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Abstract

The aim of this paper is to introduce and study
a two-step debiasing method for variational reg-
ularization. After solving the standard varia-
tional problem, the key idea is to add a consec-
utive debiasing step minimizing the data fidelity
on an appropriate space, the so-called model
manifold. The latter is defined by Bregman dis-
tances or infimal convolutions thereof, using the
subgradient appearing in the optimality condi-
tion of the variational method. For particular
settings, such as anisotropic `1- and TV-type
regularization, previously used debiasing tech-
niques are shown to be special cases. The pro-
posed approach is however easily applicable to
a wider range of regularizations. The two-step
debiasing is shown to be well-defined and to op-
timally reduce bias in a certain setting.

Besides visual and PSNR-based evaluations,
different notions of bias and variance decomposi-
tions are investigated in numerical studies. The
improvements offered by the proposed scheme
are demonstrated and its performance is shown
to be comparable to optimal results obtained
with Bregman iterations.

1 Introduction

Variational regularization methods with non-
quadratic functionals such as total variation or
`1-norms have evolved to a standard tool in in-
verse problems [8, 32], image processing [11],
compressed sensing [10], and recently related
fields such as learning theory [13]. The popu-
larity of such approaches stems from superior
structural properties compared to other regu-
larization approaches. `1-regularization for ex-
ample leads to sparse solutions with very accu-
rate or even exact reconstruction of the support
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of the true solution. On the other hand it is
known that such methods suffer from a certain
bias due to the necessary increased weighting
of the regularization term with increasing noise.
Two well-known examples are the loss of con-
trast in total variation regularization [8, 25] or
shrinked small peak values in `1-regularization.
Accordingly, quantitative values of the solutions
have to be taken with care.

Several approaches to reduce or eliminate the
bias of regularization methods have been con-
sidered in literature: For `1-regularization and
similar sparsity-enforcing techniques an ad-hoc
approach is to determine the support of the
solution by the standard variational methods
in a first step, then use a second debiasing
step that minimizes the residual (or a general
data fidelity) restricted to that support, also
known as refitting [19, 21, 18]. A slightly more
advanced approach consists in adding a sign-
constraint derived from the solution of the vari-
ational regularization method in addition to the
support condition. This means effectively that
the solution of the debiasing step shares an
`1-subgradient with the solution of the varia-
tional regularization method. A different and
more general approach is to iteratively reduce
the bias via Bregman iterations [25] or simi-
lar approaches [20, 33]. Recent results for the
inverse scale space method in the case of `1-
regularization (respectively certain polyhedral
regularization functionals [6, 22, 4]) show that
the inverse scale space performs some kind of de-
biasing. Even more, under certain conditions,
the variational regularization method and the
inverse scale space method provide the same
subgradient at corresponding settings of the reg-
ularization parameters [5]. Together with a
characterization of the solution of the inverse
scale space method as a minimizer of the resid-
ual on the set of elements with the same sub-
gradient, this implies a surprising equivalence
to the approach of performing a debiasing step
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with sign-constraints. Recently, bias and de-
biasing in image processing problems were dis-
cussed in a more systematic way by Deledalle et
al. [14, 15]. They distinguish two different types
of bias, namely method bias and model bias.
In particular they suggest a debiasing scheme
to reduce the former, which can be applied to
some polyhedral one-homogeneous regulariza-
tions. The key idea of their approach is the
definition of suitable spaces, called model sub-
spaces, on which the method bias is minimized.
The remaining model bias is considered as the
unavoidable part of the bias which is linked to
the choice of regularization and hence the solu-
tion space of the variational method. The most
popular example is the staircasing effect that oc-
curs for total variation regularization due to the
assumption of a piecewise constant solution. In
the setting of `1-regularization a natural model
subspace is the set of signals with a given sup-
port, which yields consistency with the ad-hoc
debiasing approach mentioned above.

Based on this observation, the main motiva-
tion of this paper is to further develop the ap-
proach in the setting of variational regulariza-
tion and unify it with the above-mentioned ideas
of debiasing for `1-regularization, Bregman iter-
ations, and inverse scale space methods.

Let us fix the basic notations and give a more
detailed discussion of the main idea. Given a
bounded linear operator A : X → Y between Ba-
nach spaces, a convex regularization functional
J : X → R ∪ {∞} and a differentiable data fi-
delity H : Y × Y → R, we consider the solution
of the variational method

uα ∈ arg min
u∈X

H(Au, f) + αJ(u) (1.1)

as a first step. Here α > 0 is a suitably chosen
regularization parameter. This problem has a
systematic bias, as we further elaborate on be-
low. The optimality condition is given by

A∗∂H(Auα, f) + αpα = 0, pα ∈ ∂J(uα). (1.2)

Now we proceed to a second step, where we only
keep the subgradient pα and minimize

ûα ∈ arg min
u∈X

H(Au, f) s.t. pα ∈ ∂J(u). (1.3)

Obviously, this problem is only of interest if
there is no one-to-one relation between subgra-
dients and primal values u, otherwise we always
obtain ûα = uα. The most interesting case with

respect to applications is the one of J being ab-
solutely one-homogeneous, i.e. J(λu) = |λ|J(u)
for all λ ∈ R, where the subdifferential can be
multivalued at least at u = 0. The debiasing
step can be reformulated in an equivalent way
as

min
u∈X

H(Au, f) s.t. Dpα
J (u, uα) = 0, (1.4)

with the (generalized) Bregman distance given
by

Dp
J(u, v) = J(u)−J(v)−〈p, u−v〉, p ∈ ∂J(v).

We remark that for absolutely one-homogeneous
J this simplifies to

Dp
J(u, v) = J(u)− 〈p, u〉, p ∈ ∂J(v).

The reformulation in terms of a Bregman dis-
tance indicates a first connection to Bregman
iterations, which we make more precise in the
sequel of the paper.

Summing up, we examine the following two-
step method:

1) Compute the (biased) solution uα of (1.1)
with optimality condition (1.2),

2) Compute the (debiased) solution ûα as the
minimizer of (1.3) or equivalently (1.4).

In order to relate further to the previous ap-
proaches of debiasing `1-minimizers given only
the support and not the sign, as well as the ap-
proach with linear model subspaces, we consider
another debiasing approach being blind against
the sign. The natural generalization in the case
of an absolutely one-homogeneous functional J
is to replace the second step by

min
u∈X

H(Au, f) s.t. ICBpαJ (u, uα) = 0,

where

ICBpαJ (u, uα) :=
[
Dpα
J (·, uα)2D-pα

J (·,−uα)
]
(u)

denotes the infimal convolution between
the Bregman distances Dpα

J (·, uα) and

D−pαJ (·,−uα), evaluated at u ∈ X . The
infimal convolution of two functionals F and G
on a Banach space X is defined as

(F2G)(u) = inf
φ,ψ∈X ,
φ+ψ=u

F (φ) +G(ψ)

= inf
z∈X

F (u− z) +G(z).
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For the sake of simplicity we carry out all anal-
ysis and numerical experiments in this paper for
a least-squares data fidelity (related to i.i.d. ad-
ditive Gaussian noise)

H(Au, f) =
1

2
‖Au− f‖2Y

for some Hilbert space Y, but the basic idea does
not seem to change for other data fidelities and
noise models.

We show that the spaces characterized by the
constraints

Dpα
J (u, uα) = 0 and ICBpαJ (u, uα) = 0

constitute a suitable extension of the model sub-
spaces introduced in [14] to general variational
regularization. In particular, we use those sub-
spaces to provide a theoretical basis to define
the bias of variational methods and investigate
the above approach as a method to reduce it.
Moreover, we discuss its relation to the statisti-
cal intuition of bias. At this point it is important
to notice that choosing a smaller regularization
parameter will also decrease bias, but on the
other hand strongly increase variance. The best
we can thus achieve is to reduce the bias at fixed
α by the two-step scheme while introducing only
a small amount of variance.

The remainder of the paper is organized as fol-
lows: In Section 2 we motivate our approach by
considering bias related to the well-known ROF-
model [29] and we review a recent approach on
debiasing [14]. In the next section we introduce
our debiasing technique supplemented by some
first results. Starting with a discussion of the
classical definition of bias in statistics, we con-
sider a deterministic characterization of bias in
Section 4. We reintroduce the notion of model
and method bias as well as model subspaces as
proposed in [14] and extend it to the infinite-
dimensional variational setting. We furthermore
draw an experimental comparison between the
bias we consider in this paper and the statis-
tical notion of bias. This provides nice illus-
trations of different types of bias. Finally, we
comment on the relation of the proposed debias-
ing to Bregman iterations [25] and inverse scale
space methods [30, 20]. We complete the paper
with a description of the numerical implemen-
tation via a first-order primal-dual method and
show numerical results for signal deconvolution
and image denoising.

2 Motivation

Let us start with an intuitive approach to bias
and debiasing in order to further motivate our
method. To do so, we recall a standard exam-
ple for denoising, namely the well-known ROF-
model [29] and rewrite a recent debiasing ap-
proach [14] in the setting of our method.

2.1 Bias of total variation regular-
ization

As already mentioned in the introduction, varia-
tional regularization methods suffer from a cer-
tain bias. This systematic error becomes ap-
parent when the regularization parameter is in-
creased. Indeed this causes a shift of the overall
energy towards the regularizer, and hence a de-
viation of the reconstruction from the data in
terms of quantitative values. Intuitively, this
can be observed from the classical ROF-model
[29], i.e.

uα ∈ arg min
u∈Rn

1

2
‖u− f‖22 + α‖∇u‖1. (2.1)

It yields a piecewise constant signal uα recon-
structed from an observation f ∈ Rn corrupted
by Gaussian noise (see Figure 1(a)). Figure 1(b)
shows the solution of (2.1) together with the
true, noiseless signal that we aimed to obtain.
Even though the structure of the true signal is
recovered, the quantitative values of the recon-
struction do not match the true signal. Instead,
jumps in the signal have a smaller height, which
is often referred to as a loss of contrast. With-
out any further definition, one could intuitively
consider this effect as the bias (or one part of
the bias) of the ROF model. Hence, the goal of
a bias reduction method would be to restore the
proper signal height while keeping the (regular-
ized) structure.

It has been shown in [25, 2] that this can be
achieved by the use of Bregman iterations, i.e.
by iteratively calculating

uk+1
α ∈ arg min

u∈Rn
1

2
‖u− f‖22 + αD

pkα
J (u, ukα),

(2.2)

where in our case J(u) = ‖∇u‖1, and pkα ∈
∂J(ukα) is a subgradient of the last iterate ukα.
Since for total variation regularization the sub-
gradient pkα essentially encodes the edge infor-
mation of the last iterate, its iterative inclusion

3



Original
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Bregman

Original

TV

(a) Original and noisy signal (b) Denoising with TV regularization
and Bregman iterations

Figure 1: Illustration of the bias of the ROF model on a 1D signal. (a) Original signal, and
noisy signal corrupted by additive Gaussian noise. (b) Restoration of the noisy signal with TV
regularization and Bregman iterations. The TV reconstruction recovers the structure of the signal
but suffers from a loss of contrast, which is however well recovered with Bregman iterations.

allows to keep edges while restoring the right
height of jumps between edges. We further elab-
orate on that in Section 4. And indeed, the re-
construction via (2.2) in Figure 1(b) shows an
almost perfect recovery of the true signal even in
terms of quantitative values. This implies that
Bregman iterations are able to reduce or even
eliminate our heuristically defined bias.

However, a theoretical basis and justification
is still missing, i.e. a proper definition of the
bias of variational methods, a proof that Breg-
man iterations indeed reduce the bias in that
sense, and in particular a link to the statistical
definition and understanding of bias. With this
paper we aim to define a proper basis for this
link, and in particular further establish the con-
nection between bias reduction techniques and
Bregman distances.

2.2 Recent debiasing and Breg-
man distances

In order to further motivate the use of Bregman
distances for bias reduction let us recall and re-
view a very recent approach on debiasing and
work out its relation to Bregman distances. In
[14], Deledalle et al. introduce a debiasing algo-
rithm for anisotropic TV-type regularized prob-
lems

uα ∈ arg min
u∈Rn

1

2
‖Au− f‖22 + α‖Γu‖1,

with a linear operator A ∈ Rn×d, a discrete
gradient operator Γ ∈ Rn×m and noisy data

f ∈ Rd. In [14] the authors argued that the loss
of contrast characteristic for this kind of regu-
larization is indeed bias in their sense. In order
to correct for that error, the proposed debiasing
method in [14] consists in looking for a debiased
solution ûα such that Γûα and Γuα share the
same support, but ûα features the right inten-
sities. Mathematically, the solution ûα of their
debiasing problem is given by

ûα ∈ arg min
u∈Rn

sup
z∈FI

1

2
‖Au− f‖22 + 〈Γu, z〉,

(2.3)

where FI = {z ∈ Rm | zI = 0}, and I is the
set of indices corresponding to nonzero entries of
Γuα. We can explicitly compute the supremum
(the convex conjugate of the indicator function
of the set FI), which is

sup
z∈FI
〈Γu, z〉 =

{
∞, (Γu)i 6= 0 for some i /∈ I,
0, else.

