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Abstract—Image denoising is a fundamental problem in image
processing and many powerful algorithms have been developed.
However, they often rely on the knowledge of the noise distri-
bution and its parameters. We propose a fully blind denoising
method that first estimates the noise level function then uses this
estimation for automatic denoising. First we perform the non-
parametric detection of homogeneous image regions in order to
compute a scatterplot of the noise statistics, then we estimate the
noise level function with the least absolute deviation estimator.
The noise level function parameters are then directly re-injected
into an adaptive denoising algorithm based on the non-local
means with no prior model fitting. Results show the performance
of the noise estimation and denoising methods, and we provide
a robust blind denoising tool.

I. INTRODUCTION

Image denoising is widely studied in image processing.
Many powerful algorithms have been developed recently and
achieve outstanding results [1], [2]. However, they often rely
on the knowledge of the noise distribution and the noise level,
that are in most cases assumed to be known. We propose
a blind denoising algorithm that automatically estimates the
noise level function, i.e. the function of the noise variance with
respect to the image intensities, then re-injects the estimation
into a denoising algorithm without any model fitting.

Section II is dedicated to the automatic estimation of
spatially uncorrelated, signal-dependent noise from a single
image. Variance stabilizing transforms can reduce the de-
pendency between the signal intensity and the noise [3].
Separation techniques have also been extended to specific
signal-dependent models, e.g., using a wavelet transform for
a Poisson-Gaussian model [4] or using a Gaussian mixture
model of patches for additive noise with polynomial variance
[5]. The noise can also be distinguished from the signal com-
ponents by principal component analysis [6] or by selecting
blocks with lowest variance [7].

The approach that we follow here [8] relies on the fact
that natural images contain homogeneous areas, where the
signal to noise ratio is very weak, so only the statistics of the
noise intervene. While classic detectors require assumptions
on the noise statistics [9], [10], we propose a non-parametric
detection of homogeneous areas based on Kendall’s rank
correlation coefficient [11] that only requires the noise to
be spatially uncorrelated. Then we estimate the noise level

function (NLF), i.e., the function of the noise variance with
respect to the image intensities, as a second order polynomial
minimizing the `1 error on the statistics of these regions.

Then in section III, we use the estimated noise level function
for blind denoising. We adapt an adaptive denoising algorithm
[12] that performs fast image denoising and is flexible for
different noise statistics. The proposed method relies only on
the estimated noise level function: the noise is approximated
by additive noise with polynomial variance and the denoising
algorithm is adapted accordingly.

In section IV, experiments and numerical results show the
validity of the proposed estimation and denoising methods, as
well as comparisons to the state-of-the-art. We also provide a
Matlab implementation for the automatic noise estimation and
its application to image and video denoising, that is available
for download at https://github.com/csutour/RNLF.

II. NOISE ESTIMATION

In this problem, we assume that the observed image g ∈
RN , where N is the number of pixels of the image, is an
observation of a clean unknown image g0, corrupted by a
spatially uncorrelated signal dependent noise. Hence, g can
be modeled as the realization of a random vector G such that
E[G] = g0, and

Cov[G] =


NLF(g01) 0

NLF(g02)
. . .

0 NLF(g0N )

 , (1)

where NLF : R → R+ is coined the noise level function.
This model hence encompasses spatially uncorrelated, signal
dependent noise.

In order to estimate the unknown noise level function, we
rely on the fact that most natural images contain homogeneous
regions, i.e., areas where the underlying clean signal can
be assumed to be constant. In those regions, according to
eq. (1), the empirical expectation and variance should provide
a punctual estimation of the noise level function. Hence, we
seek to detect homogeneous regions with no access to the true
underlying signal g0 in order to get punctual estimations of
the noise level function. Then the NLF can be estimating by
fitting a second order polynomial function to the scatterplot.
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Figure 1. Detection of homogeneous areas in an image corrupted with hybrid noise as the sum of Gaussian, Poisson and multiplicative gamma noise
whose NLF parameters are (a, b, c) = (0.0312, 0.75, 400), resulting in an initial PSNR of 17.93dB. a) Noisy image (range [0, 255]), b) p-value (range
[black = 0,white = 1]) of the associated Kendall’s τ coefficient computed within blocks of size W = 16× 16, and c) selected homogeneous blocks (red)
by thresholding the p-value to reach a probability of detection of PD = 1− PFA = 0.7, d) Estimation of the noise level function with the LAD estimator.

