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Abstract

The present work focused on the study of fluctuations of cortical activity across time scales in young and older
healthy adults. The main objective was to offer a comprehensive characterization of the changes of brain (cortical)
signal variability during aging, and to make the link with known underlying structural, neurophysiological, and
functional modifications, as well as aging theories. We analyzed electroencephalogram (EEG) data of young and
elderly adults, which were collected at resting state and during an auditory oddball task. We used a wide battery
of metrics that typically are separately applied in the literature, and we compared them with more specific ones
that address their limits. Our procedure aimed to overcome some of the methodological limitations of earlier
studies and verify whether previous findings can be reproduced and extended to different experimental condi-
tions. In both rest and task conditions, our results mainly revealed that EEG signals presented systematic
age-related changes that were time-scale-dependent with regard to the structure of fluctuations (complexity) but
not with regard to their magnitude. Namely, compared with young adults, the cortical fluctuations of the elderly
were more complex at shorter time scales, but less complex at longer scales, although always showing a lower
variance. Additionally, the elderly showed signs of spatial, as well as between, experimental conditions dediffer-
entiation. By integrating these so far isolated findings across time scales, metrics, and conditions, the present
study offers an overview of age-related changes in the fluctuation electrocortical activity while making the link with
underlying brain dynamics.
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Significance Statement

Recently, the study of brain signal fluctuations is widely put forward as a promising entry point to
characterize brain dynamics in health and disease. Although interesting results have been reported
regarding how variability of brain activations can serve as an indicator of performance and adaptability in
elderly, many uncertainties and controversies remain with regard to the comparability, reproducibility, and
generality of the described findings, as well as the ensuing interpretations. Following a systematic inves-
tigation of these issues by using a large set of metrics and different experimental conditions, our results
draw an overview of age-related changes of the magnitude and structure of brain fluctuations, which
integrate well with known structural and functional alterations, as well as the main aging theories.
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Introduction
The view that variability in brain activity serves a functional
role is gaining increasing support (Ghosh et al., 2008;
Deco et al., 2009, 2011, 2013; Garrett et al., 2011; Hong
and Rebec, 2012). The characteristics of brain signal
fluctuations are considered to capture the underlying
complex interactions between neuronal structures and
ensembles.

At rest, the brain displays a complex though spatiotem-
porally structured dynamics, where brain states known as
resting-state networks are intermittently activated. These
states are considered to be functionally meaningful be-
cause several of them have been known from task para-
digms (Deco et al., 2013). As underlying mechanisms,
within deterministic frameworks, heteroclinic cycles have
been proposed to generate sequential transitions from
one unstable equilibrium point (saddle) to another. Other
deterministic approaches soften the requirement of un-
stable states and require linked attractive subspaces
(Huys et al., 2014). These approaches are subject to
noise, which seems to be pervasive at different levels of
the CNS (Faisal et al., 2008). However, they do not nec-
essarily require the latter as a generative element as do
those considering that the continually fluctuating back-
ground activity, random or not, drives the multistable
system through a cascade of epochs of invariant, but
distinct, coordinated network activities (Hansen et al.,
2015). McIntosh et al. (2010) argued that noise is linked to
an increased number of functional network configurations
that can be occupied in stochastic systems. This sug-
gests that maturational changes in brain noise represent
an enhancement of the functional network potential, the
brain’s dynamic repertoire (Ghosh et al., 2008). Con-
versely, the natural process of aging, as well as disease,
has been associated with an evolution toward poorer
dynamics, more local interactions, and more regular fluc-
tuations in brain and behavior (for review, see Garrett
et al., 2013b; Sleimen-Malkoun et al., 2014).

In the ergodic theory framework, entropy has been
theoretically demonstrated to be an nonredundant
measure of dynamical systems (Adler and Weiss, 1967;
Ornstein and Weiss, 1991). In empirical data, neurobehav-
ioral variability is characterized through the magnitude

(variance-derived measures) and the time structure (long-
range correlations and entropy-derived metrics; Bravi,
et al., 2011) of fluctuations. The main operational principle
is that the healthy system exhibits complex fluctuations
somewhere at a sweet spot between randomness and
regularity. Such resonance-like phenomena are known as
stochastic resonance and have been observed in biolog-
ical systems including brain networks (Gammaitoni et al.,
1998; Deco et al., 2009; McDonnell and Abbott, 2009;
McDonnell and Ward, 2011). Nevertheless, most of the
widely used measures cannot distinguish between deter-
ministic and stochastic components of the dynamics.
Entropy measures, for instance, are relevant for compar-
isons between different conditions (e.g., resting vs task) or
systems (e.g., young vs old), assuming conventionally that
more entropy corresponds to more complexity (Feldman
and Crutchfield, 1998). Sensu stricto, this latter assump-
tion is not always correct, at least not with single-scale
measures (Costa et al., 2002, 2005).