Hence, ûα can only be a minimizer of (2.3) if
supp(Γûα) ⊂ supp(Γuα), thus

ûα ∈ arg min
u∈Rn

1

2
‖Au− f‖22

s.t. supp(Γûα) ⊂ supp(Γuα). (2.4)

We can also enforce this support condition us-
ing the infimal convolution of two `1-Bregman
distances. Defining J(u) = ‖Γu‖1, the subdif-
ferential of J at uα is given by

∂J(uα) = {ΓT qα ∈ Rn | ‖qα‖∞ ≤ 1,

(qα)i = sign((Γuα)i) for (Γuα)i 6= 0}.

4



Original

TV

Debiased

Figure 2: TV denoising of a one-dimensional
noisy signal and debiasing using the proposed
method.

In particular |(qα)i| = 1 on the support of
Γuα. Let qα be such a subgradient and con-
sider the `1-Bregman distances Dqα

‖·‖1(·,Γuα)

and D−qα‖·‖1 (·,−Γuα). According to [23], their in-

fimal convolution evaluated at Γu is given by:

ICBqα‖·‖1(Γu,Γuα)

= [Dqα
‖·‖1(·,Γuα)2D−qα‖·‖1 (·,−Γuα)](Γu)

=

m∑
i=1

(1− |(qα)i|)|(Γu)i|,

We observe that this sum can only be zero, if
for all i either |(qα)i| = 1 or (Γu)i = 0. Hence,
given pα = ΓT qα ∈ ∂J(uα) with |(qα)i| < 1 for
i /∈ I, i.e. |(qα)i| = 1 ⇔ (Γuα)i 6= 0, we can
rewrite the above debiasing method (2.3) as

min
u∈Rn

1

2
‖Au− f‖22 s.t. ICBqα‖·‖1(Γu,Γuα) = 0.

Note that the zero infimal convolution exactly
enforces the support condition (2.4) only if the
condition |(qα)i| = 1 ⇔ (Γuα)i 6= 0 holds true.
Intuitively, since the subdifferential is multival-
ued at (Γuα)i = 0, this leads to the question
of how to choose qα properly. However, our
method does not depend on the choice of a par-
ticular qα, but instead use a unique subgradient
pα coming from the optimality condition of the
problem. We further comment on this in Section
4.

3 Debiasing

Inspired by the above observations, let us define
the following two-step-method for variational
regularization on Banach spaces. At first we

compute a solution uα of the standard varia-
tional method

1) uα ∈ arg min
u∈X

1

2
‖Au− f‖2Y + αJ(u),

(3.1)
where A : X → Y is a linear and bounded opera-
tor mapping from a Banach space X to a Hilbert
space Y, J : X → R∪{∞} denotes a convex and
one-homogeneous regularization functional and
f ∈ Y.

The first-order optimality condition of (3.1)
reads:

pα =
1

α
A∗(f −Auα), pα ∈ ∂J(uα), (3.2)

and it is easy to show that this pα is unique.
We use this subgradient to carry over informa-
tion about uα to a second step. In the spirit of
the previous paragraph the idea is to perform
a constrained minimization of the data fidelity
term only:

2 a) ûα ∈ arg min
u∈X

1

2
‖Au− f‖2Y

s.t. ICBpαJ (u, uα) = 0.
(3.3)

If we reconsider the ad-hoc idea of `1- or TV-
type debiasing from the introduction, it can be
beneficial to add a sign or direction constraint
to the minimization, rather than a support con-
dition only. This can be achieved by the use of a
single Bregman distance. Hence it is self-evident
to define the following alternative second step:

2 b) ûα ∈ arg min
u∈X

1

2
‖Au− f‖2Y

s.t. Dpα
J (u, uα) = 0.

(3.4)

We would like to point out that until now
we only argued heuristically that the above
method actually performs some kind of debi-
asing for specific problems. But since we are
able to recover the debiasing method of [14] for
J(u) = ‖Γu‖1 as a special case, at least for this
specific choice of regularization (and a finite-
dimensional setting) our method is provably a
debiasing in their sense.

However, our method is much more general.
Since in contrast to [14] it does not depend on a
specific representation of uα, it can theoretically
be carried out for any suitable regularizer J . In
particular, the method does not even depend on
the specific choice of the data term. In order
to obtain a unique subgradient pα from the op-
timality condition it is desirable e.g. to have a
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Color image1 Original image Noisy image

TV denoised Bregman debiased IC debiased

PSNR = 19.63 PSNR = 22.75 PSNR = 22.70

Figure 3: Denoising of a cartoon image. First row: original image, noisy image corrupted by
Gaussian noise. Second row: TV reconstruction and debiasing using the Bregman distance and
the infimal convolution, respectively. The TV reconstruction recovers well the structures of the
images but suffers from a loss of contrast, while the debiased solutions allow for a more accurate
dynamic.
1 The color image is provided in order to point out that it is indeed a Giraffe and not a cow.

differentiable data fidelity, but if we drop that
condition, the data term is theoretically arbi-
trary. Since this generalization requires a little
more work, we focus on a squared Hilbert space
norm in this paper.

Before we actually lay a theoretical foun-
dation for our framework and prove that our
method indeed is a debiasing method, we show
some motivating numerical results and prove the
well-definedness of the method.

3.1 A first illustration

To give a first glimpse of the proposed method,
we revisit the ROF reconstruction model (2.1)
from Section 2 and show some numerical results
in one and two dimensions.

Taking the subgradient pα of the TV recon-
struction uα of the one-dimensional signal and
performing our debiasing method, we obtain the
results in Figure 2. The second step restores the

right height of the jumps and yields the same re-
sult as the Bregman iterations we performed in
Section 2.

As a second example we perform denoising on
a cartoon image corrupted by Gaussian noise.
The first row of Figure 3 shows the original im-
age in the middle and its noisy version on the
right. The left image in the second row is the
denoising result obtained with the ROF-model
(2.1). We observe that noise has been reduced
substantially, but some part of the contrast is
lost. The second step of our method restores the
contrast while keeping the structure of the first
solution, yielding the two results on the right-
hand side of the second row.

3.2 Well-definedness of the
method

The aim of this section is to show that the
method defined above is well-defined, i.e. that

6



there always exists at least one solution to the
problem. By exploiting that pα lies in the range
of A∗ we can prove coercivity and subsequently
existence for problem (3.4). In fact, we can give
a more general result.

Theorem 3.1. Let X be the dual space of some
Banach space Z. Let p ∈ ∂J(0) ⊂ Z ⊂ X ∗ be
such that there exists w with

J∗
(
p−A∗w

τ

)
= 0

for some τ < 1. Moreover, let the mapping u 7→
‖Au‖+ J(u) be coercive on X , and let J be the
convex conjugate of a proper functional on the
predual space Z.
Then there exists a minimizer of

min
u∈X
‖Au− f‖Y s.t. J(u)− 〈p, u〉 = 0.

Proof. Let A = {u ∈ X | J(u) − 〈p, u〉 = 0} be
the admissible set. Since 0 ∈ A we can look for
a minimizer in the sublevel set

S =
{
u ∈ A | ‖Au− f‖Y ≤ ‖f‖Y

}
.

By the triangle inequality we have ‖Au‖Y ≤
2‖f‖Y on S, hence u 7→ Au is bounded. From
the definition of the convex conjugate we know
that for all u ∈ X , y ∈ Y we have

〈y, u〉 ≤ J∗(y) + J(u).

Hence for u ∈ S we find

J(u) = 〈p, u〉
= 〈p−A∗w, u〉+ 〈w,Au〉

≤ 〈p−A
∗w

τ
, τu〉+ ‖w‖Y‖Au‖Y

≤ J∗
(
p−A∗w

τ

)
+ J(τu) + ‖w‖Y‖Au‖Y

which implies by the one-homogeneity of J that

J(u) ≤ ‖w‖Y ‖Au‖Y
1− τ

.

Thus we obtain the boundedness of u 7→
‖Au‖Y + J(u) on S. With the coercivity we
obtain that S is bounded, hence the Banach-
Alaoglu theorem implies that S is precompact
in the weak-∗ topology.

It remains to show that the data fidelity and
the constraint are weak-∗ lower semicontinuous
(l.s.c.). Since norms are weak-∗ l.s.c. and A

is linear and bounded we immediately deduce it
for the objective functional. J is weak-∗ l.s.c. as
a convex conjugate of a proper functional on Z,
and since p ∈ Z we obtain weak-∗ lower semi-
continuity of the constraint.

Those arguments together directly yield the
existence of a minimizer. �

Note that the assumptions always hold for p =
pα obtained from (3.2) with w = 1

α (f−Auα) and
τ arbitrarily small, hence we conclude the exis-
tence of a minimizer ûα of (3.4). The assump-
tion p ∈ Z is a typical regularity assumption on
the operator A, namely the range R(A∗) ⊂ Z
[8].

The situation for (3.3) is less clear, since there
is no similar way to obtain coercivity. As we
shall see in Section 4, (3.3) consists in mini-
mizing a quadratic functional over a linear sub-
space, which immediately implies the existence
of ûα if X has finite dimensions. In an infinite-
dimensional setting we cannot provide an exis-
tence result in general, since there is neither a
particular reason for the subspace to be closed
nor for the quadratic functional to be coercive
(in ill-posed problems we typically have an op-
erator A with nonclosed range).

3.3 Optimal debiasing on singular
vectors

In the following we work out the behavior of
the debiasing method on singular vectors [2],
which represent the extension of the concept of
classical singular value decomposition to nonlin-
ear regularization functionals. According to [2],
uλ ∈ X is a singular vector if for some λ > 0

λA∗Auλ ∈ ∂J(uλ)

holds. Without going too much into detail, sin-
gular vectors can be considered as generalized
“eigenfunctions” of the regularization functional
J . As such, they describe a class of exact solu-
tions to problem (3.1) in the following sense:

Let us consider a multiple cuλ of such a sin-
gular vector for c > λα. According to [2], the
solution uα of the variational problem (3.1) for
data f = cAuλ is given by

uα = (c− αλ)uλ,

and the subgradient from the optimality condi-
tion is

pα = λA∗Auλ ∈ ∂J(uα).

7



Hence uα recovers cuλ up to a (known) scalar
factor αλ and shares a subgradient with uλ.
This means that the variational method leaves
the singular vector basically untouched, which
allows for its exact recovery. Intuitively, the
quantity −λαuλ hence represents the bias of the
variational method in this case, which should be
removed by our debiasing method (3.4). And
indeed we obtain ûα = cuλ as a minimizer of
(3.4), since

‖Aûα − f‖Y = ‖A(ûα − cuλ)‖Y = 0

and since ûα lies in the admissible set due to the
shared subgradient. If A has trivial nullspace,
ûα is even unique. Hence, the debiasing strategy
leads to the exact reconstruction of the solution
and corrects the bias −λαuλ. Note that this is
indeed an important result, since if the debias-
ing method failed for singular vectors it would
be doubtful whether the method is reliable in
general.

Since the infimal convolution of Bregman dis-
tances is nonnegative and less or equal than one
of the Bregman distances, it also vanishes at
ûα = cuλ. In particular

ICBpαJ (cuλ, uα) ≤ Dpα
J (cuλ, uα)

= J(cuλ)− 〈pα, cuλ〉 = 0.

Consequently, ûα is also a solution of (3.3).

4 Bias and Model Manifolds

In the following we provide a more fundamental
discussion of bias and decompositions obtained
by debiasing methods. An obvious point to start
is the definition of bias, which is indeed not al-
ways coherent in the imaging literature with the
one in statistics.

4.1 Definitions of bias

We first recall the classical definition of bias in
statistics. Let f be a realization of a random
variable modeling a random noise perturbation
of clean data f∗ = Au∗, such that E[f ] = f∗. If
we consider a general canonical estimator Û(f),
the standard definition of bias in this setup is
given by

Bstat(Û) = E[u∗ − Û(f)]

= u∗ − E[Û(f)].
(4.1)

Unfortunately, this bias is hard to manipulate
for nonlinear estimators. Hence, we consider a
deterministic definition of bias, which relies on
the clean data f∗:

B∗(Û) = E[u∗ − Û(f∗)] = u∗ − Û(f∗)

= u∗ − Û(E[f ]).
(4.2)

We immediately note the equivalence of the two
definitions in the case of linear estimators, but
our computational experiments do not show a
significant difference between Bstat and B∗ even
for highly nonlinear variational methods. In
general, the purpose of debiasing is to reduce
the quantitative bias Bd, i.e. here the error be-
tween u∗ and Û(f∗) in an appropriate distance
measure d:

Bd(Û(f∗)) = d(Û(f∗), u∗).

