z →∞.

(iii) If 0 ≥ γY > γT , then τ <∞ and FT (z)/FY (z) = [FY (z)/FT (z)]−1 →∞ as z ↑ τ .

(iv) If 0 ≥ γT > γY , then τ <∞ and FT (z)/FY (z)→ 0 as z ↑ τ .

In each of these four cases, the result is then a direct corollary of Lemma 6.

Proof of Proposition 3. The statement on P (z) is a direct consequence of Lemma 7 and of the

equality

P (z) =
P(Y ≤ T,Z > z)

FZ(z)
.
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To obtain the corresponding statement on p(z), just note that by Proposition 1,

FZ(z) = FY (z) + FT (z)− [1− C(FY (z), FT (z))]

after rearranging terms. The result then follows directly by differentiating numerator and denominator

in P (z).

Proof of Theorem 2. By Proposition 3, we can write

P (z) =

∫ τ

z

[1− ∂1C(FY (t), FT (t))]fY (t)dt

FZ(z)
.

To prove (i), remark that if γY γT ≥ 0 and |γY | > |γT |, then FT (z)/FY (z)→ 0 as z ↑ τ by Lemma 4.

In that case, Lemma 6(i) entails together with Lemma 8(i) that

P (z) =

∫ τ

z

[
(1 +A′(0) + o(1))FT (t) +

1

2
(A′′(0) + o(1))(FT (t)/FY (t))2

]
fY (t)dt

−A′(0)FT (z)(1 + o(1))
.

The first part of the integral in the numerator is controlled by noting that

0 ≤

∫ τ

z

FT (t)fY (t)dt

FT (z)
≤
∫ τ

z

fY (t)dt = FY (z)→ 0 as z → τ.

To control the second one, we first write

0 ≤ 1

FT (z)

∫ τ

z

(
FT (t)

FY (t)

)2

fY (t)dt ≤
∫ τ

z

{
FT (t)

FY (t)

}{
fY (t)

FY (t)

}
dt.

When γY > 0, and therefore τ =∞, we apply Lemma 4 to obtain that there is ε > 0 such that

0 ≤ 1

FT (z)

∫ ∞
z

(
FT (t)

FY (t)

)2

fY (t)dt ≤
∫ ∞
z

{
fY (t)

FY (t)

}
t−εdt

=

∫ ∞
z

d

dt

[
− log(FY (t))t−ε

]
− ε log(FY (t))t−1−εdt.

Now, by Theorem 1.2.1 in de Haan and Ferreira (2006), the function FY is regularly varying with

index −1/γY . In other words, we can write this function as

FY (t) = t−1/γY LY (t)

where LY is a slowly varying function at infinity. Since log(LY (t))/ log t→ 0 as t→∞ (see Proposition

1.3.6 p.16 in Bingham et al., 1987) we get log(FY (t))t−ε/2 → 0 as t→∞. In particular:

∣∣log(FY (t))t−ε
∣∣→ 0 and

∣∣log(FY (t))t−1−ε
∣∣ = o(t−1−ε/2).
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Therefore

0 ≤ 1

FT (z)

∫ ∞
z

(
FT (t)

FY (t)

)2

fY (t)dt ≤ log(FY (z))z−ε − ε
∫ ∞
z

log(FY (t))t−1−εdt→ 0 as z →∞

which concludes the proof in this case. When γY < 0 and τ <∞, we apply Lemma 4 again to obtain

that there is ε > 0 such that

0 ≤ 1

FT (z)

∫ τ

z

(
FT (t)

FY (t)

)2

fY (t)dt ≤
∫ τ

z

{
fY (t)

FY (t)

}
(τ − t)εdt.

Use the change of variables T = (τ − t)−1 to obtain

0 ≤ 1

FT (z)

∫ τ

z

(
FT (t)

FY (t)

)2

fY (t)dt ≤
∫ ∞
(τ−z)−1

{
fY (τ − T−1)

FY (τ − T−1)

d

dT
(τ − T−1)

}
T−εdT.