In fMRI studies, variance-based measures (Grady and
Garrett, 2014), as well as entropy measures (Liu et al.,
2013; Sokunbi, 2014), have been shown to be relevant to
characterize and understand the dynamics of the aging
brain. In this context, multiscale analyses have also been
used (Yang et al., 2013; Smith et al., 2014), although, their
contribution is restricted due to the limited range of func-
tionally meaningful scales that can be covered. Such
measures are of more interest in signals with higher time
resolution, as electroencephalogram (EEG) and MEG re-
cordings, where time-scale dependence of aging effects
can be revealed (McIntosh et al., 2014). Nevertheless,
notwithstanding a number of converging findings showing
that aging does affect the variability of brain activity, no
final conclusions can be made yet concerning the nature
of such changes or their link with functional and adaptive
capabilities. The present study makes a helpful step in this
direction by offering a consistent and coherent character-
ization of EEG signals in young and older adults through a
multiplicity of metrics applied to both resting and task
conditions. Specifically, it investigates the following: (1)
the type of information that can (or cannot) be captured by
the (univariate) metrics that are conventionally used to
characterize brain signals, (2) the distinction between mul-
tiscale changes in the magnitude of fluctuations and their
structure in time, (3) the correspondences between differ-
ent classes of metrics with regard to age-related modifi-
cations in brain activity, (4) the comparability between
aging effects on resting and task-evoked brain fluctua-
tions, and (5) the extent to which changes in brain fluctu-
ations can be linked to structural and functional changes
occurring in the aging brain.

Methods
Participants

Participants were recruited through announcements at
schools in Saarland and at the Saarland University. They
received a compensation of 7.5 Euro per hour. All the
participants were right-handed, had no reported history of
head or neurological disorders, and none were on
medication. The studied sample consisted of 31 young

Received December 1, 2014; accepted March 16, 2015; First published May
11, 2015.
1The authors report no financial conflicts of interest.
2Author contributions: R.S.-M., D.P., V.M., and V.K.J. designed research;

R.S.-M., D.P., V.M., and V.K.J. performed research; R.S.-M., D.P., and J.L.-B.
analyzed data; R.S.-M., D.P., V.M., R.H., J.-L.B., J.-J.T. and V.K.J. wrote the
paper.

3This work was supported by the Aix-Marseille Université foundation
A�Midex-CoordAge project, and the Max Planck Society.

*R.S.-M. and D.P. contributed equally to this work.
Correspondence should be addressed to Viktor Jirsa, Aix-Marseille Univer-

sité, Inserm, Institut de Neurosciences des Systèmes UMR_S 1106, 13385,
Marseille, France. E-mail: viktor.jirsa@univ-amu.fr.

DOI:http://dx.doi.org/10.1523/ENEURO.0067-14.2015
Copyright © 2015 Sleimen-Malkoun et al.
This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International, which permits unrestricted use, distri-
bution and reproduction in any medium provided that the original work is
properly attributed.

New Research 2 of 21

May-June 2015, 2(3) e0067-14.2015 eNeuro.sfn.org

mailto:viktor.jirsa@univ-amu.fr
http://dx.doi.org/10.1523/ENEURO.0067-14.2015
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


(Y; mean age � 22.7, SD � 1.6, age range � 18.8–25.1
years, 14 females), and 28 old adults (O; mean age �
67.8, SD � 3.0, age range � 63.9–74.5 years, 14 fe-
males). Participants of all ages were able to sustain their
attention for the entire duration of the experiment, and
they all underwent a psychological and audiological as-
sessment prior to their enrollment. The used protocol was
in accordance with the regulation of the local ethics com-
mittee. All participants volunteered for this experiment
and gave their written informed consent prior to their
inclusion in the study.