Let us consider the specific estimator uα(f∗),
i.e. the solution of problem (3.1) with clean data
f∗. As already argued in Section 2, it suffers
from a certain bias due to the chosen regular-
ization. Following [14], this bias can be decom-
posed into two parts. The first part is related
to the regularization itself, and it occurs if the
assumption made by the regularization does not
match the true object that we seek to recover.
For example, trying to recover a piecewise lin-
ear object using TV regularization leads to the
staircasing effect due to the assumption of a
piecewise constant solution. This part of the
bias is not avoidable since it is inherent to the
regularization, and it is referred to as model bias.
In particular, we cannot hope to correct it.

However, even if the regularity assumption
fits, the solution still suffers from a systematic
error due to the weight on the regularization.
For TV regularization for example, this is the
loss of contrast observed in Section 2. This re-
maining part is referred to as method bias, and
this is the part that we aim to correct. As we
see in the remainder of the section, the estima-
tor uα(f∗) provides the necessary information
to correct this bias. Deledalle et al. [14] de-
fine an appropriate linear model subspace re-
lated to that estimator, on which the debiasing
takes place. It allows to define the model bias
as the difference between u∗ and its projection
onto the model subspace. The remaining part
of the difference between the reconstructed solu-
tion and u∗ is then the method bias. In the fol-
lowing we reintroduce the notion of model sub-
spaces provided by [14] and further generalize it
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to the variational setting in infinite dimensions.
The latter may imply the nonclosedness of the
model subspace and hence nonexistence of the
projection of u∗ onto it. Moreover, it seems ap-
parent that in some nonlinear situations it might
be more suitable to consider a model manifold
instead of a linear space and we hence generalize
the definition in this direction.

Let us first assume that we are already given
an appropriate model manifold.

Definition 4.1. Let Mf∗ be a given model
manifold and d : X×X → [0,∞) a distance mea-
sure. An estimator Û(f∗) of u∗ is a debiasing of
uα(f∗) if Û(f∗) ∈Mf∗ and

d(Û(f∗), u∗) < d(uα(f∗), u∗).

If there exists a minimizer

ûα(f∗) ∈ arg min
v∈Mf∗

d(v, u∗), (4.3)

we call it an optimal debiasing. In any case, we
define the magnitude of the model bias as

Bdmod(Mf∗) = inf
v∈Mf∗

d(v, u∗).

Obviously the model bias only depends on
the model manifold and for a given uα(f∗) it
is hence, as already indicated, a fixed quantity
that we cannot manipulate. Instead we want to
perform the debiasing on the manifold only, so
we consider another bias for elements of Mf∗

only.

Definition 4.2. Given an optimal debiasing
ûα(f∗) onMf∗ , we define the magnitude of the
method bias of v ∈Mf∗ as

Bdmeth(v) = d(v, ûα(f∗)).

The optimal debiasing ûα(f∗) obviously does
not suffer from method bias. Note that if the
minimizer in (4.3) does not exist, which can hap-
pen in particular in ill-posed problems in infinite
dimensions, then the magnitude of the method
bias is not well-defined or has to be set to +∞.

With these definitions at hand, we now aim
to compute an optimal debiasing, i.e. the solu-
tion of (4.3). The remaining questions are how
to choose an appropriate model manifold Mf∗

and the distance measure d. We start with the
latter.

An easy choice for the distance measure d is
a squared Hilbert space norm. In finite dimen-
sions, the optimal debiasing ûα(f∗) is then the

(unique) orthogonal projection of u∗ ontoMf∗ .
We even obtain an orthogonal decomposition of
the bias Bd of any estimator v ∈ Mf∗ into
method and (constant) model bias:

Bd(v) = ‖v − u∗‖2

= ‖ v − ûα(f∗)︸ ︷︷ ︸
method bias

‖2 + ‖ ûα(f∗)− u∗︸ ︷︷ ︸
model bias

‖2.

In infinite dimensions, we obtain the same result
if the minimizer of (4.3) exists, which is e.g. the
case if Mf∗ is convex and closed.

Unfortunately, for general inverse problems
with an operator we do not know u∗ and hence
cannot compute its projection onto Mf∗ . In-
stead we have access to the data f∗ = Au∗ (or
rather to one noisy realization f of f∗ in prac-
tice, which we discuss later). In order to make
the bias (and the associated debiasing) accessi-
ble, we can consider bias through the operator
A. Hence the optimal debiasing comes down to
computing the minimizer of (4.3) over A(Mf∗),
i.e.

ûα(f∗) ∈ arg min
v∈A(Mf∗ )

‖u∗ − v‖2

= arg min
v∈Mf∗

‖Au∗ −Av‖2

= arg min
v∈Mf∗

‖f∗ −Av‖2. (4.4)

Correspondingly, if such a minimizer ûα(f∗) ex-
ists, we measure the magnitude of model and
method bias in the output space, rather than in
image space, i.e.

Bdmod(Mf∗) = inf
v∈Mf∗

‖Av − f∗‖2,

Bdmeth(v) = ‖Aûα(f∗)−Av‖2.

We can hence at least guarantee that the opti-
mal debiasing has no method bias in the output
space. For denoising problems without any op-
erator (A being the identity), or for A invertible
on Mf∗ we obtain the equivalence of both ap-
proaches. In ill-posed inverse problems it is usu-
ally rather problematic to measure errors in the
output space, since noise can also be small in
that norm. Notice however that we do not use
the output space norm on the whole space, but
on the rather small model manifold, on which -
if chosen appropriately - the structural compo-
nents dominate. On the latter the output space
norm is reasonable.

The main advantage of this formulation is
that we are able to compute a minimizer of
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(4.4), since it is in fact a constrained least-
squares problem with the data fidelity of (3.1).
Its solution of course requires a proper choice of
the underlying model subspace Mf∗ , which we
discuss in the following.

4.2 Model manifolds

In general, a model subspace can be character-
ized as the space of possible solutions for the
debiasing step following the first solution uα(f)
of the variational problem (3.1). As such it con-
tains the properties of uα(f) that we want to
carry over to the debiased solution. In the con-
text of sparsity-enforcing regularization this is
basically a support condition on the debiased
solution.

4.2.1 Differential model manifolds

Deledalle et al. [14] use the notion of Fréchet
derivative to define their model subspace in a
finite-dimensional setting. We naturally gener-
alize this concept using the directional deriva-
tive instead, and further extend it to infinite di-
mensions. The following definitions can e.g. be
found in [31].

Definition 4.3. Let V and W be Banach
spaces. A mapping F : V → W is called Fréchet
differentiable at x ∈ V if there exists a linear
and bounded operator DF (x; ·) : V → W such
that

lim
‖g‖V→0

‖F (x+ g)− F (x) + DF (x; g)‖W
‖g‖V

= 0.

Definition 4.4. A mapping F : V → W is
called directionally differentiable in the sense of
Gâteaux at x ∈ V if the limit

dF (x; g) := lim
t→0+

F (x+ tg)− F (x)

t

exits for all g ∈ V.

We can immediately deduce from the defini-
tion that, if the directional derivative dF (x; ·)
exits, it is positively one-homogeneous in g, i.e.

dF (x;λg) = λdF (x; g)

for all λ ≥ 0 and g ∈ V. If it is linear in g, we
call F Gâteaux differentiable at x.

Provided a unique and Fréchet differentiable
map f 7→ uα(f), Deledalle et al. [14] introduce
the tangent affine subspace

MF
f =

{
uα(f) + Duα(f ; g) | g ∈ Y

}
,

where Duα(f ; ·) : Y → X is the Fréchet deriva-
tive of uα(f) at f . To be less restrictive, the
easiest generalization of MF

f is to consider the
directional derivative.

Definition 4.5. If the map f 7→ uα(f) is direc-
tionally differentiable with derivative duα(f ; ·),
we define

MG
f =

{
uα(f) + duα(f ; g) | g ∈ Y

}
.

Note that if the map is Fréchet differentiable,
MG

f is a linear space and coincides with the

model subspace MF
f .

We now derive a few illustrative examples
that we use throughout the remainder of the
paper. In order to keep it as simple as possible,
the easiest transition from the finite-dimensional
vector space setting to infinite dimensions are
the `p-spaces of p-summable sequences:

Definition 4.6. For 1 ≤ p < ∞ we define the
spaces `p of p-summable sequences with values
in Rd by

`p(Rd) =
{

(xi)i∈N, xi ∈ Rd :
∑
i∈N
|xi|p <∞

}
,

where | · | denotes the Euclidean norm on Rd.
For p =∞ we define

`∞(Rd) =
{

(xi)i∈N, xi ∈ Rd : sup
i∈N
|xi| <∞

}
.

It is easy to show that `p(Rd) ⊂ `q(Rd) for
1 ≤ p ≤ q ≤ ∞. In particular for d = 1 we de-
note by `1, `2 and `∞ the spaces of summable,
square-summable and bounded scalar-valued se-
quences.

Example 4.7. Anisotropic shrinkage. Let f ∈
`2 be a square-summable sequence. The solution
of

uα(f) ∈ arg min
u∈`1

1

2
‖u− f‖2`2 + α‖u‖`1 (4.5)

for α > 0 is given by

[uα(f)]i =

{
fi − α sign(fi), |fi| ≥ α,
0, |fi| < α.

Its support is limited to where |fi| is above
the threshold α. The directional derivative
duα(f ; g) of uα(f) into the direction g ∈ `2 is
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given by

[duα(f ; g)]i

=


gi, |fi| > α

0, |fi| < α

gi, |fi| = α, sign(fi) = sign(gi)

0, |fi| = α, sign(fi) 6= sign(gi).

Proof. See Appendix 8.1.

First, if we exclude the case |fi| = α, the
directional derivative is linear, hence it is a
Gâteaux derivative. In fact it is even an infinite-
dimensional Fréchet derivative, and the result-
ing model subspace coincides with the model
subspace defined in finite dimensions in [14]:

MF
f =

{
u ∈ `2 | supp(u) ⊂ supp(uα(f))

}
.

The model subspace carries over information
about the support of the first solution uα(f).
Note thatMF

f contains all elements of `2 which
share the same support as uα(f), but as well
allows for zeros where uα(f) 6= 0. In that
sense uα(f) defines the maximal support of all
u ∈MF

f . If we allow |fi| to be equal to α, we ob-
tain a larger subspace which allows for support
changes in the direction of fi on the threshold:

u ∈MG
f ⇔ ui =


λ ∈ R, |fi| > α,

0, |fi| < α,

λ ≥ 0, fi = α,

λ ≤ 0, fi = −α.

Note that the case |fi| > α reveals a remaining
shortcoming of the definition via the directional
derivative, e.g. if fi > α it is counter-intuitive
to allow negative elements in MG

f , while this
is not the case for fi = α. The main rea-
son appears to be the strong deviation of the
linearization in such directions from the actual
values of [uα(f)]i, which is not controlled by
the definition. However, minimizing the data
term over MG

f for the debiasing in Eq. (4.4)
forces the changes to have the right sign and the
debiased solution ûα(f) corresponds to hard-
thresholding:

[ûα(f)]i =

{
fi, |fi| ≥ α,
0, |fi| < α.

Note that we as well maintain the signal directly
on the threshold.

We obtain analogous results for isotropic
shrinkage, i.e. if f ∈ `2(Rd) for d > 1. Since the
computation of the derivative requires a little
more work, we provide the results in Appendix
8.2. A more interesting example is the model
subspace related to anisotropic `1-regularized
general linear inverse problems.

Example 4.8. Anisotropic `1-regularization.
Let A : `1 → `2 be a linear and bounded op-
erator and f ∈ `2. Consider the solution uα(f)
of the `1-regularized problem

uα(f) ∈ arg min
u∈`1

1

2
‖Au− f‖2`2 + α‖u‖`1 , (4.6)

where we assume that the solution is unique for
data in a neighborhood of f . Computing the
directional derivative directly, is a more tedious
task in this case, but computing the model sub-
space MG

f is actually easier via a slight detour.

Let uα(f) be the solution for data f and uα(f̃)
the solution for data f̃ . The two subgradients
from the optimality conditions

0 = A∗(Auα(f)− f) + αpα, pα ∈ ∂‖uα(f)‖`1

0 = A∗(Auα(f̃)− f̃) + αp̃α, p̃α ∈ ∂‖uα(f̃)‖`1

satisfy a standard error estimate [9]

‖pα − p̃α‖`∞ ≤
C

α
‖f − f̃‖`2 .

In view of the subdifferential of the `1-norm,

∂‖u‖`1 = {p ∈ `∞ : ‖p‖`∞ ≤ 1,

pi = sign(ui) for ui 6= 0},

we have to consider several cases. If [uα(f)]i = 0
and |(pα)i| < 1 we derive from

|(p̃α)i| ≤ |(p̃α)i − (pα)i|+ |(pα)i|

≤ C

α
‖f − f̃‖`2 + |(pα)i|,

that if ‖f − f̃‖`2 is sufficiently small, then
|(p̃α)i| < 1. Hence [uα(f̃)]i = 0, and the deriva-
tive related to the perturbed data f̃ vanishes.
In case [uα(f)]i = 0 and (pα)i = 1, by a similar
argument (p̃α)i 6= −1 and thus [uα(f̃)]i ≥ 0 and
[duα(f ; g)]i ≥ 0. Analogously, [duα(f ; g)]i ≤ 0
if [uα(f)]i = 0 and (pα)i = −1. If [uα(f)]i 6= 0,
the directional derivative is an arbitrary real
number depending on the data perturbation.
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Summing up we now know that every directional
derivative is an element v ∈ `1 fulfilling

vi =


0, |(pα)i| < 1,

λ ≥ 0, (uα)i = 0, (pα)i = 1,

λ ≤ 0, (uα)i = 0, (pα)i = −1.