Since by Theorem 1.2.1 in de Haan and Ferreira (2006) the function T 7→ FY (τ − T−1) is regularly

varying with index 1/γY < 0, we can exactly mimic the proof of the case γY > 0 to obtain

1

FT (z)

∫ τ

z

(
FT (t)

FY (t)

)2

fY (t)dt→ 0 as z ↑ τ.

The proof of (i) is then complete.

To prove (ii), we note that in this case FT (z)/FY (z) = [FY (z)/FT (z)]−1 →∞ as z ↑ τ by Lemma 4.

Apply then Lemma 6(ii) together with Lemma 8(ii) to get

P (z) =

∫ τ

z

(A′(1) + o(1))fY (t)dt

A′(1)FY (z)(1 + o(1))
.

Since A′(1) > 0 by Lemma 1(ii), the numerator is clearly equivalent to A′(1)FY (z), which entails that

P (z)→ 1 as z → τ and concludes the proof of (ii).

Finally, to show (iii), apply Lemma 6(iii) together with Lemma 8(iii) to obtain

P (z) =

∫ τ

z

(
1−

[
A

(
c

c+ 1

)
− c

c+ 1
A′
(

c

c+ 1

)]
+ o(1)

)
fY (t)dt

(c+ 1)

[
1−A

(
c

c+ 1

)]
FY (z)(1 + o(1))

.

If the constant 1−
[
A

(
c

c+ 1

)
− c

c+ 1
A′
(

c

c+ 1

)]
is zero then

P (z) =
o(FY (z))

(c+ 1)

[
1−A

(
c

c+ 1

)]
FY (z)(1 + o(1))

= o(1)→ 0 = Pc as z ↑ τ

as required. Otherwise we clearly have

P (z)→
1−

[
A

(
c

c+ 1

)
− c

c+ 1
A′
(

c

c+ 1

)]
(c+ 1)

[
1−A

(
c

c+ 1

)] = Pc as z ↑ τ,

and this completes the proof.
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Proof of Theorem 3. Recall that Proposition 3 yields

p(z) =
[1− ∂1C(FY (z), FT (z))]fY (z)

[1− ∂1C(FY (z), FT (z))]fY (z) + [1− ∂2C(FY (z), FT (z))]fT (z)
.

We first prove (i). In that case, FT (z)/FY (z)→ 0 as z ↑ τ by Lemma 4 and thus

p(z) =

[
(1 +A′(0) + o(1))FT (z) +

1

2
(A′′(0) + o(1))(FT (z)/FY (z))2

]
fY (z)[

(1 +A′(0) + o(1))FT (z) +
1

2
(A′′(0) + o(1))(FT (z)/FY (z))2

]
fY (z)− (A′(0) + o(1))fT (z)

=
(1 +A′(0) + o(1))FT (z) +

1

2
(A′′(0) + o(1))(FT (z)/FY (z))2

(1 +A′(0) + o(1))FT (z) +
1

2
(A′′(0) + o(1))(FT (z)/FY (z))2 − (A′(0) + o(1))fT (z)/fY (z)

by Lemma 8(i) and Lemma 9(i). Moreover, it follows from conditions C2(γY ) and C2(γT ) that

fT (z)/fY (z) is equivalent to γY FT (z)/[γTFY (z)] when z ↑ τ . Therefore

p(z) =
(1 +A′(0) + o(1))FT (z) +

1

2
(A′′(0) + o(1))(FT (z)/FY (z))2

−(A′(0) + o(1))γY FT (z)/[γTFY (z)](1 + o(1))

=
γT
γY

(1 +A′(0) + o(1))FY (z) +
1

2
(A′′(0) + o(1))FT (z)/FY (z)

−(A′(0) + o(1))
(1 + o(1))→ 0 as z ↑ τ

as required.