A. Detection of homogeneous areas
The goal is to develop a method that automatically selects

homogeneous regions in the image. It is important for such
technique not to make any assumption on the nature of the
noise. We therefore consider a non-parametric approach whose
statistical answer is independent of the noise model. The
key idea is that we focus mainly on the rank (i.e. on the
relative order) of the pixel values rather than on the values
themselves. If the ranking of the pixel values is uniformly
random or spatially uncorrelated, then this means that there is
no apparent structure in the considered zone.

1) Kendall’s τ coefficient: To measure the correlation of
the ranking, we rely on the Kendall’s τ coefficient. Kendall’s
τ coefficient is a rank correlation measure [11] that provides
a non-parametric hypothesis test for statistical dependence.
Let (x1, · · · , xn) and (y1, · · · , yn) be two sequences of n
observations of random variables X and Y .
Definition. Kendall’s τ ∈ [−1, 1] coefficient is defined as:

τ =
1

n(n− 1)

∑
1≤i,j≤n

sign(xi − xj) sign(yi − yj), (2)

assuming that, for all i 6= j, xi 6= xj and yi 6= yj . A value
τ = 0 indicates the absence of correlation between X and Y .
Distribution of τ . Under the null hypothesis of independence
of X and Y , the sampling distribution of τ has an expected
value of 0. In case of large samples, it is approximated by the
normal distribution [13]:

τ ∼ N
(

0,
2(2n+ 5)

9n(n− 1)

)
. (3)

In fact, it can be used for non-parametric tests as its dis-
tribution does not rely on any assumptions regarding the
distribution of X and Y .
Determining significance. The above coefficient indicates
whether the variables are likely to be dependent or not, and
its significance is based on the score, which is approximately
distributed along a standard normal distribution. The detec-
tion is performed by computing the associated p-value and
rejecting the null hypothesis if the p-value is smaller than a
predetermined significance level α, that corresponds to the
desired probability of detection.

2) Homogeneous detection: Kendall’s rank correlation co-
efficient is a non-parametric measure that assesses the statisti-
cal dependence between two variables, based on their relative

order. In the homogeneous detection problem, we need to
estimate whether the samples of a block gω of the image g
are independent and identically distributed, based on the fact
that if the area is homogeneous, then the ranking is spatially
uniform. To do so, we look at the statistical dependence
between pixels of a block gω by dividing the block in two
disjoint sequences gω1 = (gω2k) and gω2 = (gω2k+1) where gω2k
and gω2k+1 represent neighbor pixel values for a given scan
path. If these two variables are found to be independent, this
means that there is no relationship between the pixels of the
blocks and their neighbors, so we can assume that there is no
structure and all fluctuations are only due to noise.

We run K = 4 tests for horizontal, vertical and the two
diagonal neighbors and aggregate them to obtain a more
selective estimator. We consider the block to be homogeneous
if the test of independence for each direction is satisfied, i.e.
if each of the K obtained p-values pk reaches a given level
of significance α. By doing so, the overall level of detection
αeq after aggregation is no longer α but smaller and given by

αeq = P

(
K⋂
k=1

{pk > α}

)
. (4)

In order to control the overall level of detection αeq , we
empirically estimated offline the relation between αeq and α.

B. Model estimation

Once the mean/variance couples (m, s2) on uniform regions
are computed, a model that fits the observed NLF can be
estimated. The goal is to find the polynomial coefficients
(a, b, c) such that the vector of each estimated variance s2

can be represented as am2 + bm + c, where m contains the
estimated means. To do so, we use the least absolute deviation
estimator that minimizes a L1-norm, that is known to be more
robust to outliers (that might happen due to false homogeneous
detection) than the L2-norm. The problem is formulated as
follows:

̂(a, b, c) = argmin
a,b,c

‖am2 + bm+ c− s2‖1

= argmin
a,b,c

‖NLF(a,b,c)(m)− s2‖1. (5)

We can derive an iterative solution, using the preconditioned
primal-dual algorithm of Chambolle-Pock [14].



a) Gaussian R-NL, b) Estimated R-NLF, c) True R-NLF,
PSNR = 23.66 PSNR = 28.29 PSNR = 28.31

Figure 2. Denoising of a hybrid noise with true parameters (a, b, c) =
(0.0312, 0.625, 100), initial PSNR = 20.34dB. The noisy image is displayed
on Fig. 1-a. a) Standard R-NL assuming Gaussian noise, b) R-NLF with the
estimated NLF and c) R-NLF with the true NLF.