(4.7)

On the other hand, for v satisfying (4.7), let
ũ = uα(f)+tv for t > 0 sufficiently small. Then
pα is a subgradient of ũ. Indeed, for example
if (uα)i = 0 and (pα)i = 1, then vi ≥ 0, so
ũ ≥ 0, and hence (pα)i fulfills the requirement
of a subgradient of ũ. The other cases follow
analogously. Then from the optimality condi-
tion of uα(f) we get:

A∗(Auα(f)− f)) + αpα = 0

⇔ A∗(A(uα(f) + tv︸ ︷︷ ︸
ũ

)− (f + tAv)) + αpα = 0.

We then deduce that ũ is a minimizer of problem
(4.6) with data f̃ = f+tAv. Hence, there exists
a data perturbation such that v is the directional
derivative of uα(f). Putting these arguments
together we now know that u ∈MG

f if and only
if

ui =


λ ∈ R, [uα(f)]i 6= 0,

0, [uα(f)]i = 0, |(pα)i| < 1,

λ ≥ 0, [uα(f)]i = 0, (pα)i = 1,

λ ≤ 0, [uα(f)]i = 0, (pα)i = −1.

It is not surprising thatMG
f has a similar struc-

ture as the model manifold for the anisotropic
shrinkage in Example 4.7. It allows for arbitrary
changes on the support of uα(f) and permits
only zero values if [uα(f)]i = 0 and |(pα)i| < 1.
If we exclude the case where |(pα)i| = 1 even
though [uα(f)]i vanishes, debiasing on MG

f ef-
fectively means solving a least-squares problem
with a support constraint on the solution. But
we again find an odd case where changes are
allowed outside of the support of the initial so-
lution uα(f). It occurs when |(pα)i| = 1 even
though [uα(f)]i vanishes, which seems to be the
indefinite case. However, it has been argued in
[23] that a subgradient equal to ±1 is a good
indicator of support, hence it is reasonable to
trust the subgradient in that case.

4.2.2 Variational model manifolds

As we have shown so far, the appropriate use
of a derivative can yield suitable spaces for the

debiasing. However, for already supposedly easy
problems such as the latter example the explicit
computation of such spaces or of the derivatives
can be difficult or impossible. And even if it is
possible, there remains the question of how to
effectively solve the debiasing on those spaces,
both theoretically and numerically.

On the other hand, the latter example implies
that a subgradient of the first solution rather
than the solution itself can provide the neces-
sary information for the debiasing. This natu-
rally leads us to the idea of Bregman distances in
order to use the subgradient in a variational de-
biasing method. And indeed we show that the
associated spaces are closely related, and that
they link the concept of model manifolds to the
already presented debiasing method from Sec-
tion 3. Furthermore, this does not only provide
a theoretical framework but also numerical solu-
tions to perform debiasing in practice, even for
more challenging problems.

In the following we introduce related mani-
folds motivated by the variational problem it-
self. The optimality condition of the variational
problem (3.1) defines a unique map f 7→ pα ∈
∂J(uα), which allows us to consider the follow-
ing spaces. We drop the dependence of uα on f
for the sake of clarity.

Definition 4.9. For pα ∈ ∂J(uα) defined by
(3.2) we define

MB
f =

{
u ∈ X | Dpα

J (u, uα) = 0
}
,

MIC
f =

{
u ∈ X | ICBpαJ (u, uα) = 0

}
.

In order to assess the idea of the above spaces,
we first revisit the anisotropic shrinkage prob-
lem of Example 4.7.

Example 4.10. Anisotropic shrinkage. The
optimality condition of problem (4.5) yields the
subgradient

(pα)i =
fi − (uα)i

α
=

{
sign(fi), |fi| ≥ α,
fi
α , |fi| < α,

(4.8)

and for J = ‖ · ‖`1 the Bregman distance takes
the following form:

Dpα
`1 (u, uα) = ‖u‖`1 − 〈pα, u〉

=
∑
i∈N
|ui| − (pα)iui

=
∑
i∈N

(sign(ui)− (pα)i)ui.

12



A zero Bregman distance thus means that ei-
ther ui = 0 or sign(ui) = (pα)i. Having a closer
look at the subgradient (4.8), we observe that if
|fi| < α, then |(pα)i| < 1. Hence the latter con-
dition cannot be fulfilled, so in this case ui has
to be zero. We can thus characterize the model
manifold related to a zero Bregman distance as:

u ∈MB
f ⇔ ui =

{
λ sign(fi), λ ≥ 0, |fi| ≥ α,
0, |fi| < α.

As for MG
f , the model manifold MB

f fixes the
maximum support to where |fi| ≥ α. However,
MB

f only allows for values on the support shar-
ing the same sign as fi (respectively (uα)i).

By adapting the proof of [23], we obtain a sim-
ilar result for the infimal convolution of Breg-
man distances, without the restriction on the
sign:

ICBpα`1 (u, uα) = [Dpα
`1 (·, uα)2D−pα`1 (·,−uα)](u)

=
∑
i∈N

(1− |(pα)i|)|ui|.

For this infimal convolution to be zero we need
either ui = 0 or |(pα)i| = 1. By the structure of
the subgradient pα we thus find

u ∈MIC
f ⇔ ui =

{
λ ∈ R, |fi| ≥ α,
0, |fi| < α.

Hence we observe the following connection be-
tween the subspaces:

MB
f ⊂MG

f ⊂MIC
f .

Note that the spaceMG
f related to the direc-

tional derivative seems to be the odd space of
the three. While allowing for arbitrary sign for
|f | > α, it only allows for changes in the di-
rection of f directly on the threshold. In that
sense, MB

f and MIC
f seem to be more suitable

in order to either include or exclude the sign-
constraint. A second glance at the manifolds
reveals that MIC

f is a linear space, as we fur-
ther elaborate on in the next subsection. In this
case it is actually even the span of MB

f , which
is however not true in general. This can e.g. be
seen from the next example of isotropic TV-type
regularization.

Example 4.11. Isotropic TV-type regulariza-
tion Let A : `2(Rn) → `2(Rd) and Γ: `2(Rn) →
`1(Rm) be linear and bounded operators and
J(u) = ‖Γu‖`1(Rm) for d,m, n ∈ N. We aim

to find the variational model manifolds for the
debiasing of the solution

uα ∈ arg min
u∈`2(Rn)

1

2
‖Au− f‖`2(Rd) + α‖Γu‖`1(Rm).

Given the (unique) subgradient pα ∈ ∂J(uα)
from the optimality condition, the chain rule for
subdifferentials [16, p. 27] implies the existence
of a qα ∈ ∂‖ · ‖`1(Rm)(Γuα) such that pα = Γ∗qα
and

Dpα
J (u, uα) = Dqα

`1(Rm)(Γu,Γuα).

If we denote the angle between (Γu)i and (qα)i
by ϕi, the Bregman distance reads:

Dpα
J (u, uα) = Dqα

`1(Rm)(Γu,Γuα)

=
∑
i∈N
|(Γu)i| − (qα)i · (Γu)i

=
∑
i∈N
|(Γu)i|

(
1− cos(ϕi)|(qα)i|

)
For a zero Bregman distance we can distinguish
two cases: If |(qα)i| < 1, then (Γu)i has to be
zero. If |(qα)i| = 1, then either (Γu)i = 0 or
cos(ϕi) = 1, hence (Γu)i = λ(qα)i for λ ≥ 0.
Hence the model manifold MB

f is given by

u ∈MB
f ⇔

(Γu)i =

{
λ(qα)i, λ ≥ 0, |(qα)i| = 1,

0, |(qα)i| < 1.

In particular, if (Γuα)i 6= 0, then by the struc-
ture of the `1(Rm)-subdifferential we know that

(qα)i = (Γuα)i
|(Γuα)i| and thus (Γu)i = µ(Γuα)i for

some µ ≥ 0. So provided that |(qα)i| < 1 when-
ever (Γuα)i = 0 we find

u ∈MB
f ⇔

(Γu)i =

{
µ(Γuα)i, µ ≥ 0, (Γuα)i 6= 0,

0, (Γuα)i = 0.

Performing the debiasing on the latter space
hence means minimizing the data term with a
support and direction constraint on the gradi-
ent of the solution. This in particular allows to
restore the loss of contrast which we have ob-
served for TV regularization in Section 2. Note
that the condition |(qα)i| < 1⇔ (Γuα)i = 0 ex-
cludes the odd case where the subgradient seems
to contain more information than the first solu-
tion, as already seen in Example 4.8.
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In the above illustration of the model mani-
fold, the debiasing seems to rely on the choice of
qα, which is obviously not unique. However, in
practice we still use the unique subgradient pα
from the optimality condition which avoids the
issue of the choice of a “good” qα.

The computation of MIC
f is a little more

difficult in this case, since we cannot access
an explicit representation of the functional
ICBpαJ (·, uα). However, since

ICBqα`1(Rm)(Γu,Γuα) ≤ ICBpαJ (u, uα)

(see Appendix 8.3, Thm. 8.1), we can in-
stead use the infimal convolution of two `1(Rm)-
Bregman distances to illustrate the model man-
ifold. We have (Appendix 8.3, Thm. 8.2)

ICBqα`1(Rm)(Γu,Γuα) =
∑
i∈N

G((Γu)i, (qα)i)

with G : Rm × Rm → R defined as

G((Γu)i, (qα)i)

=


|(Γu)i|(1− | cos(ϕi)||(qα)i|),

if |(qα)i| < | cos(ϕi)|,
|(Γu)i|| sin(ϕi)|

√
1− |(qα)i|2,

if |(qα)i| ≥ | cos(ϕi)|.

For G to be zero we once again distinguish two
situations. If |(qα)i| < 1, the first case of G
can only vanish if (Γu)i = 0. In the second
case, since 1 > |(qα)i| ≥ | cos(ϕi)|, we infer
ϕi /∈ {0, π}, and hence neither the sinus nor the
square root can vanish. This means once again
that (Γu)i = 0. If |(qα)i| = 1 we can only be in
the second case, which vanishes independently
of (Γu)i. Thus (Γu)i can be arbitrary. Putting
the arguments together, we find

u ∈MIC
f ⇒ ICBqα`1(Rm)(Γu,Γuα) = 0

⇔ (Γu)i =

{
λ ∈ Rm, |(qα)i| = 1,

0, |(qα)i| < 1.

This is indeed not the span of MB
f , but it in-

stead allows for arbitrary elements if |(qα)i| = 1.
From this example, we cannot immediately state
that MB

f ⊂ MIC
f , because so far we only know

that MB
f as well as MIC

f are subsets of the set

{u ∈ X | ICBqα`1(Rm)(Γu,Γuα) = 0}. However, in

the next subsection we see that MB
f ⊂ MIC

f is
indeed true and it is actually a general property
of the variational model manifolds.

Note that we gain the same support condition
on the gradient as for MB

f , but allow for arbi-
trary gradient directions on the support, which
intuitively does not seem restrictive enough.
However, in practice for the debiasing the direc-
tion is not arbitrary, but the data term decides,
so we can expect a similar result for debiasing
in MB

f and MIC
f . Indeed the numerical studies

in Section 6 confirm these expectations.

4.3 Properties of variational
model manifolds

In the following we discuss some properties of
the variational subspaces MB

f and MIC
f . All

results are general and do not depend on the
particular choice of a subgradient, so we drop
the dependence on f in the notation of the sub-
spaces. Let v ∈ X and p ∈ ∂J(v). We start
with a result on the structure of MB:

Theorem 4.12. The set

MB = {u ∈ X | Dp
J(u, v) = 0}

is a nonempty convex cone.

Proof. The map u 7→ Dp
J(u, v) is convex and

nonnegative, hence

{u | Dp
J(u, v) = 0} = {u | Dp

J(u, v) ≤ 0}

is convex as a sublevel set of a convex functional.
Moreover, for each c ≥ 0 we have

Dp
J(cu, v) = c Dp

J(u, v),

i.e. if u is an element of the set, then every
positive multiple cu is an element, too. Hence
it is a convex cone. Since Dp

J(v, v) = 0 it is not
empty. �

The structure of MIC is even simpler; as an-
nounced in a special example above it is indeed
a linear space:

Theorem 4.13. The set

MIC = {u ∈ X |[Dp
J(·, v)2D−pJ (·,−v)](u) = 0}

is a nonempty linear subspace of X .