Let us now show (ii). In that case, FT (z)/FY (z) = [FY (z)/FT (z)]−1 →∞ as z ↑ τ by Lemma 4. By

Lemma 8(ii) and Lemma 9(ii), we then get

p(z) =
(A′(1) + o(1))fY (z)

(A′(1) + o(1))fY (z) +

[
(1−A′(1) + o(1))FY (z) +

1

2
(A′′(1) + o(1))(FY (z)/FT (z))2

]
fT (z)

=
(A′(1) + o(1))

(A′(1) + o(1)) +

[
(1−A′(1) + o(1))FY (z) +

1

2
(A′′(1) + o(1))(FY (z)/FT (z))2

]
fT (z)/fY (z)

.

Again, since fT (z)/fY (z) is equivalent to γY FT (z)/[γTFY (z)] when z ↑ τ , we obtain[
(1−A′(1) + o(1))FY (z) +

1

2
(A′′(1) + o(1))(FY (z)/FT (z))2

]
fT (z)/fY (z)

= O
(
FT (z)

)
+ O

(
FY (z)/FT (z)

)
→ 0

and therefore p(z)→ 1 as z ↑ τ , which is (ii).

We finally show (iii). In that case, we know that by conditions C2(γY ) and C2(γT ), fT (z)/fY (z)

is equivalent to FT (z)/FY (z) when z ↑ τ , and therefore converges to the constant c. Apply then
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Lemma 8(iii) and Lemma 9(iii) to get, as z ↑ τ :

p(z) →
1−

[
A

(
c

c+ 1

)
− c

c+ 1
A′
(

c

c+ 1

)]
1−

[
A

(
c

c+ 1

)
− c

c+ 1
A′
(

c

c+ 1

)]
+ c

(
1−

[
A

(
c

c+ 1

)
+

1

c+ 1
A′
(

c

c+ 1

)])

=

1−
[
A

(
c

c+ 1

)
− c

c+ 1
A′
(

c

c+ 1

)]
(c+ 1)

[
1−A

(
c

c+ 1

)] = Pc.

The proof is complete.

Appendix B: Auxiliary results and proofs

In this Appendix, A denotes a Pickands dependence function, C is the corresponding extreme value

copula

C(u, v) = (uv)A(log(v)/ log(uv))

and ϕ is the function defined by:

ϕ(u, v) = C(1− u, 1− v)− (1− u)(1− v).

The first lemma gathers a few results about Pickands dependence functions.

Lemma 1. Let A be a Pickands dependence function, and assume that the related copula C is not the

independent copula. Then:

(i) It holds that A(t) < 1 for all t ∈ (0, 1).

If moreover A is continuously differentiable on [0, 1], then:

(ii) We have A′(0) < 0 and A′(1) > 0.

(iii) We have

∀x ∈ [0, 1], 0 ≤ A(x)− xA′(x) ≤ 1 and 0 ≤ A(x) + (1− x)A′(x) ≤ 1.

These inequalities are all strict on (0, 1) should A be strictly convex.

Proof of Lemma 1. To show (i), assume that there is t0 ∈ (0, 1) such that A(t0) = 1. Recall the

increasing slopes inequality:

∀x, y, z ∈ [0, 1], x < y < z ⇒ A(y)−A(x)

y − x
≤ A(z)−A(x)

z − x
≤ A(z)−A(y)

z − y
.
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Apply this first with x = t ∈ (0, t0), y = t0 and z = 1 to get

1−A(t)

1− t
≤ 0

so that A(t) ≥ 1 and therefore A(t) = 1 for all t ∈ (0, t0). Apply now the above set of inequalities with

x = 0, y = t0 and z = t ∈ (t0, 1) to obtain

0 ≤ A(t)− 1

t

so that again A(t) = 1 for all t ∈ (t0, 1). Consequently, A is the constant function 1, which is impossible

since C is not the independent copula.

We turn to the proof of (ii). Since A is continuously differentiable on [0, 1] and convex, its derivative A′

is nondecreasing. Consequently, if A′(0) were nonnegative, then so would be A′(x) for any x ∈ (0, 1],

and thus A would be nondecreasing on [0, 1]. Since A(0) = A(1) = 1, this would entail that A

is the constant function 1, which is a contradiction. Similarly, A′(1) cannot be nonpositive since if

it were, then A would be nonincreasing on [0, 1], which is a contradiction in virtue of the equality

A(0) = A(1) = 1.

