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Automatic Estimation of the Noise Level Function for Adaptive Blind Denoising

Image denoising is a fundamental problem in image processing and many powerful algorithms have been developed. However, they often rely on the knowledge of the noise distribution and its parameters. We propose a fully blind denoising method that first estimates the noise level function then uses this estimation for automatic denoising. First we perform the nonparametric detection of homogeneous image regions in order to compute a scatterplot of the noise statistics, then we estimate the noise level function with the least absolute deviation estimator. The noise level function parameters are then directly re-injected into an adaptive denoising algorithm based on the non-local means with no prior model fitting. Results show the performance of the noise estimation and denoising methods, and we provide a robust blind denoising tool.

I. INTRODUCTION

Image denoising is widely studied in image processing. Many powerful algorithms have been developed recently and achieve outstanding results [START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF], [START_REF] Dabov | Image denoising by sparse 3D transform-domain collaborative filtering[END_REF]. However, they often rely on the knowledge of the noise distribution and the noise level, that are in most cases assumed to be known. We propose a blind denoising algorithm that automatically estimates the noise level function, i.e. the function of the noise variance with respect to the image intensities, then re-injects the estimation into a denoising algorithm without any model fitting.

Section II is dedicated to the automatic estimation of spatially uncorrelated, signal-dependent noise from a single image. Variance stabilizing transforms can reduce the dependency between the signal intensity and the noise [START_REF] Pyatykh | Image sensor noise parameter estimation by variance stabilization and normality assessment[END_REF]. Separation techniques have also been extended to specific signal-dependent models, e.g., using a wavelet transform for a Poisson-Gaussian model [START_REF] Azzari | Gaussian-cauchy mixture modeling for robust signal-dependent noise estimation[END_REF] or using a Gaussian mixture model of patches for additive noise with polynomial variance [START_REF]Indirect estimation of signal-dependent noise with nonadaptive heterogeneous samples[END_REF]. The noise can also be distinguished from the signal components by principal component analysis [START_REF] Colom | Analysis and extension of the pca method, estimating a noise curve from a single image[END_REF] or by selecting blocks with lowest variance [START_REF]Analysis and extension of the percentile method, estimating a noise curve from a single image[END_REF].

The approach that we follow here [START_REF] Sutour | Estimation of the noise level function based on a non-parametric detection of homogeneous image regions[END_REF] relies on the fact that natural images contain homogeneous areas, where the signal to noise ratio is very weak, so only the statistics of the noise intervene. While classic detectors require assumptions on the noise statistics [START_REF] Chehdi | A new approach to identify the nature of the noise affecting an image[END_REF], [START_REF] Beaurepaire | Identification of the nature of noise and estimation of its statistical parameters by analysis of local histograms[END_REF], we propose a non-parametric detection of homogeneous areas based on Kendall's rank correlation coefficient [START_REF] Kendall | A new measure of rank correlation[END_REF] that only requires the noise to be spatially uncorrelated. Then we estimate the noise level function (NLF), i.e., the function of the noise variance with respect to the image intensities, as a second order polynomial minimizing the 1 error on the statistics of these regions.

Then in section III, we use the estimated noise level function for blind denoising. We adapt an adaptive denoising algorithm [START_REF] Sutour | Adaptive regularization of the NL-means: Application to image and video denoising[END_REF] that performs fast image denoising and is flexible for different noise statistics. The proposed method relies only on the estimated noise level function: the noise is approximated by additive noise with polynomial variance and the denoising algorithm is adapted accordingly.

In section IV, experiments and numerical results show the validity of the proposed estimation and denoising methods, as well as comparisons to the state-of-the-art. We also provide a Matlab implementation for the automatic noise estimation and its application to image and video denoising, that is available for download at https://github.com/csutour/RNLF.