III. DENOISING

Once the noise level function has been estimated, it can
be injected into the denoising process, based on the R-NL de-
noising algorithm [12]. This flexible algorithm allows efficient
denoising using solely the noise level function estimation.

A. R-NL: adaptive denoising algorithm

In previous work [12], we have combined the assumptions
of regularity and redundancy provided respectively by the
variational methods [15] and the non-local means [16].

1) NL-means: The non-local means algorithm is based
on the hypothesis of redundancy of structures inside natural
images. It performs a weighted average of pixels with similar
neighborhoods. For each pixel i in the image domain Ω, the
solution of the NL-means is:

uNL
i =

∑
j∈Ω

wi,jgj , (6)

where the weights wi,j ∈ [0, 1] select pixels j whose sur-
rounding patch ρj is similar to the patch ρi extracted around
the central pixel i:

wi,j =
1

Zi
exp

(
−
|d(gρi , gρj )−mρ

d|
sρd

)
. (7)

Zi is a normalization factor and d is a similarity function
that evaluates the similarity between patches according to the
noise distribution [17], while mρ

d and sρd are respectively the
mean and standard deviation of the dissimilarity d, evaluated
empirically on identically distributed noisy patches of size |ρ|.

If the NL-means offer an overall good performance, they
suffer from two opposite drawbacks: on the one hand they
might over-smooth low-contrasted areas due to the selection
of irrelevant candidates, while on the other hand they leave a
residual noise around edges and singular structures due to the
lack of redundancy. These two flaws are respectively referred
to as the jittering effect and the rare patch effect.

2) Adaptive regularization of the NL-means: In previous
work [12], we reduce these drawbacks in two steps.
Dejittering step: The jittering is due to an over-important
variance reduction that produces bias [18]. The proposed
method balances the bias-variance compromise by re-injecting
noisy data when denoising is irrelevant, i.e. when the variance
reduction is too high. We perform an adaptive convex com-
bination between the NL-means solution uNL and the noisy
image g for each each pixel i by:

Algorithm 1 R-NLF
Require: g: initial noisy image,

W : block size, αeq: probability of detection,
|ρ|: patch size, N : search window size,
γ: regularization parameter.

NLF estimation step

for each block gω do
for each direction k = 1..K do

Compute τ(gω1 , g
ω
2 )

Compute the p-value pωk
end for
if
⋂K
k=1{pωk > α} then

Insert (mean(gω),Var(gω)) to (m, s2)
end if

end for

Estimate ̂(a, b, c) = argmin
a,b,c

‖NLF(a,b,c)(m)− s2‖1.

for i ∈ Ω do

NL-means step
Compute wi,j ← 1

Zi
exp

(
− |d(gρi ,gρj )−mρd|

sρd

)
, ∀j ∈ Ni

Compute uNL
i ←

∑
j wi,jgj

Compute (σ̂NL
i )2 ←

∑
j wi,jg

2
j − (uNL

i )2

Compute (σnoise
i )2 = a(uNL

i )2 + b(uNL
i ) + c

Dejittering step
Compute αi ← |(σ̂NL

i )2−(σnoise
i )2|

|(σ̂NL
i )2−(σnoise

i )2|+(σnoise
i )2

Update uNL
i ← (1− αi)uNL

i + αigi

Update wi,j ← (1− αi)wi,j + αiδi,j

Compute λi ← γ
(∑

j w
2
i,j

)−1/2

end for

Minimization step

uR-NLF =argmin
u

∑
i∈Ω

λi

(
ui − uNL

i

)2
2 NLF(a,b,c)(u

NL
i )

+TV(u)

return uR-NLF

uNLDJ
i = (1− αi)uNL

i + αigi =
∑
j∈Ω

wNLDJ
i,j gj , (8)

where the weights wNLDJ
i,j = (1 − αi)w

NL
i,j + αiδi,j (δi,j is

Kronecker’s symbol) are in fact a readjustment of the initial
weights wNL

i,j , and αi is a jittering index given by:

αi =
|(σ̂NL

i )2 − (σnoise
i )2|

|(σ̂NL
i )2 − (σnoise

i )2|+ (σnoise
i )2

. (9)