We now show (iii). Notice that since A(x) ≥ x, we have

A(x)− xA′(x) ≥ x(1−A′(x)).

Assume that there is x0 ∈ (0, 1) such that A′(x0) > 1. Since A is convex, the function A′ is nonde-

creasing and therefore A′(x) > 1 on [x0, 1]. Integrating yields

1−A(x0) = A(1)−A(x0) =

∫ 1

x0

A′(x)dx > 1− x0

which entails A(x0) < x0 and a contradiction. As a consequence, A′(x) ≤ 1 for all x ∈ (0, 1), and

this should also be true on the closed interval [0, 1] by continuity of A′. Finally, A(x) − xA′(x) ≥

x(1−A′(x)) ≥ 0 for all x ∈ [0, 1]. Use now the increasing slopes inequality to write

∀x, t ∈ (0, 1), x < t⇒ A(x)− 1

x
=
A(x)−A(0)

x− 0
≤ A(t)−A(x)

t− x
.

Let t ↓ x to get

∀x ∈ (0, 1),
A(x)− 1

x
≤ A′(x)

which entails A(x)− xA′(x) ≤ 1 for all x ∈ (0, 1). Using the continuity of A and A′, this inequality is

of course also true for x ∈ {0, 1}, which concludes the proof of the first set of desired inequalities if A

is convex.
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If A is moreover strictly convex, assume that there is x0 ∈ (0, 1) such that A′(x0) ≥ 1. Then A′(x) ≥ 1

on [x0, 1] and integrating yields

∀t ∈ [x0, 1] ∩ [1/2, 1], 1−A(t) = A(1)−A(t) =

∫ 1

t

A′(x)dx ≥ 1− t

which entails A(t) ≤ t and therefore A(t) = t on an interval with nonempty interior, which is a

contradiction by the strict convexity of A. This entails A(x) − xA′(x) ≥ x(1 − A′(x)) > 0 for all

x ∈ (0, 1). Finally, to prove that A(x) − xA′(x) < 1 for all x ∈ (0, 1), we apply again the increasing

slopes inequality: for all x, t ∈ (0, 1),

x < t⇒ A(x)− 1

x
=
A(x)−A(0)

x− 0
<
A(x)−A(x/2)

x/2
<
A(t)−A(x/2)

t− (x/2)
<
A(t)−A(x)

t− x

where all inequality signs are strict because of the strict convexity of A. Let t ↓ x to get

∀x ∈ (0, 1),
A(x)− 1

x
<
A(x)−A(x/2)

x/2
≤ A′(x)

which entails A(x)− xA′(x) < 1 for all x ∈ (0, 1) as required.

The second set of inequalities is a straightforward consequence of the first one applied to the Pickands

dependence function Ã(x) = A(1− x). We omit the details for the sake of brevity.

The second lemma is an equivalent of ϕ(u, v) as u→ 0 and v → v0 > 0.

Lemma 2. Assume that A is continuously differentiable on [0, 1]. Then, if u→ 0 and v → v0 > 0, we

have that:

ϕ(u, v) = (1− v0)A′(1)u(1 + o(1)).

Proof of Lemma 2. Note that

ϕ(u, v) = (1− u)(1− v)
{

[(1− u)(1− v)]A(log(1−v)/ log([1−u][1−v]))−1 − 1
}

= (1− v0 + o(1))
{

[(1− u)(1− v)]A(log(1−v)/ log([1−u][1−v]))−1 − 1
}
.

Since u→ 0 and v → v0 > 0, we get

log(1− v)

log([1− u][1− v])
→ 1 and therefore A

(
log(1− v)

log([1− u][1− v])

)
→ A(1) = 1.