Procedure
The EEG measurement began with a 3 min resting-state

recording (1.5 min with eyes closed, and 1.5 min with eyes
open) and was followed by the auditory oddball task.
During the task, participants were seated comfortably on
a chair in an electrically shielded room, with their eyes
closed. They heard two different tone beeps: a frequent
1000 Hz tone as a standard stimulus and a rare 800 Hz
tone as a deviant stimulus. The standard and deviant
stimuli were presented binaurally (with a probability of 0.8
and 0.2 for standard and deviant, respectively) through
headphones (Sony DJMDR-V300) at 70 dB SPL with du-
ration of 70 ms (including 10 ms rise and fall time). Stimuli
were generated with the software Audacity 1.2.4. The
interstimulus interval ranged from 1200 to 1500 ms. There
were two different experimental conditions: passive lis-
tening (unattended) and active counting (attended). In the
first condition, participants merely listened to the tone
beeps without any response, whereas in the second con-
dition, they had to attend to stimuli and to count the
deviant tones. After the session, they were asked to report
their counting results. Each experimental condition con-
tained 152 standard tones and 38 deviant tones pre-
sented in a pseudorandom order fixed for all participants.
The order of the conditions was always the same, with the
active counting condition following the passive listening
condition. For this study, we considered three conditions,
all with eyes closed: resting state (R), auditory oddball
task without counting (OnC), and auditory oddball with
counting (OC). The condition of resting state with eyes
open was not included because it differed largely in its
frequency content compared to all other conditions,
which interfered with tasks contrasts. Instead, we fo-
cused on studying differences under comparable con-
ditions along the axis of increasing attentional and task
demands.

EEG recordings and preprocessing
The electroencephalogram (EEG) was recorded from

58 Ag/AgCl electrodes using an elastic cap (Electro-
cap), with a sampling rate of 500 Hz in a frequency
band ranging from 0.5 to 100 Hz. The left mastoid was
used as a reference and the right mastoid was recorded
as an active channel. The data were re-referenced off-
line to an average of the left and right mastoids for
further analysis. The electrodes were placed according
to the international 10 –10 system. Vertical and horizon-
tal electrooculogram was recorded for control of eye
blinks and eye movements. Eye movement correction

was accomplished by independent component analysis
(Vigario, 1977). Thereafter, artifacts from head and
body movements were rejected by visual inspection.
Finally, data were downsampled to a sampling rate of
250 Hz, segmented in artifact free 10 s segments (i.e.,
comprising Nt � 2500 data points each), and mean
centered within segments before further analysis. Ac-
cordingly, we insured to have continuous time series of
equal length for all three experimental conditions, on
which multiscale analyses can be reliably applied. For
the two task conditions, segments corresponded to
time intervals containing a comparable number of stim-
uli (7– 8). Table 1 shows the statistics of the resulting
number of segments included in the analysis for each
condition and group.

Metrics
Multiple metrics were applied to all data segments

using MATLAB (MathWorks) or Python scripts for all cal-
culations. We computed: the power spectrum, the spec-
tral degrees of freedom, the detrended fluctuation
analysis, the variogram, and several measures related to
multiscale entropy. In general, all of these metrics relate in
some way to the autocorrelation properties of the signals.
However, it should be noted that neither a straightforward
relationship amongst metrics, nor a direct correspon-
dence between time scales and frequencies exist. On the
one hand, the entropic measures and detrended fluctua-
tion analysis capture nonlinear correlations in addition to
linear ones, but it is not the case for the variogram and the
power spectrum. On the other hand, the detrending and
the coarse graining procedures (for entropic measures)
transform the data in ways that make such direct corre-
spondence impossible. In the following sections, we pres-
ent the different metrics.

Power spectrum
For the calculation of the power spectrum (P), we ap-

plied a Hanning window of Nt � 2500 points to each data
segment. Then, after padding with trailing zeros, a 4096
point Fast Fourier Transform (using the MATLAB function
fft.m) resulted in the complex signal in the frequency

domain X�k� � �
j�1

Np

�x�j�e��2�i/Np��j�1��k�1��, where x is the signal

in the time domain, Np � 4096 and indices j and k run
through points in the time and frequency domain, respec-
tively. Then, the power spectrum was calculated for pos-
itive frequencies as P�k� � X�k�X�k��, where the operator �
signifies the conjugate complex number.