II. NOISE ESTIMATION

In this problem, we assume that the observed image g ∈ R N , where N is the number of pixels of the image, is an observation of a clean unknown image g 0 , corrupted by a spatially uncorrelated signal dependent noise. Hence, g can be modeled as the realization of a random vector G such that E[G] = g 0 , and

Cov[G] =      NLF(g 0 1 ) 0 NLF(g 0 2 ) . . . 0 NLF(g 0 N )      , (1) 
where NLF : R → R + is coined the noise level function. This model hence encompasses spatially uncorrelated, signal dependent noise.

In order to estimate the unknown noise level function, we rely on the fact that most natural images contain homogeneous regions, i.e., areas where the underlying clean signal can be assumed to be constant. In those regions, according to eq. ( 1), the empirical expectation and variance should provide a punctual estimation of the noise level function. Hence, we seek to detect homogeneous regions with no access to the true underlying signal g 0 in order to get punctual estimations of the noise level function. Then the NLF can be estimating by fitting a second order polynomial function to the scatterplot. 

A. Detection of homogeneous areas

The goal is to develop a method that automatically selects homogeneous regions in the image. It is important for such technique not to make any assumption on the nature of the noise. We therefore consider a non-parametric approach whose statistical answer is independent of the noise model. The key idea is that we focus mainly on the rank (i.e. on the relative order) of the pixel values rather than on the values themselves. If the ranking of the pixel values is uniformly random or spatially uncorrelated, then this means that there is no apparent structure in the considered zone.

1) Kendall's τ coefficient: To measure the correlation of the ranking, we rely on the Kendall's τ coefficient. Kendall's τ coefficient is a rank correlation measure [START_REF] Kendall | A new measure of rank correlation[END_REF] that provides a non-parametric hypothesis test for statistical dependence.

Let (x 1 , • • • , x n ) and (y 1 , • • • , y n ) be two sequences of n observations of random variables X and Y . Definition. Kendall's τ ∈ [-1, 1] coefficient is defined as: τ = 1 n(n -1) 1≤i,j≤n sign(x i -x j ) sign(y i -y j ), (2) 
assuming that, for all i = j, x i = x j and y i = y j . A value τ = 0 indicates the absence of correlation between X and Y . Distribution of τ . Under the null hypothesis of independence of X and Y , the sampling distribution of τ has an expected value of 0. In case of large samples, it is approximated by the normal distribution [START_REF] Prokhorov | Kendall coefficient of rank correlation[END_REF]:

τ ∼ N 0, 2(2n + 5) 9n(n -1) . (3) 
In fact, it can be used for non-parametric tests as its distribution does not rely on any assumptions regarding the distribution of X and Y . Determining significance. The above coefficient indicates whether the variables are likely to be dependent or not, and its significance is based on the score, which is approximately distributed along a standard normal distribution. The detection is performed by computing the associated p-value and rejecting the null hypothesis if the p-value is smaller than a predetermined significance level α, that corresponds to the desired probability of detection.

2) Homogeneous detection: Kendall's rank correlation coefficient is a non-parametric measure that assesses the statistical dependence between two variables, based on their relative order. In the homogeneous detection problem, we need to estimate whether the samples of a block g ω of the image g are independent and identically distributed, based on the fact that if the area is homogeneous, then the ranking is spatially uniform. To do so, we look at the statistical dependence between pixels of a block g ω by dividing the block in two disjoint sequences g ω 1 = (g ω 2k ) and g ω 2 = (g ω 2k+1 ) where g ω 2k and g ω 2k+1 represent neighbor pixel values for a given scan path. If these two variables are found to be independent, this means that there is no relationship between the pixels of the blocks and their neighbors, so we can assume that there is no structure and all fluctuations are only due to noise.

We run K = 4 tests for horizontal, vertical and the two diagonal neighbors and aggregate them to obtain a more selective estimator. We consider the block to be homogeneous if the test of independence for each direction is satisfied, i.e. if each of the K obtained p-values p k reaches a given level of significance α. By doing so, the overall level of detection α eq after aggregation is no longer α but smaller and given by

α eq = P K k=1 {p k > α} . (4) 
In order to control the overall level of detection α eq , we empirically estimated offline the relation between α eq and α.