In particular:

A

(
log(1− v)

log([1− u][1− v])

)
− 1 =

[
log(1− v)

log([1− u][1− v])
− 1

]
A′(1) + o

(∣∣∣∣ log(1− v)

log([1− u][1− v])
− 1

∣∣∣∣)
=

[
− log(1− u)

log([1− u][1− v])

]
A′(1) + o

(
log(1− u)

log([1− u][1− v])

)
.
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Since as u→ 0 and v → v0 > 0 we have:

1

u
× − log(1− u)

log([1− u][1− v])
→ 1

log(1− v0)
< 0,

we get

log([1− u][1− v])

[
A

(
log(1− v)

log([1− u][1− v])

)
− 1

]
= uA′(1) + o(u).

Because this quantity converges to 0 and

ϕ(u, v) = (1− v0 + o(1))

{
exp

(
log([1− u][1− v])

[
A

(
log(1− v)

log([1− u][1− v])

)
− 1

])
− 1

}
the conclusion readily follows by using a Taylor expansion of the exponential function in a neighbour-

hood of 0.

The next lemma is a simple result of real analysis we shall use in the proof of our next lemma.

Lemma 3. Let η be a continuously differentiable function on a neighbourhood of infinity such that

η′(t)→ 0 as t→∞. Then η(t)/t→ 0 as t→∞.

Proof of Lemma 3. Because η′ converges to 0 at infinity one may, for any ε > 0, choose t0 such that

|η′(s)| ≤ ε/2 for all s > t0. Therefore, for t > t0 sufficiently large,∣∣∣∣η(t)

t

∣∣∣∣ ≤ 1

t

(
|η(t0)|+

∫ t

t0

|η′(s)|ds
)
≤ |η(t0)|

t
+ sup
s>t0

|η′(s)| ≤ ε,

or equivalently, η(t)/t→ 0 as t→∞ as required.

Lemma 4 is a very useful result about the asymptotic interactions between the survival functions of Y

and T .

Lemma 4. Assume that condition (M) holds and that the distributions of Y and T satisfy conditions

C1(γY ) and C1(γT ) respectively. If in addition γY γT ≥ 0 and |γY | > |γT |, then when τ =∞ we have

∃ε > 0,
FT (z)

FY (z)
= O(z−ε) as z →∞.

When otherwise τ <∞, then

∃ε > 0,
FT (z)

FY (z)
= O((τ − z)ε) as z ↑ τ.

Proof of Lemma 4. Although this result appears to be mostly well-known, we prove it for the sake

of self-containedness. We start with the case γY > 0, in which τ =∞. We may write for large z that:

FY (z) = cY (z) exp

(
−
∫ z

z0

ds

ηY (s)

)
and FT (z) = cT (z) exp

(
−
∫ z

z0

ds

ηT (s)

)
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where cY and cT converge to positive constants at infinity, and ηY and ηT are two continuously

differentiable functions on a neighbourhood of infinity such that ηY (t)/t → γY and ηT (t)/t → γT as

t → ∞. This is a direct consequence of Theorem 1.2.6 in de Haan and Ferreira (2006) when γT > 0,

and of this same result together with Lemma 3 when γT = 0. Then

FT (z)

FY (z)
= O

(
exp

[
−
∫ z

z0

(
s

ηT (s)
− s

ηY (s)

)
ds

s

])
.

If γT > 0 then the bracketed term in the above integral converges to 1/γT − 1/γY , and therefore

−
∫ z

z0

(
s

ηT (s)
− s

ηY (s)

)
ds

s
= −

(
1

γT
− 1

γY

)
log(z)(1 + o(1)).

Thus, in this case:
FT (z)

FY (z)
= O

(
z−ε
)

with ε =
1

2

(
1

γT
− 1

γY

)
> 0.

If γT = 0 then s/ηT (s) tends to infinity, so that

− 1

log z

∫ z

z0

(
s

ηT (s)
− s

ηY (s)

)
ds

s
→ −∞

and therefore
FT (z)

FY (z)
= O

(
z−ε
)

for all ε > 0.

This concludes the proof in the case γY > 0. When γY < 0 and thus τ < ∞, the idea is consider the

survival functions T 7→ FT (τ − T−1) and T 7→ FY (τ − T−1), which are regularly varying with indices

1/γY and 1/γT , and to apply the result we have just shown to get

∃ε > 0,
FT (τ − T−1)

FY (τ − T−1)
= O(T−ε) as T →∞.