Proof. By analogous arguments as above we de-
duce the convexity and since

ICBpJ(0, v) = inf
φ+ψ=0

Dp
J(φ, v) +D−pJ (ψ,−v)

≤ Dp
J(v, v) +D−pJ (−v,−v) = 0
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the set is not empty. For arbitrary c ∈ R \ {0}
we have

ICBpJ(cu, v)

= inf
z
{J(cu− z) + J(z)− 〈p, cu− 2z〉}

= |c| inf
w
{J(u− w) + J(w)− 〈p, u− 2w〉},

where we use the one-to-one transform z = cw
for c > 0 and z = c(u − w) for c < 0. This
implies that ICBpJ(cu, v) = 0 if ICBpJ(u, v) = 0.
Hence MIC is a linear subspace. �

As one may expect from the fact that the in-
fimal convolution is a weaker distance than the
original Bregman distance, we obtain an imme-
diate inclusion between the corresponding man-
ifolds:

Lemma 4.14. MB ⊂MIC.

Proof. Let u ∈ MB, i.e. Dp
J(u, v) = 0. For

c ≥ 0 we have

D−pJ (−cu,−v) = c Dp
J(u, v).

Thus we deduce

ICBpJ(u, v) = inf
φ+ψ=u

Dp
J(φ, v) +D−pJ (ψ,−v)

≤ Dp
J(2u, v) +D−pJ (−u,−v)

= 2Dp
J(u, v) +Dp

J(u, v) = 0.

The assertion follows by the nonnegativity of the
maps u 7→ Dp

J(u, v) and u 7→ D−pJ (u,−v). Note
that for p 6= 0 the subset is proper, since e.g.
−v ∈MIC but −v /∈MB. �

We finally elaborate on the importance of ab-
solute one-homogeneity of J for our approach
(respectively also other debiasing approaches as
in [14]), such that the subdifferential can be mul-
tivalued. Otherwise the model manifolds may
just contain a single element and debiasing in
this manifold cannot produce any other solu-
tion. This is e.g. the case for a strictly convex
functional.

Lemma 4.15. Let J be strictly convex. Then
MB and MIC are singletons.

Proof. For strictly convex J the mapping u 7→
Dp
J(u, v) is strictly convex as well, hence

Dp
J(u, v) = 0 if and only if u = v andMB = {v}.

The infimal convolution preserves strict convex-
ity [1, p. 170] and since

ICBpJ(0, v) ≤ Dp
J(v, v) +D−pJ (−v,−v) = 0

we find MIC = {0}. �

However, one can easily exclude this
case since our assumption of J being one-
homogeneous guarantees that it is not strictly
convex.

4.4 Bias-variance estimates

Another justification for the deterministic defi-
nition of bias as well as our choice for the dis-
tance measure in Section 4.1 can be found in
the variational model itself. In order to derive
quantitative bounds for bias and variance in a
variational model, we start with the Tikhonov
regularization (Ridge regression) model related
to the functional J(u) = 1

2‖u‖
2
X . The optimal-

ity condition for this problem is given by

A∗(Auα(f)− f) + αuα(f) = 0.

We easily see that there exists wα = 1
α (f −

Auα(f)) such that uα(f) = A∗wα and

Auα(f)−Au∗ + αwα = f −Au∗.

Now let us assume that a source condition u∗ ∈
Im[A∗] holds, i.e. u∗ = A∗w∗ for some w∗. In
this case we can subtract αw∗ on both sides and
take a squared norm to arrive at

‖Auα(f)−Au∗‖2Y + α2‖wα − w∗‖2Y
+ 2α〈Auα(f)−Au∗, wα − w∗〉

= ‖f −Au∗‖2Y + α2‖w∗‖2Y − 2α〈f −Au∗, w∗〉.

Now taking the expectation on both sides and
using E[f ] = f∗ = Au∗ we find

E[‖Auα(f)−Au∗‖2Y ] + α2E[‖wα − w∗‖2Y ]

+ 2αE[‖uα(f)− u∗‖2X ]

= E[‖f −Au∗‖2Y ] + α2‖w∗‖2Y . (4.9)

The left-hand side is the sum of three error
terms for the solution measured in different
norms: in the output space, the space of the
source element, and the original space used for
regularization. All of them can be decomposed
in a bias and a variance term, e.g.

E[‖uα(f)− u∗‖2X ]

=‖E[uα(f)]− u∗‖2X + E[‖uα(f)− E[uα(f)]‖2X ].

The term E[‖f − Au∗‖2Y ] in (4.9) is exactly the
variance in the data. As a consequence α‖w∗‖Y
measures the bias in this case. Note that in
particular for zero variance we obtain a direct
estimate of the bias via α‖w∗‖Y .
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In the case of the variational model (3.1)
this can be generalized using recent approaches
[4, 7, 9, 27] using the source condition A∗w∗ ∈
∂J(u∗). Now completely analogous computa-
tions as above yield

E[‖Auα(f)−Au∗‖2Y ] + α2E[‖wα − w∗‖2Y ]

+ 2αE[Dsym
J (uα(f), u∗)]

= E[‖f −Au∗‖2Y ] + α2‖w∗‖2Y ,

with the only difference that we now use the
symmetric Bregman distance

Dsym
J (uα(f), u∗) = 〈A∗wα −A∗w∗, uα(f)− u∗〉,

with A∗wα ∈ ∂J(uα(f)). The bias-variance de-
composition on the right-hand side remains the
same. In the noiseless case it is then natural to
consider this (here, deterministic) estimate as a
measure of bias:

‖Auα(f∗)−Au∗‖2Y + α2‖wα − w∗‖2Y
+ 2αDsym

J (uα(f∗), u∗)

= α2‖w∗‖2Y ,

Here, as already discussed in Section 4.1, we
again consider a difference between the exact
solution u∗ and the estimator for E[f ] = f∗, i.e.
the expectation of the noise, rather than the ex-
pectations of the estimators uα(f) over all real-
izations of f (which coincide if J is quadratic).
We observe that there are three natural dis-
tances to quantify the error and thus also the
bias: a quadratic one in the output space and
a predual space (related to w), and the sym-
metric Bregman distance related to the func-
tional J . The first term ‖Auα(f∗) − Au∗‖2Y is
exactly the one we use as a measure of bias.
The second term α2E[‖wα − w∗‖2Y ] is constant
on the model subspace MB

f∗ , since by defini-
tion of the subspace pα = A∗wα is a subgra-
dient of all the elements in MB

f∗ . The third

term Dsym
J (uα(f∗), u∗) is not easy to control;

if the subspace is appropriate, meaning that
pα ∈ ∂J(u∗), then the symmetric Bregman dis-
tance vanishes for every element inMB

f∗ . In any
other case, we do not have access to a subgradi-
ent p∗ ∈ ∂J(u∗), so we cannot control the Breg-
man distance for any element of the subspace.
Hence, with our method we minimize the part
of the bias that we can actually control. In fact,
if the model subspace is right, we even minimize
the whole bias.

4.5 Back to the proposed method

To sum up, the debiasing method we have intro-
duced in Equations (3.3) and (3.4) comes down
to debiasing over MIC

f∗ and MB
f∗ , respectively,

while the results of Section 3 guarantee the ex-
istence of the optimal debiasing ûα(f∗) at least
on MB

f∗ .
However in practice, we do not have access to

the clean data f∗, but often only to one noisy
realization f , which makes the regularization in
(3.1) necessary in the first place. Instead of the
true model subspace Mf∗ , we hence use an ap-
proximationMf computed from the noisy data
f to perform the debiasing of the reconstruction
uα(f) for noisy data. The following experiments
show thatMf is a good approximation ofMf∗

in terms of the resulting bias and bias reduction.
They also relate the different definitions of bias
we have considered. In particular, we distin-
guish between the statistical bias of Equation
(4.1) which is the expectation over several noisy
realizations f and the deterministic bias we de-
fine in Equation (4.2), which instead considers
the outcome given the noiseless data f∗.

Figure 4 displays the TV denoising and de-
biasing (using the Bregman distance subspace)
results obtained with noisy data f (first row)
or clean data f∗ (second row) with the same
regularization parameter α = 0.3. We have per-
formed the experiments for either the cartoon
Giraffe image, or the natural Parrot image2.
First, for the Giraffe image we observe that the
TV denoised solution uα(f∗) for clean data suf-
fers from a heavy loss of contrast, i.e. from
method bias. The debiased solution ûα(f∗)
however is again close to the original data f∗.
This shows that if the noiseless data is well rep-
resented by the choice of regularization (and
hence Mf∗), i.e. if there is no or little model
bias, the debiasing procedure allows to recover
the original signal almost perfectly. On the
other hand, the same experiments on the nat-
ural Parrot image show the problem of model
bias since the choice of regularization does not
entirely match the data f∗. The debiasing al-
lows to recover the lost contrast, but even the
result for noiseless data still suffers from bias,
i.e. the loss of small structures, which is model
bias in that case.

Besides, if α is big enough to effectively re-
move noise during the denoising step, then the
TV solutions uα(f) and uα(f∗) are close to each

2http://r0k.us/graphics/kodak/
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Figure 4: TV denoising and debiasing of the Giraffe and the Parrot images for either noisy data
f or clean data f∗, with the same regularization parameter α = 0.3.

other. This leads to comparable model sub-
spaces and hence debiased solutions, which con-
firms that Mf is indeed a good approximation
to Mf∗ .

Furthermore, we can assess the bias for both
subspaces. On Mf∗ we can only use the de-
terministic definition (4.2) of bias whereas on
Mf we use the statistical definition (4.1). Fig-
ures 5 and 6 show the bias estimation on the
Giraffe cartoon image and the natural Parrot
image. The first row shows the estimations of
the statistical bias Bstat for the two estimators
uα(f) and ûα(f) for noisy data f . In the second
row the bias B∗ for the two estimators uα(f∗)
and ûα(f∗) for clean data f∗ is displayed. This
deterministic bias can also be decomposed into
the associated model and method bias, whereas
such a decomposition has not been defined for
the statistical bias. The overall deterministic
bias B∗(uα(f∗)) = u∗ − uα(f∗) for TV denois-
ing appears to be really close to the statistical
bias on noisy data in the first row. The same
applies for the bias of the debiased solutions in
the second column. This confirms that the esti-
mation of the model subspace that we perform
with noisy data is indeed a good approximation
to the ideal model subspace for clean data, and
that the resulting statistical and deterministic
bias are closely related.

Besides, the difference u∗− ûα(f∗) in the sec-

ond row shows the remaining bias after the debi-
asing step, which is model bias. For the Giraffe
image, this bias is small because the cartoon
image is well approximated in the model sub-
space associated to TV regularization. The Par-
rot image however suffers from a heavier model
bias, for example the loss of the small structures
around the eye. Finally, in the third column, the
difference ûα(f∗)− uα(f∗) shows the error that
has been removed by the debiasing step, which
corresponds to the method bias. It is particu-
larly interesting for the Parrot image. Here one
can see the piecewise constant areas which cor-
respond to the re-establishment of the lost con-
trast within the piecewise constant model pro-
vided by the model subspace.

4.6 Relation to inverse scale space
methods

We finally comment on the relation of the debi-
asing approaches to Bregman iterations respec-
tively inverse scale space methods, which are
rather efficiently reducing bias as demonstrated
in many examples [25, 30, 20]. The Bregman
iteration is iteratively constructed by

uk+1 ∈ arg min
u∈X

1

2
‖Au− f‖2Y + αDpk

J (u, uk),

pk+1 = pk +
1

α
A∗(f −Auk+1) ∈ ∂J(uk+1).
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Figure 5: Bias estimation. First row: Statistical bias computed on five hundred noisy realizations
of the Giraffe cartoon image. Second row: Deterministic bias computed between the clean data
and the recovered solution from clean data f∗. In the first column, TV denoising leads to bias.
In the second column, the debiasing that has been performed has reduced (or suppressed) the
method bias. The remaining (small) model bias is due to the necessary regularization. In the
third column, the difference between ûα(f∗) and uα(f∗) shows the bias that has been reduced by
the debiasing step, hence the method bias.

In the limit α → ∞ we obtain the time contin-
uous inverse scale-space method, which is the
differential inclusion

∂tp(t) = A∗(f −Au(t)), p(t) ∈ ∂J(u(t)),

with initial values u(0) = 0, p(0) = 0. A strong
relation to our debiasing approach comes from
the characterization of the primal solution given
p(t) [6, 22, 24]

u(t) ∈ arg min
u∈X
‖Au− f‖2Y s.t. p(t) ∈ ∂J(u(t)).

This reconstruction step is exactly the same as
the variational debiasing step using the Breg-
man distance, however with a different preced-
ing construction of the subgradient p(t) (notic-
ing that t corresponds to 1

α for the variational
method).