B. Model estimation

Once the mean/variance couples (m, s 2 ) on uniform regions are computed, a model that fits the observed NLF can be estimated. The goal is to find the polynomial coefficients (a, b, c) such that the vector of each estimated variance s 2 can be represented as am 2 + bm + c, where m contains the estimated means. To do so, we use the least absolute deviation estimator that minimizes a L 1 -norm, that is known to be more robust to outliers (that might happen due to false homogeneous detection) than the L 2 -norm. The problem is formulated as follows:

(a, b, c) = argmin a,b,c am 2 + bm + c -s 2 1 = argmin a,b,c N LF (a,b,c) (m) -s 2 1 . (5) 
We can derive an iterative solution, using the preconditioned primal-dual algorithm of Chambolle-Pock [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]. 

III. DENOISING

Once the noise level function has been estimated, it can be injected into the denoising process, based on the R-NL denoising algorithm [START_REF] Sutour | Adaptive regularization of the NL-means: Application to image and video denoising[END_REF]. This flexible algorithm allows efficient denoising using solely the noise level function estimation.

A. R-NL: adaptive denoising algorithm

In previous work [START_REF] Sutour | Adaptive regularization of the NL-means: Application to image and video denoising[END_REF], we have combined the assumptions of regularity and redundancy provided respectively by the variational methods [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] and the non-local means [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF].

1) NL-means: The non-local means algorithm is based on the hypothesis of redundancy of structures inside natural images. It performs a weighted average of pixels with similar neighborhoods. For each pixel i in the image domain Ω, the solution of the NL-means is:

u NL i = j∈Ω w i,j g j , (6) 
where the weights w i,j ∈ [0, 1] select pixels j whose surrounding patch ρ j is similar to the patch ρ i extracted around the central pixel i:

w i,j = 1 Z i exp - |d(g ρi , g ρj ) -m ρ d | s ρ d . ( 7 
)
Z i is a normalization factor and d is a similarity function that evaluates the similarity between patches according to the noise distribution [START_REF] Deledalle | How to compare noisy patches? Patch similarity beyond Gaussian noise[END_REF], while m ρ d and s ρ d are respectively the mean and standard deviation of the dissimilarity d, evaluated empirically on identically distributed noisy patches of size |ρ|.

If the NL-means offer an overall good performance, they suffer from two opposite drawbacks: on the one hand they might over-smooth low-contrasted areas due to the selection of irrelevant candidates, while on the other hand they leave a residual noise around edges and singular structures due to the lack of redundancy. These two flaws are respectively referred to as the jittering effect and the rare patch effect.

2) Adaptive regularization of the NL-means: In previous work [START_REF] Sutour | Adaptive regularization of the NL-means: Application to image and video denoising[END_REF], we reduce these drawbacks in two steps. Dejittering step: The jittering is due to an over-important variance reduction that produces bias [START_REF] Kervrann | Bayesian non-local means filter, image redundancy and adaptive dictionaries for noise removal[END_REF]. The proposed method balances the bias-variance compromise by re-injecting noisy data when denoising is irrelevant, i.e. when the variance reduction is too high. We perform an adaptive convex combination between the NL-means solution u NL and the noisy image g for each each pixel i by: 

N LF (a,b,c) (m) -s 2 1 . for i ∈ Ω do NL-means step Compute w i,j ← 1 Zi exp - |d(g ρ i ,g ρ j )-m ρ d | s ρ d , ∀j ∈ N i Compute u NL i ← j w i,j g j Compute (σ NL i ) 2 ← j w i,j g 2 j -(u NL i ) 2 Compute (σ noise i ) 2 = a(u NL i ) 2 + b(u NL i ) + c Dejittering step Compute α i ← |(σ NL i ) 2 -(σ noise i ) 2 | |(σ NL i ) 2 -(σ noise i ) 2 |+(σ noise i ) 2 Update u NL i ← (1 -α i )u NL i + α i g i Update w i,j ← (1 -α i )w i,j + α i δ i,j Compute λ i ← γ j w 2 i,j -1/2 end for Minimization step u R-NLF = argmin u i∈Ω λ i u i -u NL i 2 2 NLF (a,b,c) (u NL i ) +TV(u) return u R-NLF u NLDJ i = (1 -α i )u NL i + α i g i = j∈Ω w NLDJ i,j g j , (8) 
where the weights w NLDJ i,j = (1 -α i )w NL i,j + α i δ i,j (δ i,j is Kronecker's symbol) are in fact a readjustment of the initial weights w NL i,j , and α i is a jittering index given by:

α i = |(σ NL i ) 2 -(σ noise i ) 2 | |(σ NL i ) 2 -(σ noise i ) 2 | + (σ noise i ) 2 . ( 9 
)
(σ noise i ) 2 refers to the noise variance, and (σ NL i ) 2 is the non local variance that reflects the variance of the selected candidates in the weighted average. Besides, the residual variance at pixel i of the dejittered solution u NLDJ is given by:

(σ residual i ) 2 = j∈Ω (w NLDJ i,j ) 2 (σ noise i ) 2 . ( 10 
)
The quantity j∈Ω (w NLDJ i,j

) 2 reflects the amount of noise that has been removed from pixel i, providing a performance index. Regularization step: The performance index (σ residual i ) 2 is then used to reduce the rare patch effect, through an adaptive regularization based on a non-local data fidelity term and a total variation (TV) regularization [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]:

u R-NL = argmin u∈R N i∈Ω λ i j∈Ω w i,j (g j -u i ) 2 + TV(u) = argmin u∈R N i∈Ω λ i u i -u NL i 2 + TV(u), (11) 
where TV(u) = i∈Ω (∇u) i , and λ i is an adaptive regularization parameter given by:

λ i = γ σresidual i σ noise i -1 = γ j∈Ω w 2 i,j -1/2 . ( 12 
)

B. R-NLF: blind denoising

Thanks to the good properties of the non-local means and the variational methods, R-NL can readily be adopted to different noise models, by adapting the similarity measure between patches according to the noise statistics [START_REF] Deledalle | How to compare noisy patches? Patch similarity beyond Gaussian noise[END_REF], as well as the data fidelity term in the regularization process [START_REF] Sutour | Adaptive regularization of the NL-means: Application to image and video denoising[END_REF].

For blind denoising, we do not estimate a given model, going through hypothesis tests, but we rather use directly the estimated NLF For this purpose, we approximate the noise by additive, signal-dependent Gaussian noise, with second order polynomial variance, such that the noisy image g is a realization of the random variable G given by:

G = f + NLF (a,b,c) (f ) • ε, (13) 
with NLF (a,b,c) (f ) = af 2 + bf + c and ε ∼ N (0, 1).

Then the R-NLF algorithm is derived from R-NL, taking into account the signal dependence without direct knowledge of the noise distribution, but only of the ( a, b, c) parameters of the estimated NLF. The dissimilarity measure d is then adapted as follows:

d(g ρi , g ρj ) = 1 |ρ| |ρ| k=1 g ρi k -g ρj k 2 NLF ( a,b,c) (g ρi k ) + NLF ( a,b,c) (g ρj k )
.

(14) The dejittering step is straightforward; it relies on the computation of the index α i , based on the non local variance σ NL i 2 and the noise variance σ noise i 2 , computed as follows:

σ noise i 2 = NLF ( a,b,c) (u NL i ) = â(u NL i ) 2 + b(u NL i ) + ĉ. (15) 
Finally, using the polynomial variance Gaussian model, problem [START_REF] Kendall | A new measure of rank correlation[END_REF] becomes:

u R-NLF = argmin u∈R N i∈Ω λ i u i -u NL i 2 2 NLF ( a,b,c) (u NL i ) + TV(u). (16) 
Similarly to the Gaussian case, this minimization problem is then solved using the primal-dual algorithm [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]. The whole blind denoising process is summarized in Algorithm 1. [START_REF] Azzari | Gaussian-cauchy mixture modeling for robust signal-dependent noise estimation[END_REF], THE PCA METHOD [START_REF] Colom | Analysis and extension of the pca method, estimating a noise curve from a single image[END_REF], THE PERCENTILE METHOD [START_REF]Analysis and extension of the percentile method, estimating a noise curve from a single image[END_REF], NOISE CLINIC [START_REF] Colom | A non-parametric approach for the estimation of intensity-frequency dependent noise[END_REF], [START_REF] Lebrun | The noise-clinic: a universal blind denoising algorithm[END_REF],