We can then substitute z = τ − T−1 to obtain the desired result.

The next result is an equivalent of ϕ(u, v) as u, v → 0.

Lemma 5. Assume that A is continuously differentiable on [0, 1]. Then, if u, v → 0, we have that:

• ϕ(u, v) = −A′(0)v(1 + o(1)) if v/u→ 0;

• ϕ(u, v) = A′(1)u(1 + o(1)) if v/u→∞;

• ϕ(u, v) = (c+ 1)

[
1−A

(
c

c+ 1

)]
u(1 + o(1)) if v/u→ c ∈ (0,∞).

Proof of Lemma 5. Start by writing

ϕ(u, v) = (1− u)(1− v)
{

[(1− u)(1− v)]A(log(1−v)/ log([1−u][1−v]))−1 − 1
}

=
{

[(1− u)(1− v)]A(log(1−v)/ log([1−u][1−v]))−1 − 1
}

(1 + o(1)).
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Since u, v → 0, we get

A

(
log(1− v)

log([1− u][1− v])

)
= A

(
v(1 + o(1))

u(1 + o(1)) + v(1 + o(1))

)
→


A(0) = 1 if v/u→ 0,

A(1) = 1 if v/u→∞,

A(c/(c+ 1)) if v/u→ c ∈ (0,∞).

In particular:

A

(
log(1− v)

log([1− u][1− v])

)
− 1 =



v

u
A′(0)(1 + o(1)) if v/u→ 0,

−u
v
A′(1)(1 + o(1)) if v/u→∞,

A(c/(c+ 1))− 1 + o(1) if v/u→ c ∈ (0,∞).

Meanwhile

log([1− u][1− v]) =


−u(1 + o(1)) if v/u→ 0,

−v(1 + o(1)) if v/u→∞,

−(c+ 1)u(1 + o(1)) if v/u→ c ∈ (0,∞)

so that

log([1− u][1− v])

[
A

(
log(1− v)

log([1− u][1− v])

)
− 1

]

=


−vA′(0)(1 + o(1)) if v/u→ 0,

uA′(1)(1 + o(1)) if v/u→∞,

(c+ 1) [1−A(c/(c+ 1))]u(1 + o(1)) if v/u→ c ∈ (0,∞).

Since this quantity converges to 0 and

ϕ(u, v) = (1 + o(1))

{
exp

(
log([1− u][1− v])

[
A

(
log(1− v)

log([1− u][1− v])

)
− 1

])
− 1

}
the conclusion readily follows by using a Taylor expansion of the exponential function in a neighbour-

hood of 0.

Lemma 6, which provides an asymptotic equivalent of FZ , is a direct corollary of Lemma 5. Note that

it gives indeed a true asymptotic equivalent of FZ , since A′(0) < 0, A′(1) > 0 and A(t) < 1 for any

t ∈ (0, 1), see Lemma 1(i) and (ii).

Lemma 6. Assume that condition (M) holds and that A is continuously differentiable on [0, 1]. Then,

as z ↑ τ , we have that:

(i) FZ(z) = −A′(0)FT (z)(1 + o(1)) if FT (z)/FY (z)→ 0 as z ↑ τ ;
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(ii) FZ(z) = A′(1)FY (z)(1 + o(1)) if FT (z)/FY (z)→∞ as z ↑ τ ;

(iii) FZ(z) = (c+ 1)

[
1−A

(
c

c+ 1

)]
FY (z)(1 + o(1)) if FT (z)/FY (z)→ c ∈ (0,∞).

Proof of Lemma 6. Just use Proposition 1 together with Lemma 5.

Lemma 7 below is the key to the proof of Proposition 3.

Lemma 7. Assume that condition (M) holds, that A is twice continuously differentiable on [0, 1], and

that Y and T have continuous distributions with respective probability density functions fY and fT .

Then we have that:

P(Y ≤ T,Z > z) =

∫ τ

z

[1− ∂1C(FY (t), FT (t))]fY (t)dt.