From the last observation it becomes appar-
ent that the Bregman debiasing approach with
(3.2) and (3.4) is exactly equivalent if the vari-
ational method yields the same subgradient as
the inverse scale space method, i.e. pα = p( 1

α ).
This can indeed happen, as the results for sin-
gular vectors demonstrate [2]. Moreover, in
some cases there is full equivalence for arbi-
trary data, e.g. in a finite-dimensional denoising
setting investigated in [5]. It has been shown
that for A being the identity and J(u) = ‖Γu‖1
with ΓΓ∗ being diagonally dominant the identity
pα = p( 1

α ) holds, which implies that the Breg-
man debiasing approach and the inverse scale
space method yield exactly the same solution.
For other cases that do not yield a strict equiva-
lence we include the Bregman iteration for com-
parison in numerical studies discussed below.
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Figure 6: Bias estimation. First row: Statistical bias computed on five hundred noisy realizations
of the Parrot natural image. Second row: Deterministic bias computed between the clean data
and the recovered solution from clean data f∗. On the first column, TV denoising leads to both
kinds of bias, model bias and method bias. On the second column, the debiasing that has been
performed has reduced (or suppressed) the method bias, and the remaining bias is model bias. On
the third column, the difference between ûα(f∗) and uα(f∗) shows the bias that has been reduced
by the debiasing step, hence the method bias.

5 Numerical
Implementation

In Section 3 we have introduced a two-step-
method (cf. Eq. (3.1) – (3.4)) in order to com-
pute a variationally regularized reconstruction
with reduced method bias in the sense discussed
in Section 4. Its solution requires the minimiza-
tion of the data fidelity over a subspace defined
by a zero Bregman distance or a zero infimal
convolution thereof, respectively.

This constraint is difficult to realize numeri-
cally, but can be approximated by a rather stan-
dard variational problem. We can translate the
hard constraint into a soft constraint such that

for γ > 0 the reformulated problems read:

a) ûα ∈ arg min
u∈X

1

2
‖Au− f‖2Y + γDpα

J (u, uα),

b) ûα ∈ arg min
u∈X

1

2
‖Au− f‖2Y + γICBpαJ (u, uα).

For γ → ∞ we obtain the equivalence of the
hard and soft constrained formulations. How-
ever, for the numerical realization already a
moderately large γ is enough to enforce the con-
straint up to a satisfactory level. For our simu-
lations we chose γ = 1000, but our tests showed
that already for γ ≥ 500 the value of the Breg-
man distance or its infimal convolution stays nu-
merically zero. Of course the choice of the pa-
rameter γ depends on the specific problem we
aim to solve and probably has to be adjusted
slightly for different image sizes or operators.

19



Algorithm 1 Primal-Dual Algorithm for Variational Regularization (Step 1)

Input: f , α > 0
Initialization: σ, τ > 0, u0 = ū0 = 0, y0

1 = y0
2 = 0

while not converged do

yk+1
1 =

yk1 +σAuk−σf
1+σ

yk+1
2 = ΠB∞α

(yk2 + σΓuk)

uk+1 = uk − τ(A∗yk+1
1 + Γ∗yk+1

2 )
ūk+1 = 2uk+1 − uk

end while
return uα = uk+1, pα = 1

αA
∗(f −Auα) (c.f. (3.2))

Discretization

For our numerical experiments we choose the
setting X = Rn, Y = Rd and J(u) = ‖Γu‖1.
In general Γ ∈ Rn×m denotes a discrete linear
operator, for the experiments with total varia-
tion regularization we choose a discretization of
the gradient with forward finite differences. For
a general linear forward operator A ∈ Rn×d we
hence end up with the following discrete opti-
mization problems:

1. uα ∈ arg min
u∈Rn

1

2
‖Au− f‖22 + α‖Γu‖1,

2. a) ûα ∈ arg min
u∈Rn

1

2
‖Au− f‖22

+ γ (‖Γu‖1 − 〈pα, u〉) ,

b) ûα ∈ arg min
u∈Rn

1

2
‖Au− f‖22

+ γ min
z∈Rn

{
‖Γ(u− z)‖1 − 〈pα, u− z〉

+ ‖Γz‖1 + 〈pα, z〉
}
,

where we leave out the particular spaces for the
primal (and dual) variables for the sake of sim-
plicity in the following. Taking a closer look at
these minimization problems, we observe that
we can exactly recover the optimization prob-
lem in the first step by means of problem 2. a)
if we choose γ = α and pα = 0. We therefore
concentrate on the minimization problems in the
second step.

Primal-dual and dual formulation

Using the notion of convex conjugates [28], the
corresponding primal-dual and dual formula-

tions of our problems are given by

a) min
u

max
y1,y2

〈y1, Au〉+ 〈y2,Γu〉 − γ 〈pα, u〉

− 1

2
‖y1‖22 − 〈y1, f〉 − ιB∞γ (y2)

= max
y1,y2

−1

2
‖y1‖22 − 〈y1, f〉 − ιB∞γ (y2)

− ιγpα(A∗y1 + Γ∗y2),

b) min
u,z

max
y1,y2,y3

〈y1, Au〉+ 〈y2,Γu− Γz〉

+ 〈y3,Γz〉 − γ 〈pα, u〉+ 2γ 〈pα, z〉

− 1

2
‖y1‖22 − 〈y1, f〉

− ιB∞γ (y2)− ιB∞γ (y3)

= max
y1,y2,y3

−1

2
‖y1‖22 − 〈y1, f〉

− ιB∞γ (y2)− ιB∞γ (y3)

− ιγpα(A∗y1 + Γ∗y2)

− ι−2γpα(−Γ∗y2 + Γ∗y3),

Solution with a primal-dual algorithm

In order to find a saddle point of the primal-dual
formulations, we apply a version of the popular
first-order primal-dual algorithms [26, 17, 12].
The basic idea is to perform gradient descent on
the primal and gradient ascent on the dual vari-
ables. Whenever the involved functionals are
not differentiable, here the `1-norm, this comes
down to computing the corresponding proximal
mappings. The specific updates needed for our
method are summarized in Algorithm 1 for the
first regularization problem, and Algorithm 2
and Algorithm 3 for the two different debiasing
steps.

We comment on our choice of the stopping
criterion. We consider the primal-dual gap of
our saddle point problem, which is defined as
the difference between the primal and the dual
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Algorithm 2 Primal-Dual Algorithm for Bias-Reduction with MB
f (Step 2 a))

Input: f , γ > 0, pα, which is obtained via Algorithm 1
Initialization: σ, τ > 0, u0 = ū0 = 0, y0

1 = y0
2 = 0

while not converged do

yk+1
1 =

yk1 +σAuk−σf
1+σ

yk+1
2 = ΠB∞γ

(yk2 + σΓuk)

uk+1 = uk − τ(A∗yk+1
1 + Γ∗yk+1

2 − γpα)
ūk+1 = 2uk+1 − uk

end while
return ûα = uk+1

Algorithm 3 Primal-Dual Algorithm for Bias-Reduction with MIC
f (Step 2 b))

Input: f , γ > 0 and pα, which is obtained via Algorithm 1.
Initialization: σ, τ > 0, u0 = z0 = ū0 = z̄0 = 0, y0

1 = y0
2 = y0

3 = 0
while not converged do

yk+1
1 =

yk1 +σAuk−σf
1+σ

yk+1
2 = ΠB∞γ

(yk2 + σΓ(uk − zk))

yk+1
3 = ΠB∞γ

(yk3 + σΓzk)

uk+1 = uk − τ(A∗yk+1
1 + Γ∗yk+1

2 − γpα)
zk+1 = zk − τ(−Γ∗yk+1

2 + Γ∗yk+1
3 + 2γpα)

ūk+1 = 2uk+1 − uk
z̄k+1 = 2zk+1 − zk

end while
return ûα = uk+1

Parameters
α 0.3
γ 1000
σ = τ 1√

8

ε1 10−5

ε2 10−6

ε3 10−6

Table 1: Choice of parameters for a total vari-
ation denoising problem of an image of size
256x256 with values in [0, 1], corrupted by Gaus-
sian noise with variance 0.05.

problem for the current values of variables. As
in the course of iterations the algorithm is ap-
proaching the saddle point, this gap converges
to zero. Hence we consider our algorithm con-
verged if this gap is below a certain threshold
ε1 > 0. We point out that the indicator func-
tions regarding the `∞-balls are always zero due
to the projection of the dual variables in every
update. Since the constraints with respect to
the other indicator functions, for example

A∗y1 + Γ∗y2 − γpα = 0

in case a), are hard to satisfy exactly numeri-
cally, we instead control that the norm of the
left-hand side is smaller than a certain thresh-
old ε2 (respectively ε3 for case b)). All in all we
stop the algorithm if the current iterates satisfy:

a) PD(u, y1, y2) =
(
− γ〈pα, u〉

+
1

2
‖Au− f‖22 + γ‖Γu‖1

+
1

2
‖y1‖22 + 〈y1, f〉

)
/n < ε1

and

‖A∗y1 + Γ∗y2 − γpα‖1/n < ε2

b) PD(u, z, y1, y2) =
(
− γ〈pα, u〉+ 2γ〈pα, z〉

+
1

2
‖Au− f‖22

+ γ‖Γu− Γz‖1 + γ‖Γz‖1

+
1

2
‖y1‖22 + 〈y1, f〉

)
/n < ε1

and

‖A∗y1 + Γ∗y2 − γpα‖1/n < ε2,

‖ − Γ∗y2 + Γ∗y3 + 2γpα‖1/n < ε3.
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Figure 8: `1-deconvolution of a 1D signal. Aver-
age bias and variance computed over one thou-
sand realizations of the noisy signal for the noisy,
restored and debiased signals.

Note that we normalize the primal-dual gap and
the constraints by the number of primal pixels
n in order to keep the thresholds ε1, ε2 and ε3
independent of varying image resolutions. We
give an example for the specific choice of param-
eters for our total variation denoising problems
in Table 5.

6 Numerical Results

This section provides further experiments and
numerical results that illustrate the proposed
debiasing method.

6.1 `1-deconvolution

The first application that we illustrate is the
deconvolution of a one-dimensional signal using
anisotropic shrinkage (4.6). Figure 7 displays
the original signal, the blurry signal corrupted
by additive Gaussian noise with standard devi-
ation σ = 0.05, the `1-reconstructed signal and
the debiased signals computed over the Breg-
man subspace MB

f and the infimal convolution

subspaceMIC
f . The last two completely overlap

on these two plots. One can see that provided
that the `1-reconstruction finds the right peak
locations, the debiasing method is able to re-
store the amplitude of the original signal.

Figure 8 displays the evolution of the aver-
age bias of the estimated signals as well as the
standard deviation of the error. They were com-
puted over one thousand noisy realizations for
the noisy, `1-reconstructed and debiased signals,
as a function of the regularization parameter α.

These curves illustrate several behaviors: As ex-
pected, the residual variance decreases when the
regularization parameter increases. For a very
low value of α, the debiasing reintroduces some
noise so the average variance is higher than for
the `1-reconstructed signal, revealing the bias-
variance trade-off that has to be settled. As α
increases, the gap between the variance of the
`1-reconstructed and debiased signal vanishes.
On the other hand, the average bias is indeed
smaller for the debiased signal than for the `1-
reconstructed signal. Besides, for small values
of the regularization parameter the average bias
for the debiased signal is stable and close to zero,
showing the effective reduction of the method
bias. Then it increases by steps which corre-
spond to the progressive vanishing of the peaks,
related to model bias. All in all, these plots
show the ability of the proposed approach to re-
duce the method bias (here, the loss of intensity
on the peaks), hence allowing for more efficient
noise reduction and reconstruction for a wider
range of regularization parameters.

6.2 Anisotropic TV denoising

In this subsection we study debiasing by means
of the discrete ROF model [29] given by:

uα(f) ∈ arg min
u∈Rn

1

2
‖u− f‖22 + α‖Γu‖1, (6.1)

where the 1-norm is anisotropic, i.e.

‖Γu‖1 =

m/2∑
i=1

|(Γu)1,i|+ |(Γu)2,i|,

with (Γu)1 and (Γu)2 denoting the discrete gra-
dient images in horizontal and vertical direction,
respectively. We compare the original denoising
result of Problem (6.1) to the proposed debiased
solutions obtained with the Bregman subspace
MB

f or the infimal convolution subspace MIC
f .

6.2.1 Cartoon image

The Giraffe cartoon image has been designed
not to have model bias; it is piecewise con-
stant, which makes it suitable for TV denois-
ing and allows us to study the reduction of
the method bias only. It takes values in [0, 1]
and has been artificially corrupted with addi-
tive Gaussian noise with zero mean and vari-
ance σ2 = 0.05, reaching an initial PSNR of
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Figure 7: `1-deconvolution of a 1D signal. Original, noisy convolved, `1-reconstructed, Bregman
debiased and Infimal convolution debiased signals.

(a) TV / residual vs. α (b) PSNR vs. α, Giraffe (c) PSNR vs. α, Parrot

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
x 10

4

α

F
u
n
c
ti
o
n
a
ls

 

 

Denoised TV
Bregman TV
IC TV
Denoised res.
Bregman res.
IC res.