(σnoise
i )2 refers to the noise variance, and (σ̂NL

i )2 is the
non local variance that reflects the variance of the selected
candidates in the weighted average. Besides, the residual
variance at pixel i of the dejittered solution uNLDJ is given
by:

(σ̂residual
i )2 =

[∑
j∈Ω

(wNLDJ
i,j )2

]
(σnoise
i )2. (10)



The quantity
∑
j∈Ω(wNLDJ

i,j )2 reflects the amount of noise that
has been removed from pixel i, providing a performance index.
Regularization step: The performance index (σ̂residual

i )2 is then
used to reduce the rare patch effect, through an adaptive
regularization based on a non-local data fidelity term and a
total variation (TV) regularization [15]:

uR-NL = argmin
u∈RN

∑
i∈Ω

λi
∑
j∈Ω

wi,j(gj − ui)2 + TV(u)

= argmin
u∈RN

∑
i∈Ω

λi
(
ui − uNL

i

)2
+ TV(u), (11)

where TV(u) =
∑
i∈Ω ‖(∇u)i‖, and λi is an adaptive

regularization parameter given by:

λi = γ

(
σ̂residual
i

σnoise
i

)−1

= γ

(∑
j∈Ω

w2
i,j

)−1/2

. (12)

B. R-NLF: blind denoising

Thanks to the good properties of the non-local means and
the variational methods, R-NL can readily be adopted to
different noise models, by adapting the similarity measure
between patches according to the noise statistics [17], as well
as the data fidelity term in the regularization process [12].

For blind denoising, we do not estimate a given model,
going through hypothesis tests, but we rather use directly the
estimated NLF parameters. For this purpose, we approximate
the noise by additive, signal-dependent Gaussian noise, with
second order polynomial variance, such that the noisy image
g is a realization of the random variable G given by:

G = f + NLF(a,b,c)(f) · ε, (13)

with NLF(a,b,c)(f) = af2 + bf + c and ε ∼ N (0, 1).
Then the R-NLF algorithm is derived from R-NL, taking

into account the signal dependence without direct knowledge
of the noise distribution, but only of the (â, b, c) parameters of
the estimated NLF. The dissimilarity measure d is then adapted
as follows:

d(gρi , gρj ) =
1

|ρ|

|ρ|∑
k=1

(
gρik − g

ρj
k

)2
NLF

(â,b,c)
(gρik ) + NLF

(â,b,c)
(g
ρj
k )

.

(14)
The dejittering step is straightforward; it relies on the

computation of the index αi, based on the non local variance(
σ̂NL
i

)2
and the noise variance

(
σnoise
i

)2
, computed as follows:(

σnoise
i

)2
= NLF

(â,b,c)
(uNL
i ) = â(uNL

i )2 + b̂(uNL
i ) + ĉ. (15)

Finally, using the polynomial variance Gaussian model,
problem (11) becomes:

uR-NLF = argmin
u∈RN

∑
i∈Ω

λi

(
ui − uNL

i

)2
2 NLF

(â,b,c)
(uNL
i )

+ TV(u). (16)

Similarly to the Gaussian case, this minimization problem is
then solved using the primal-dual algorithm [14]. The whole
blind denoising process is summarized in Algorithm 1.

Table I
MEAN RELATIVE ERROR (MRE) FOR POISSON-GAUSSIAN AND HYBRID
NOISE WITH THE GAUSSIAN-CAUCHY MIXTURE MODEL [4], THE PCA
METHOD [6], THE PERCENTILE METHOD [7], NOISE CLINIC [19], [20],

THE VST BASED METHOD [3] (ONLY AFFINE MODEL) AND OUR
ALGORITHM (AFFINE OR SECOND ORDER MODEL), AND PSNR AFTER

DENOISING WITH THE R-NLF ALGORITHM, USING THE ESTIMATED NLF.

Affine noise Affine noise Hybrid noise
Estimator MRE PSNR MRE PSNR MRE PSNR

Gaussian-Cauchy [4] 0.093 29.051 0.045 26.318 0.051 26.810
PCA [6] 0.219 28.324 0.873 24.127 0.454 23.923

Percentile [7] 0.084 28.994 0.117 26.072 0.148 26.057
Noise Clinic [19] 0.327 27.616 0.373 24.267 0.403 24.201

[20] \ 28.114 \ 25.009 \ 25.509
VST [3] 0.040 29.124 0.035 26.361 \ \

Prop. affine 0.078 29.062 0.057 26.308 \ \
Prop. hybrid 0.080 28.946 0.059 26.115 0.070 26.628
R-NLF (real) \ 29.159 \ 26.429 \ 26.766

Original Denoised

Figure 3. Blind denoising of night vision images acquired from an helicopter
using a light intensifier coupled to a CCD camera.