Proof of Lemma 7. The conditions ensure that (y, t) 7→ C(FY (y), FT (t)) is twice continuously

differentiable. Denoting by ∂21,2 the mixed partial derivative, it follows that the pair (Y, T ) has the

probability density function

(y, t) 7→ ∂21,2[C(FY (y), FT (t))] = fY (y)fT (t)∂21,2C(FY (y), FT (t)).

Write then

P(Y ≤ T,Z > z) = P(Y ≤ T, Y > z)

=

∫∫
I{y≤t,y>z}fY (y)fT (t)∂21,2C(FY (y), FT (t)) dy dt

=

∫ t=τ

t=z

(∫ y=t

y=z

∂21,2C(FY (y), FT (t))fY (y)dy

)
fT (t)dt

=

∫ τ

z

[∂2C(FY (t), FT (t))− ∂2C(FY (z), FT (t))] fT (t)dt.

Note now that since C is a copula, we have C(u, v) ≤ min(u, v). Because the functions x 7→ A(x) −

xA′(x) and x 7→ A(x) + (1− x)A′(x) are bounded on [0, 1] (see Lemma 1), it follows that the partial

derivatives of C are bounded. We may then break the above integral into two well-defined parts, to

get

P(Y ≤ T,Z > z) =

∫ τ

z

∂2C(FY (t), FT (t))fT (t)dt−
∫ τ

z

∂2C(FY (z), FT (t))fT (t)dt.

The second integral on the right-hand side is∫ τ

z

∂2C(FY (z), FT (t))fT (t)dt = C(FY (z), 1)− C(FY (z), FT (z)) = FY (z)− C(FY (z), FT (z)) (1)

since C is a copula. Moreover,

∂2C(FY (t), FT (t))fT (t) =
d

dt
[C(FY (t), FT (t))]− ∂1C(FY (t), FT (t))fY (t)
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so that∫ τ

z

∂2C(FY (t), FT (t))fT (t)dt = C(1, 1)− C(FY (z), FT (z))−
∫ τ

z

∂1C(FY (t), FT (t))fY (t)dt

= 1− C(FY (z), FT (z))−
∫ τ

z

∂1C(FY (t), FT (t))fY (t)dt. (2)

Combine (1) and (2) to get

P(Y ≤ T,Z > z) = FY (z)−
∫ τ

z

∂1C(FY (t), FT (t))fY (t)dt =

∫ τ

z

[1− ∂1C(FY (t), FT (t))]fY (t)dt

which is the desired result.

The next lemma contains an equivalent of the quantity 1− ∂1C(1− u, 1− v) as u, v → 0.

Lemma 8. Assume that A is twice continuously differentiable on [0, 1]. Then, if u, v → 0, we have

that:

(i) 1− ∂1C(1− u, 1− v) = (1 +A′(0))v +
1

2
A′′(0)(v/u)2 + o(v) + o((v/u)2) if v/u→ 0;

(ii) 1− ∂1C(1− u, 1− v)→ A′(1) if v/u→∞;

(iii) 1− ∂1C(1− u, 1− v)→ 1−
[
A

(
c

c+ 1

)
− c

c+ 1
A′
(

c

c+ 1

)]
if v/u→ c ∈ (0,∞).

Proof of Lemma 8. Recall the identity

∂1C(1− u, 1− v) =
C(1− u, 1− v)

1− u
B

(
log(1− v)

log(1− u) + log(1− v)

)
where B(x) = A(x)− xA′(x). We first prove (i). It is straightforward to show that

B(x) = 1− x2

2
A′′(0) + o(x2).

Since in this case we assume v/u→ 0, we get

log(1− v)

log(1− u) + log(1− v)
=
v

u
(1 + o(1)).