0 0.2 0.4 0.6 0.8 1
14

15

16

17

18

19

20

21

22

23

α

P
S
N
R

 

 

TV PSNR
Bregman PSNR
IC PSNR

0 0.2 0.4 0.6 0.8 1
14

16

18

20

22

24

26

α

P
S

N
R

 

 

TV PSNR
Bregman PSNR
IC PSNR

Figure 9: Evolution of (a) The total variation and the residual for the cartoon Giraffe image,
(b) The average PSNR for TV denoising, Bregman debiasing and infimal convolution debiasing
for the cartoon Giraffe image and (c) The average PSNR for TV denoising, Bregman debiasing
and infimal convolution debiasing for the natural Parrot image as a function of the regularization
parameter α.

about 13dB. The original image and a noisy re-
alization are already displayed on the first line
of Fig. 3 in Section 3.

Figure 10 displays the TV denoising result as
well as the debiased solutions computed on the
Bregman subspace MB

f or the infimal convolu-

tion subspace MIC
f for different values of the

regularization parameter α. On the first line,
α = 0.15 is the optimal regularization parameter
for TV denoising (in terms of PSNR, see Fig. 9-
(b)). However, when performing the debiasing,
noise is strongly amplified. On the second line,
α = 0.3 is the optimal regularization parameter
for debiasing, and overall, (in terms of PSNR,

see Fig. 9-(b)). On the third line α = 0.6 leads
to an oversmoothed solution, but the debiasing
step still allows to recover a lot of the lost con-
trast.

Since we expect the variational method to
systematically underestimate the value of the
regularization functional and overestimates the
residual (see [2] for a precise computation on
singular values), we compare the corresponding
quantities when varying α in Figure 9-(a). We
observe that for a very large range of values of
α there appears to be an almost constant off-
set between the values for the solution uα(f)
and the debiased solution ûα(f) (except for very
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small values of α, when noise dominates). This
seems to be due to the fact that the debiasing
step can correct the bias in the regularization
functional (here total variation) and residual to
a certain extent. This corresponds well to the
plot of PSNR vs. α in Fig. 9-(b), which confirms
that the PSNR after the debiasing step is signif-
icantly larger than the one in uα(f) for a large
range of values of α, which contains the ones
relevant in practice. The fact that the PSNR is
decreased by the debiasing step for very small α
corresponds to the fact that indeed the noise is
amplified in such a case, visible also in the plots
for the smallest value of α in Figure 10.

Altogether, these results show that the pro-
posed debiasing approach improves the denois-
ing of the cartoon image both visually and quan-
titatively.

6.2.2 Natural image

The debiasing can also be evaluated on natural
images such as the Parrot picture. TV denois-
ing on such images leads to both method bias
and model bias. We expect to reduce the for-
mer with the proposed method, while the latter
is due to the piecewise constant approximation
associated with the ROF model. The Parrot
image takes values in [0, 1] and has been arti-
ficially corrupted with additive Gaussian noise
with zero mean and variance σ = 0.05, reaching
an initial PSNR of about 13dB. The original im-
age and a noisy realization are displayed on the
first line of Figure 13.

Analogously to Figure 10, Figure 13 also dis-
plays the TV denoising result as well as the de-
biased solutions computed on the Bregman sub-
space or the infimal convolution subspace for
different values of the regularization parameter
α. On the second line, α = 0.15 is the optimal
regularization parameter for TV denoising (in
terms of PSNR, see Fig. 9-(c)). However, when
performing the debiasing, the remaining noise is
strongly amplified. On the third line, α = 0.3 is
the optimal regularization parameter for debias-
ing (in terms of PSNR, see Fig. 9-(c)). On the
fourth line α = 0.6 leads to an oversmoothed
solution but the debiasing step still allows to
recover the lost contrast.

Note that in the Parrot case, the optimal re-
sult in terms of PSNR is obtained for the TV
denoising, for α = 0.15. However, the debias-
ing obtained with α = 0.3 visually provides a
smoother result on the background, while pre-

serving the fine structures such as the stripes
around the eye.

Note also that in each case the artifacts of TV
denoising such as staircasing remain and even
become more apparent. This however seems
natural as the contrast is increased. Since these
issues are in fact model bias they are not dealt
with by the debiasing method we perform here,
but could be reduced by an appropriate choice
of regularization such as total generalized vari-
ation [3].

6.2.3 Statistical behavior

For both images, the statistical behavior of the
proposed debiasing methods can be evaluated
by computing the statistical bias E[u∗ − Û ] as
well as the variance Var[u∗−Û ] between the true
image u∗ and an estimator Û . In our case this
is either the solution of the ROF-model (6.1)
or the corresponding debiased result. Figure 11
displays the evolution of the estimated statisti-
cal bias and standard deviation of the TV, Breg-
man debiased and infimal convolution debiased
estimators for the cartoon Giraffe and natural
Parrot images, as a function of the regulariza-
tion parameter α. These curves reflect some in-
teresting behaviors: As expected, the residual
variance decreases as the regularization param-
eter increases. Besides, the variance is always
slightly higher for the debiased solutions, which
reflects the bias-variance compromise that has
to be settled. However, as the regularization pa-
rameter increases, the gap between the denoised
and debiased variance decreases. On the other
hand, as the regularization parameter grows, the
bias increases for each method, and it always re-
mains higher for the denoised solutions than for
the debiased solutions. One interesting fact is
the behavior of the bias curve for the cartoon
Giraffe image: for low values of the regulariza-
tion parameter (up to α ≈ 0.3), the evolution of
the bias for the debiased solutions is relatively
stable. This means that for those values, one
can increase the regularization parameter in or-
der to reduce the variance without introducing
too much (at this point, method) bias. Then,
for higher regularization parameters the bias in-
creases in a steeper way, parallel to the evolu-
tion of the original bias for the TV denoised im-
age. This reflects the evolution of the model bias
from this point on, when the high regularization
parameter provides a model subspace whose el-
ements are too smooth compared to the true
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Figure 10: Denoising of the Giraffe cartoon image for different values of the regularization param-
eter α. First column: TV denoising. Second column: Debiasing on the Bregman subspace. Third
column: Debiasing on the infimal convolution subspace.

image. For the natural Parrot image, the model
bias occurs even for small values of the regu-
larization parameter, because the model sub-
space provided by the TV regularization does
not properly fit the image prior.

These curves also illustrate the optimal bias-
variance balance that can be achieved with or
without the debiasing procedure. Intuitively,
one would expect the optimal bias-variance
trade-off to be reached when the bias and the
standard deviation curves intersect each other.
This is indeed confirmed by the PSNR curves
from Fig. 9-(b) and 9-(c). Looking at those in-
tersection points on both curves for the TV de-

noised solution on the one hand and for the de-
biased solutions on the other hand, one can see
that the optimal compromise for the debiasing
is reached for a higher regularization parameter
than for the denoising. This offers more denois-
ing performance, and it leads to a smaller (for
the Giraffe image) or equal (for the Parrot im-
age) average bias and standard deviation.

6.3 Isotropic TV denoising

Finally, we extend the examples presented in
[14] with a few numerical results for isotropic
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Figure 11: Evolution of the average residual bias and standard deviation computed over 500
noisy realizations of (a) Giraffe and (b) Parrot for TV denoising, Bregman debiasing and infimal
convolution debiasing.
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Figure 12: Isotropic TV denoising and debiasing of the cartoon Giraffe and natural Parrot images,
and comparison to Bregman iterations.

TV denoising:

‖Γu‖1 =

m/2∑
i=1

√
|(Γu)1,i|2 + |(Γu)2,i|2.

We then compare the denoising result to the so-
lutions provided by the two alternative second
steps of our debiasing method. Moreover, we
also compare them to the result obtained from
Bregman iterations. Figure 12 displays the opti-
mal (in terms of PSNR) denoising and debiasing
for the Giraffe and Parrot images. The regular-
ization parameter has been set to α = 0.2 for

the denoising result and to α = 0.3 for the de-
biasing. Similarly to the anisotropic case, the
debiasing both visually and quantitatively im-
proves the quality of the cartoon Giraffe image.
For the natural Parrot image, even though the
PSNR is not improved by the debiasing process,
one can still observe that the higher regulariza-
tion parameter offers a better denoising of the
background, while the debiasing guarantees that
the fine structures around the eye are preserved
with a good contrast. Besides, the proposed de-
biasing approach offers similar results to Breg-
man iterations, displayed in the fourth column.
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However, the interesting aspect of our debiasing
approach is that we only apply a two-step proce-
dure, while Bregman iterations have to be per-
formed iteratively with a sufficiently high num-
ber of steps.

7 Conclusion

We have introduced two variational debiasing
schemes based on Bregman distances and their
infimal convolution, which are applicable for
nonsmooth convex regularizations and gener-
alize known debiasing approaches for `1- and
TV-type regularization. Based on a recent ax-
iomatic approach to debiasing by Deledalle and
coworkers [14], which we further generalized to-
wards infinite-dimensional problems, we were
able to provide a theoretical basis of our debi-
asing approach and work out meaningful model
subspaces for variational methods. Moreover,
we were able to relate the approach to Bregman
iterations and inverse scale space methods.

From the numerical experiments we observe
that the debiasing scheme improves the results
for a wide range of regularization parameters,
which includes the ones providing optimal re-
sults. Surprisingly, we often find visually opti-
mal choices of the regularization parameters in
the range where bias and standard deviation of
the debiased solution are approximately of the
same size.

Various questions remain open for future
studies: An obvious one is the generalization to
other regularization schemes such as total gen-
eralized variation (cf. [3]) or nonlocal methods
for improved results on natural images. As al-
ready indicated in the introduction, the method
is theoretically not restricted to squared Hilbert-
space norms. Instead, it can be carried out for
any suitable data fidelity H and we expect it to
improve the results. From a theoretical, and in
particular from a statistical viewpoint, the ques-
tion is then how to relate the method to actual
bias reduction, and how to properly motivate
and define bias in this setting.

Another further improvement might be
achieved by only approximating the model sub-
space by tuning the parameter γ without letting
it tend to infinity.

We acknowledge a very recent and related
work on the topic from another perspective,
which has been developed in parallel to this
work [15]. It will be interesting to investigate

the connections in future work.

8 Appendix

We have included some examples and proofs in
the Appendix in order not to interrupt the flow
of the paper. These are in particular the proof
for anisotropic shrinkage and the calculation of
the corresponding derivatives in Example 4.7,
the same result for isotropic shrinkage and the
calculation of the infimal convolution of two `1-
Bregman distances in Example 4.11.

8.1 Proofs of Example 4.7

Anisotropic shrinkage. Let f ∈ `2 be a square-
summable sequence. Then the solution of

uα ∈ arg min
u∈`1

1

2
‖u− f‖2`2 + α‖u‖`1 (8.1)

for α > 0 is given by

[uα(f)]i =

{
fi − α sign(fi), |fi| ≥ α
0, |fi| < α.

Proof. By the dual definition of the `1-norm we
find

min
u∈`1

1

2
‖u− f‖2`2 + α‖u‖`1

= min
u∈`1

sup
r∈`∞
‖r‖`∞≤α

1

2
‖u− f‖2`2 + 〈r, u〉

= sup
‖r‖`∞≤α

min
u∈`1

1

2
‖u− f‖2`2 + 〈r, u〉.

We can explicitely compute the minimizer for u
as u = f − r and hence

sup
‖r‖`∞≤α

min
u∈`1

1

2
‖u− f‖2`2 + 〈r, u〉

= sup
‖r‖`∞≤α

−1

2
‖r‖2`2 + 〈r, f〉.

This supremum can be computed explicitely
pointwise with the corresponding Lagrangian

L(ri, λ) = −1

2
r2
i + rifi + λ(|ri|2 − α2)

with λ ≤ 0. The optimality condition yields

fi − ri + 2λri = 0
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Figure 13: Denoising of the Parrot image for different values of the regularization parameter α.
First column: TV denoising. Second column: Debiasing on the Bregman subspace. Third column:
Debiasing on the infimal convolution subspace.
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and hence

ri =
fi

1− 2λ
.

We distinguish three cases: If ri = α, then ui =
fi − α and fi = (1 − 2λ)α ⇔ λ = α−fi

2α , which
by the nonpositivity of λ implies that fi ≥ α.
Analogously we find for ri = −α that ui = fi+α
and fi ≤ −α. In case |ri| < α, we obtain that
λ = 0 and hence ri = fi and ui = 0 when |fi| <
α. Summarizing the first two cases yields the
assertion. �

The directional derivative duα(f ; g) of uα(f)
into the direction g ∈ `2 is given by

[duα(f ; g)]i

=


gi, |fi| > α

0, |fi| < α

gi, |fi| = α, sign(fi) = sign(gi)

0, |fi| = α, sign(fi) 6= sign(gi).

Proof. For all i ∈ N we have to compute

[duα(f ; g)]i = lim
t→0+

[uα(f + tg)]i − [uα(f)]i
t

and distinguish four cases: If |fi| > α and t is
small enough, then |fi + tgi| > α and sign(fi +
tgi) = sign(fi) and we obtain

[duα(f ; g)]i

= lim
t→0+

1

t

(
fi + tgi − α sign(fi + tgi)

− (fi − α sign(fi)
)

= lim
t→0+

tgi − α sign(fi) + α sign(fi)

t
= gi.

If |fi| < α and t is small enough, then |fi+tgi| <
α and we immediately find

[duα(f ; g)]i = 0.