IV. EXPERIMENTS AND RESULTS

In this section, we discuss and compare the efficiency of
the proposed approach with regards to the noise estimation
and the blind image denoising. For the sake of replicability, a
Matlab implementation for the automatic noise estimation and
its application to image and video denoising is available for
download at https://github.com/csutour/RNLF.

Figure 1 illustrates the noise estimation process, and Fig. 2
shows the denoising results of an image corrupted with sim-
ulated hybrid noise. On Fig. 2-a, the noise is assumed to
be Gaussian, so the result suffers from some artifacts due to
the fact that the noise variance should not be assumed to be
constant over the whole image. On Fig. 2-b, the polynomial
NLF is estimated and plugged into the denoising process while
on Fig. 2-c, the real noise parameters are used. The similar
results show the reliability of the estimation.

A. Comparison to state of the art

We validate the proposed approach with respect to the state
of the art algorithms that perform noise estimation and/or blind
denoising. Based on the database of 150 natural images1, we
generate a set of noisy images, either with Poisson-Gaussian

1http://www.gipsa-lab.grenoble-inp.fr/~laurent.condat/imagebase.html



noise with low or high noise level or with a mixture of
Gaussian, Poisson and Gamma noise. We estimate the noise
parameters with the different estimators: the Gaussian-Cauchy
mixture model [4] which is the most general model, the PCA
method [6], the percentile method [7], and the Noise Clinic
estimation [19], that estimate frequency-dependent noise but
that we use here for the estimation of affine or hybrid noise,
the estimation based on the variance stabilization transform
(VST) [3] that applies only for Poisson-Gaussian noise, and
our algorithm that can estimate either a given model (e.g.,
affine) or a general second order one. Based on the knowledge
of the real noise parameters (a, b, c), we compute the mean
relative error

MRE(â, b, c) =
1

|I|
∑
f∈I

∣∣∣NLF(a,b,c)(f)−NLF
(â,b,c)

(f)
∣∣∣

NLF(a,b,c)(f)
,

where I is a discretization of the interval of image intensities.
The level of detection α as well as the block size W have also
been empirically optimized using this mean relative error.

Then we plug the estimated NLF parameters for each
method into the R-NLF algorithm, and we compute the
obtained PSNR. We also compare the denoising results to the
Noise-Clinic denoising algorithm [20] and to the results of the
R-NLF denoising algorithm using the true noise parameters
(so there is no noise estimation error in these cases). Table
I illustrates the estimation and denoising performance of the
suitable estimators for Poisson-Gaussian and hybrid noise.
Results show that our estimation method offers comparable
results to the Gaussian-Cauchy method, and that reliable noise
estimations offer good denoising performance.
B. Night vision application

The proposed blind denoising algorithm has been used
on night vision images. In order to improve night vision
for helicopter pilots, a light intensifier tube multiplies the
number of photons in order to artificially increase light, then
the output is coupled to a CCD (Charge Coupled Device)
camera and the images are projected onto the helmet’s visor
in order to provide a head-up display. However, the obtained
images suffer from heavy non-Gaussian noise. Using the blind
denoising algorithm, we can first estimate the unknown noise
level function then apply the adaptive denoising algorithm.
Results are displayed on Fig. 3.

V. CONCLUSION

We have developed a fully automatic blind denoising
method that relies on the estimation of the noise level function
and robust image denoising. The noise estimation is performed
using the non-parametric detection of homogeneous regions
based on Kendall’s τ coefficient between neighbors, then the
noise level function is estimated thanks to a L1-minimization.
Then the noise level function is directly re-injected into a
robust denoising algorithm based on an adaptive regularization
of the non-local means. This method can encompass a general
second order noise model, and results on synthetic images
show show the performance of both the noise estimation and

the denoising process. Furthermore, we provide a Matlab
implementation for an easy access to the developed tools.
Future work might lead to the study of a more general noise
model, that could also encompass spatially varying noise level
functions and spatially correlated noise.
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