Therefore

∂1C(1− u, 1− v) =
C(1− u, 1− v)

1− u

[
1− A′′(0)

2

( v
u

)2
+ o

([ v
u

]2)]
. (3)

It remains to compute an asymptotic expansion of C(1 − u, 1 − v)/(1 − u). To this end, we rewrite

this term as

C(1− u, 1− v)

1− u
= exp

{
A

(
log(1− v)

log(1− u) + log(1− v)

)
[log(1− u) + log(1− v)]− log(1− u)

}
.
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Note now that

log(1− v)

log(1− u) + log(1− v)
=

log(1− v)

log(1− u)

(
1 +

log(1− v)

log(1− u)

)−1
=

log(1− v)

log(1− u)

(
1− log(1− v)

log(1− u)
+ o

( v
u

))
.

Plugging this into the Taylor expansion

A(x) = A(0) + xA′(0) +
x2

2
A′′(0) + o(x2) = 1 + xA′(0) +

x2

2
A′′(0) + o(x2)

and rearranging yields

A

(
log(1− v)

log(1− u) + log(1− v)

)
= 1 +

log(1− v)

log(1− u)
A′(0) +

(
log(1− v)

log(1− u)

)2(
A′′(0)

2
−A′(0)

)
+ o

([ v
u

]2)
.

Now

log(1− u) + log(1− v) = log(1− u)

[
1 +

log(1− v)

log(1− u)

]
so that

A

(
log(1− v)

log(1− u) + log(1− v)

)
[log(1− u) + log(1− v)]

= log(1− u)

(
1 +

log(1− v)

log(1− u)
(1 +A′(0)) +

(
log(1− v)

log(1− u)

)2
A′′(0)

2
+ o

([ v
u

]2))

and therefore

A

(
log(1− v)

log(1− u) + log(1− v)

)
[log(1− u) + log(1− v)]− log(1− u)

= (1 +A′(0)) log(1− v) +
[log(1− v)]2

log(1− u)

A′′(0)

2
+ o

(
v2

u

)
.

We combine this with a Taylor expansion of the exponential function in a neighbourhood of 0 to get

C(1− u, 1− v)

1− u
= 1 + (1 +A′(0)) log(1− v) +

[log(1− v)]2

log(1− u)

A′′(0)

2
+ o

(
v2

u

)
= 1− (1 +A′(0))v + o (v) . (4)

Combining (3) and (4) and rearranging terms concludes the proof of (i).

We now turn to the proof of (ii) and (iii): as u and v → 0, we have

∂1C(1− u, 1− v) = B

(
log(1− v)

log(1− u) + log(1− v)

)
(1 + o(1)).

Besides,

B

(
log(1− v)

log(1− u) + log(1− v)

)
= B

(
v(1 + o(1))

u(1 + o(1)) + v(1 + o(1))

)
.
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The argument of B here converges to 1 if v/u→∞, and to c/(c+1) if v/u→ c ∈ (0,∞). By continuity

of B, it follows that 1− ∂1C(1− u, 1− v)→ 1−B(1) = A′(1) if v/u→∞, and

1− ∂1C(1− u, 1− v)→ 1−B
(

c

c+ 1

)
= 1−

[
A

(
c

c+ 1

)
− c

c+ 1
A′
(

c

c+ 1

)]
if v/u→ c ∈ (0,∞). This completes the proof.

The final lemma, similar to the previous one, contains an equivalent of the quantity 1−∂2C(1−u, 1−v)

as u, v → 0.

Lemma 9. Assume that A is twice continuously differentiable on [0, 1]. Then, if u, v → 0, we have

that:

(i) 1− ∂2C(1− u, 1− v)→ −A′(0) if v/u→ 0;

(ii) 1− ∂2C(1− u, 1− v) = (1−A′(1))u+
1

2
A′′(1)(u/v)2 + o(u) + o((u/v)2) if v/u→∞;

(iii) 1− ∂2C(1− u, 1− v)→ 1−
[
A

(
c

c+ 1

)
+

1

c+ 1
A′
(

c

c+ 1

)]
if v/u→ c ∈ (0,∞).

Proof of Lemma 9. Note that C(u, v) = C̃(v, u) where C̃ is the copula whose Pickands dependence

function is Ã(t) = A(1−t). In particular, ∂2C(u, v) = ∂1C̃(v, u). The result is then a direct consequence

of Lemma 8.
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