If |fi| = α, we have to distinguish

sign(fi) = sign(gi),

sign(fi) 6= sign(gi).

For the former case, let fi = α. Then |fi+αgi| >
α and

[duα(f ; g)]i

= lim
t→0+

fi + tgi − α sign(fi + tgi)

t

= lim
t→0+

α+ tgi − α
t

= gi.

We find the same result for fi = −α. In the
latter case, let again fi = α. Then gi < 0 and
for t small enough we have |fi + tgi| < α, hence

[duα(f ; g)]i = 0.

We analogously derive the same result for fi =
−α which completes the proof. �

8.2 Isotropic shrinkage

Let f ∈ `2(Rd) be a vector-valued signal for
d ∈ N. Analogously to Example 4.7 or 8.1 the
solution of the isotropic shrinkage problem

uα(f) ∈ arg min
u∈`1(Rd)

1

2
‖u− f‖2`2(Rd) + α‖u‖`1(Rd)

is given by the isotropic soft-thresholding

[uα(f)]i =

{
(1− α

|fi| )fi, |fi| > α,

0, |fi| ≤ α.

Here, the computation of the directional deriva-
tive requires a little more work. At first, let us
compute the directional derivative of the func-
tion F : Rd → R, x 7→ 1

|x| into the direction

g ∈ Rd. We define G : Rd → R, x 7→ 1
|x|2 and

calculate

dG(x; g) = lim
t→0+

G(x+ tg)−G(x)

t

= lim
t→0+

1

t

(
1

|x+ tg|2
− 1

|x|2

)
= lim
t→0+

1

t

(
|x|2 − |x+ tg|2

|x|2|x+ tg|2

)
= lim
t→0+

1

t

(
−2tx · g − t2|g|2

|x|2|x+ tg|2

)
= −2

x · g
|x|4

.

Then by the chain rule we obtain

dF (x; g) = d
√
G(x; g) =

dG(x; g)

2
√
G(x)

= −2
x · g
|x|4
|x|
2

= −x · g
|x|3

.

Let us further define the projection of a vector
x ∈ Rd onto another vector y ∈ Rd as

Πy(x) =
y · x
|y|2

y.
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As for the anisotropic case we now have to
compute

[duα(f ; g)]i = lim
t→0+

1

t

(
[uα(f + tg)]i − [uα(f)]i

)
and we can again distinguish four cases. Let at
first |fi| > α. Then for t small enough we have
|fi + tgi| > α and hence

lim
t→0+

1

t

(
[uα(f + tg)]i − [uα(f)]i

)
= lim
t→0+

1

t

((
1− α

|fi + tgi|

)
(fi + tgi)

−
(

1− α

|fi|

)
fi

)
= lim
t→0+

1

t

(
fi + tgi − α

fi + tgi
|fi + tgi|

− fi + α
fi
|fi|

)
= lim
t→0+

1

t

(
tgi −

αtgi
|fi + tgi|

−αfi
(

1

|fi + tgi|
− 1

|fi|

))
= gi − α

gi
|fi|

+ αfi
fi · gi
|fi|3

= gi +
α

|fi|
(Πfi(gi)− gi) .

For |fi| < α and t small enough we easily find
|fi + tgi| < α and hence

[duα(f ; g)]i = 0.

In case |fi| = α we need to distinguish whether
|fi + tgi| > α or |fi + tgi| ≤ α for arbitrarily
small t. We hence compute

|fi + tgi| > α

⇔ |fi + tgi|2 > α2

⇔ |fi|2 + 2tfi · gi + t2|gi|2 > α2

⇔ 2fi · gi + t|gi|2 > 0,

which for arbitrarily small t is true only if fi·gi ≥
0. Analogously we find that |fi + tgi| < α for
small t is only true if fi · gi < 0. Hence let now
|fi| = α and fi · gi ≥ 0. Then we obtain

[duα(f ; g)]i = lim
t→0+

1

t

(
[uα(f + tg)]i

)
= lim
t→0+

1

t

((
1− α

|fi + tgi|

)
(fi + tgi)

)
.

Using α = |fi|, we find

lim
t→0+

|fi|fi
t

(
1

|fi|
-

1

|fi + tgi|

)
+ gi -

|fi|gi
|fi + tgi|

= |fi|fi
fi · gi
|fi|3

= Πfi(gi).

In the last case |fi| = α and fi · gi < 0, we find

[duα(f ; g)]i = lim
t→0+

1

t

(
[uα(f + tg)]i

)
= 0.

Summing up we have

[duα(f ; g)]i

=


gi + α

|fi| (Πfi(gi)− gi) , |fi| > α,

0, |fi| < α,
Πfi(gi), |fi| = α, fi · gi > 0,
0, |fi| = α, fi · gi ≤ 0.

Hence, the corresponding model subspace is
given by

u ∈MG
f ⇔ ui =


v ∈ Rd, |fi| > α,

0, |fi| < α,

λfi, λ ≥ 0, |fi| = α.

Analogously to the anisotropic case, the model
subspace allows for arbitrary elements, here
even including the direction, if the magnitude
|fi| of the signal is strictly above the threshold
parameter α. As already discussed in Exam-
ple 4.7, |fi| = α is the odd case of the three,
since in contrast to |fi| > α it only allows for
changes into the direction of the signal fi. If
we exclude that case, we again find a linear
derivative, hence a Gâteaux derivative and even
a Fréchet derivative. Accordingly the isotropic
shrinkage is the immediate generalization of the
anisotropic shrinkage, which we can find as a
special case for d = 1.

Summing up, the debiasing procedure on
this subspace again yields the solution of hard
thresholding:

[û(f)]i =

{
fi, |fi| ≥ α,
0, |fi| < α.

Note that we again maintain the signal directly
on the threshold.

8.3 Infimal convolution of `1 Breg-
man distances

Theorem 8.1. Let Γ: `2(Rn)→ `1(Rm) be lin-
ear and bounded and J(u) = ‖Γu‖`1(Rm) for
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d, n ∈ N. Let further qα ∈ ∂‖ · ‖`1(Rm)(Γuα)
such that pα = Γ∗qα. Then

ICBqα`1(Rm)(Γu,Γuα) ≤ ICBpαJ (u, uα).

Proof.

ICBpαJ (u, uα)

= inf
z∈`2(Rn)

Dpα
J (u− z, uα) +D−pαJ (z,−uα)

= inf
z∈`2(Rn)

‖Γ(u− z)‖`1(Rm) − 〈pα, u− z〉

+ ‖Γz‖`1(Rm) + 〈pα, z〉
= inf
z∈`2(Rn)

‖Γ(u− z)‖`1(Rm) − 〈qα,Γ(u− z)〉

+ ‖Γz‖`1(Rm) + 〈qα,Γz〉
= inf

Γz∈`1(Rm)
‖Γ(u− z)‖`1(Rm) − 〈qα,Γ(u− z)〉

+ ‖Γz‖`1(Rm) + 〈qα,Γz〉
= inf
w∈`1(Rm)

‖Γu− w‖`1(Rm) − 〈qα,Γu− w〉

+ ‖w‖`1(Rm) + 〈qα, w〉
= inf
w∈`1(Rm)

Dqα
`1(Rm)(Γu− w,Γuα)

+D−qα`1(Rm)(w,−Γuα)

= ICBqα`1(Rm)(Γu,Γuα).

�

Note that we get equality for surjective Γ.

Theorem 8.2. Let v, u ∈ `1(Rm) and q ∈
∂‖v‖`1(Rm). Then

ICBqα`1(Rm)(u, v) =
∑
i∈N

G(ui, qi)

with G : Rm × Rm → R defined as

G(ui, qi)

=

{
|ui|(1− | cos(ϕi)||qi|), |qi| < | cos(ϕi)|,
|ui|| sin(ϕi)|

√
1− |qi|2, |qi| ≥ | cos(ϕi)|.

where ϕi denotes the angle between ui and qi,
i.e. cos(ϕi)|ui||qi| = ui · qi with ϕi := 0 for
qi = 0 or ui = 0.

Proof. Let

f1(u) = Dq
`1(Rm)(u, v) = ‖u‖`1(Rm) − 〈q, u〉,

f2(u) = D−q`1(Rm)(u,−v) = ‖u‖`1(Rm) + 〈q, u〉.

f1, f2 are proper, l.s.c. and convex so the
Fenchel-Moreau theorem [16, p. 18] allows us
to compute the infimal convolution as

f12f2 = (f∗1 + f∗2 )∗.

We have

f∗1 (z) = ιB∞(1)(z + q), f∗2 (z) = ιB∞(1)(z − q),

where ιB∞(1) denotes the characteristic function
of the `∞(Rm)-ball

B∞(1) =
{
z ∈ `∞(Rm) | ‖z‖`∞(Rm) ≤ 1

}
.

Thus

(f12f2)(u) = sup
z∈`∞(Rm)

〈u, z〉

s.t. ‖z + q‖`∞(Rm) ≤ 1, ‖z − q‖`∞(Rm) ≤ 1.

Taking into account the specific form of these
constraints, we can carry out the computation
pointwise and set up the corresponding La-
grangian for every i ∈ N

L(zi, λi, µi) = −zi · ui + λi(|zi − qi| − 1)

+ µi(|zi + qi| − 1), (8.2)

where we from now on leave out the dependence
on i for simplicity. Every optimal point of (8.2)
has to fulfill the four Karush-Kuhn-Tucker con-
ditions, namely

∂

∂z
L(z, λ, µ) = 0, λ(|z − q| − 1) = 0,

λ, µ ≥ 0, µ(|z + q| − 1) = 0,

and Slater’s condition implies the existence of
Lagrange multipliers for a KKT-point of (8.2).
The first KKT-condition yields

−u+ λ
z − q
|z − q|

+ µ
z + q

|z + q|
= 0. (8.3)

Let us first remark that the case u = 0 causes
the objective function to vanish, hence in the
following u 6= 0. Then let us address the case
q = 0 in which (8.3) yields

u = (λ+ µ)
z

|z|
.

In case |z| < 1, we find that (λ + µ) = 0 and
hence u = 0. In case |z| = 1, we obtain that
u = (λ + µ)z and (λ + µ) = |u|, hence z = u

|u| .

We infer

z · u =
u · u
|u|

= |u|.

If q 6= 0, we can distinguish three cases:
1st case: |z − q| < 1, |z + q| = 1.
Thus λ = 0 and (8.3) yields

u = µ(z + q).
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Since |z + q| = 1 we deduce µ = |u|, so

z =
u

|u|
− q

and finally for the value of the objective function

z · u =

(
u

|u|
− q
)
· u = |u| − q · u.

2nd case: |z + q| < 1, |z − q| = 1
We analogously find

z · u = |u|+ q · u.

The first two cases thus occur whenever (insert
z in the conditions)∣∣∣∣ u|u| ± 2q

∣∣∣∣ < 1,

meaning that either of the conditions has to be
fulfilled. We calculate∣∣∣∣ u|u| − 2q

∣∣∣∣2 < 1

⇔ |q|2 < q · u
|u|

⇔ |q| < cos(ϕ).

Hence q · u > 0 and

|u| − q · u = |u| − |q · u|.

In the second case we analogously find

|q| < − cos(ϕ),

hence q · u < 0 and

|u|+ q · u = |u| − |q · u|,

so we may summarize the first two cases as

z · u = |u| − |q · u| = |u|(1− | cos(ϕ)||q|),

if |q| < | cos(ϕ)|.

3rd case: |z − q| = 1, |z + q| = 1
At first we observe that from

|z + q|2 = |z − q|2

we may deduce that z ·q = 0. Therefore we have

|z + q| = 1⇒ |z| =
√

1− |q|2.

In the third case the optimality condition (8.3)
reads

u = λ(z − q) + µ(z + q). (8.4)

We multiply the optimality condition by q and
obtain

u · q = λ(z − q) · q + µ(z + q) · q
⇔ u · q = (µ− λ) |q|2

⇔ (µ− λ) = u · q

|q|2
.

Multiplying (8.4) by z yields

u · z = (λ+ µ)|z|2 (8.5)

and another multiplication of (8.4) by u yields

|u|2 = (λ+ µ)z · u+ (µ− λ)q · u
= (λ+ µ)2|z|2 + (µ− λ)2|q|2

= (λ+ µ)2|z|2 +

(
u · q
|q|

)2

,

where we inserted the previous results in the last
two steps. We rearrange and find

(λ+ µ) =

√
|u|2 −

(
u · q
|q|

)2

|z|−1,

which finally leads us to

u · z = (λ+ µ)|z|2

=

√
|u|2 −

(
u · q
|q|

)2

|z|

= |u|

√√√√(1−
(
u

|u|
· q
|q|

)2
)

(1− |q|2)

= |u|
√

(1− | cos(ϕ)|2) (1− |q|2)

= |u|| sin(ϕ)|
√

(1− |q|2),

which yields the assertion. Note that in case |z−
q| < 1, |z+q| < 1, the first KKT-condition yields
u = 0, which may only occur if the objective
function z · u vanishes anyway. �
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