Table I MEAN RELATIVE ERROR (MRE) FOR POISSON-GAUSSIAN AND HYBRID NOISE WITH THE GAUSSIAN-CAUCHY MIXTURE MODEL

THE VST BASED METHOD [START_REF] Pyatykh | Image sensor noise parameter estimation by variance stabilization and normality assessment[END_REF] 

IV. EXPERIMENTS AND RESULTS

In this section, we discuss and compare the efficiency of the proposed approach with regards to the noise estimation and the blind image denoising. For the sake of replicability, a Matlab implementation for the automatic noise estimation and its application to image and video denoising is available for download at https://github.com/csutour/RNLF.

Figure 1 illustrates the noise estimation process, and Fig. 2 shows the denoising results of an image corrupted with simulated hybrid noise. On Fig. 2-a, the noise is assumed to be Gaussian, so the result suffers from some artifacts due to the fact that the noise variance should not be assumed to be constant over the whole image. On Fig. 2-b, the polynomial NLF is estimated and plugged into the denoising process while on Fig. 2-c, the real noise parameters are used. The similar results show the reliability of the estimation.

A. Comparison to state of the art

We validate the proposed approach with respect to the state of the art algorithms that perform noise estimation and/or blind denoising. Based on the database of 150 natural images 1 , we generate a set of noisy images, either with Poisson-Gaussian noise with low or high noise level or with a mixture of Gaussian, Poisson and Gamma noise. We estimate the noise parameters with the different estimators: the Gaussian-Cauchy mixture model [START_REF] Azzari | Gaussian-cauchy mixture modeling for robust signal-dependent noise estimation[END_REF] which is the most general model, the PCA method [START_REF] Colom | Analysis and extension of the pca method, estimating a noise curve from a single image[END_REF], the percentile method [START_REF]Analysis and extension of the percentile method, estimating a noise curve from a single image[END_REF], and the Noise Clinic estimation [START_REF] Colom | A non-parametric approach for the estimation of intensity-frequency dependent noise[END_REF], that estimate frequency-dependent noise but that we use here for the estimation of affine or hybrid noise, the estimation based on the variance stabilization transform (VST) [START_REF] Pyatykh | Image sensor noise parameter estimation by variance stabilization and normality assessment[END_REF] that applies only for Poisson-Gaussian noise, and our algorithm that can estimate either a given model (e.g., affine) or a general second order one. Based on the knowledge of the real noise parameters (a, b, c), we compute the mean relative error

MRE( a, b, c) = 1 |I| f ∈I NLF (a,b,c) (f ) -NLF ( a,b,c) (f ) NLF (a,b,c) (f ) ,
where I is a discretization of the interval of image intensities.

The level of detection α as well as the block size W have also been empirically optimized using this mean relative error.

Then we plug the estimated NLF parameters for each method into the R-NLF algorithm, and we compute the obtained PSNR. We also compare the denoising results to the Noise-Clinic denoising algorithm [START_REF] Lebrun | The noise-clinic: a universal blind denoising algorithm[END_REF] and to the results of the R-NLF denoising algorithm using the true noise parameters (so there is no noise estimation error in these cases). Table I illustrates the estimation and denoising performance of the suitable estimators for Poisson-Gaussian and hybrid noise. Results show that our estimation method offers comparable results to the Gaussian-Cauchy method, and that reliable noise estimations offer good denoising performance.

B. Night vision application

The proposed blind denoising algorithm has been used on night vision images. In order to improve night vision for helicopter pilots, a light intensifier tube multiplies the number of photons in order to artificially increase light, then the output is coupled to a CCD (Charge Coupled Device) camera and the images are projected onto the helmet's visor in order to provide a head-up display. However, the obtained images suffer from heavy non-Gaussian noise. Using the blind denoising algorithm, we can first estimate the unknown noise level function then apply the adaptive denoising algorithm. Results are displayed on Fig. 3.

V. CONCLUSION

We have developed a fully automatic blind denoising method that relies on the estimation of the noise level function and robust image denoising. The noise estimation is performed using the non-parametric detection of homogeneous regions based on Kendall's τ coefficient between neighbors, then the noise level function is estimated thanks to a L 1 -minimization. Then the noise level function is directly re-injected into a robust denoising algorithm based on an adaptive regularization of the non-local means. This method can encompass a general second order noise model, and results on synthetic images show show the performance of both the noise estimation and the denoising process. Furthermore, we provide a Matlab implementation for an easy access to the developed tools. Future work might lead to the study of a more general noise model, that could also encompass spatially varying noise level functions and spatially correlated noise.

Figure 1 .

 1 Figure 1. Detection of homogeneous areas in an image corrupted with hybrid noise as the sum of Gaussian, Poisson and multiplicative gamma noise whose NLF parameters are (a, b, c) = (0.0312, 0.75, 400), resulting in an initial PSNR of 17.93dB. a) Noisy image (range [0, 255]), b) p-value (range [black = 0, white = 1]) of the associated Kendall's τ coefficient computed within blocks of size W = 16 × 16, and c) selected homogeneous blocks (red) by thresholding the p-value to reach a probability of detection of P D = 1 -P FA = 0.7, d) Estimation of the noise level function with the LAD estimator.

Figure 2 .

 2 Figure 2. Denoising of a hybrid noise with true parameters (a, b, c) = (0.0312, 0.625, 100), initial PSNR = 20.34dB. The noisy image is displayed on Fig. 1-a. a) Standard R-NL assuming Gaussian noise, b) R-NLF with the estimated NLF and c) R-NLF with the true NLF.

Algorithm 1 , g ω 2 )

 12 R-NLF Require: g: initial noisy image, W : block size, α eq : probability of detection, |ρ|: patch size, N : search window size, γ: regularization parameter. estimation step for each block g ω do for each direction k = 1..K do Compute τ (g ω 1 Compute the p-value p ω k end for if K k=1 {p ω k > α} then Insert (mean(g ω ), Var(g ω )) to (m, s 2 ) end if end for Estimate (a, b, c) = argmin a,b,c

Figure 3 .

 3 Figure 3. Blind denoising of night vision images acquired from an helicopter using a light intensifier coupled to a CCD camera.

  (ONLY AFFINE MODEL) AND OUR ALGORITHM (AFFINE OR SECOND ORDER MODEL), AND PSNR AFTER DENOISING WITH THE R-NLF ALGORITHM, USING THE ESTIMATED NLF.

		Affine noise	Affine noise	Hybrid noise
	Estimator	M RE	P SN R	M RE	P SN R	M RE	P SN R
	Gaussian-Cauchy [4]	0.093	29.051	0.045	26.318	0.051	26.810
	PCA [6]	0.219	28.324	0.873	24.127	0.454	23.923
	Percentile [7]	0.084	28.994	0.117	26.072	0.148	26.057
	Noise Clinic [19]	0.327	27.616	0.373	24.267	0.403	24.201
	[20]	\	28.114	\	25.009	\	25.509
	VST [3]	0.040	29.124	0.035	26.361	\	\
	Prop. affine	0.078	29.062	0.057	26.308	\	\
	Prop. hybrid	0.080	28.946	0.059	26.115	0.070	26.628
	R-NLF (real)	\	29.159	\	26.429	\	26.766
	Original				Denoised	

http://www.gipsa-lab.grenoble-inp.fr/~laurent.condat/imagebase.html
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