Table 1 Mean, SD, and minimum and maximum numbers of
EEG segments per group and condition included in the anal-
ysis

Mean SD Min Max
Young Rest 7.8 0.6 5 8

OnC 23.9 2.0 15 25
OC 23.0 3.1 11 25

Old Rest 7.4 1.1 4 8
OnC 22.3 3.4 12 25
OC 21.6 3.1 15 25
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Degrees of freedom
Spectral degrees of freedom (DoF) is a statistic that evalu-

ates the uniformity of spectral density (Vaillancourt and Newell,

2003). It is calculated as DoF � ��
k

Nf

P�k��2

/1 / Nf�k
Nf

P�k�2, where P
and k are as above and Nf is the number of positive frequen-
cies. DoF ranges from 1 / Nf for a single peak spectral density
to 1 for a completely flat one, i.e., for white noise.

Detrended fluctuation analysis and generalized Hurst
exponent

Detrended fluctuation analysis (DFA) was introduced
(Peng et al., 1994) in order to extent Hurst’s (1951) Res-
caled Range Analysis for the evaluation of long-range time
correlations in nonstationary signals. Its suitability for non-
stationary signals has been questioned recently (Bryce
and Sprague, 2012). However, it is widely used in different
domains and has found many applications in biology
(Hardstone et al., 2012 provides details for applications in
EEG). We calculated DFA along the following steps:
1. We calculated the cumulative sum of each seg-

ment’s time series after removal of its mean: y

�j� � �
1

j �x�j� ��
k

Nt

x�j�/Nt�, where all symbols follow
the above presented notation.

2. For a particular time scale T(s), with scale s �
4. . .50, and T � 16. . .200 ms in steps of 4 ms, we
segmented the time series into adjacent (nonover-
lapping) windows yws of a length of Nw(s) samples.
Thus, the number of windows W(s) ranged as W �
625. . .50, and the number of samples per window
as Nw � 4. . .50, respectively.

3. For each scale s we calculated the average fluctu-
ation across all windows as the average root-
mean-square error of a polynomial fit of second
order (i.e., it corresponds to removal of linear
trends):

4.
F(s)���

s

W(s)�1/Nw(s)��
m

Nw(s)

(yws(m)�(a2m2� a1m� a0))2��
/W(s), where a0–2 are the coefficients of the polynomial fit,
and m is the index of all samples within a window. We
used the MATLAB functions polyfit.m and polyval.m for
the calculations of the polynomial coefficients and fitting,
respectively.

5. Fluctuations were plotted against time scales in a
ln T(s) � ln F(s) plot and a generalization of the Hurst
exponent, H, was calculated as the slope of the linear fit
(using polyfit in MATLAB) of the resulting curve for time
scales T in the range 24–124 msec. This range was cho-
sen after visual inspection for linear scaling of randomly
chosen data segments as well as of the groups’ mean
curves for each condition. Finally, we compared both
ln F(s) and H across groups and conditions.

H is indicative of the autocorrelation structure of a
signal as follows: (a) for 0 � H � 0.5, negative correlation
(anticorrelation), (b) for H � 0.5, lack of any correlation,
i.e., white noise, (c) for 0.5 � H � 1, positive correlation,
(d) for H � 1, 1/f or pink noise, (e) for 1 � H � 2,
nonstationarity, (f) for H � 1.5, brown noise. The Hurst

exponent is equal to H for H � 1 and to H � 1 for H � 1
(Hardstone et al., 2012).

Variogram
The variogram (V) is an alternative way to evaluate how

the magnitude of variability of a signal varies for different
time scales (Cressie, 1993). However, until present its use
has been limited in neurosciences (Conte et al., 2009). It
has the advantage over variance in that it can be calcu-
lated for stochastic processes for which the mean is either
undefined, i.e., when the related probability distribution
function decays according to a power law with an expo-
nent less than or equal to 1, or when it is hard to empir-
ically observe, i.e., in the cases of a very large
autocorrelation time. It was calculated as: V�s� � 1 / Ns

��
j

Ns

�x�j� � x�j � s��2�, where Ns is the number of distinct
pairs of time points x�j� and x�j � s� of a distance of s
samples, in the range s � 1. . .50, which corresponds to
time scales T�s� in the range of 4–200 msec. Finally, we
compared lnV�s� among groups and conditions.

Multiscale entropy measures
We calculated multiscale entropy using two different

estimators: sample entropy (SampEn; Richman and
Moorman, 2000), giving multiscale sample entropy (MSE),
and Lempel-Ziv complexity (LZ; Lempel and Ziv, 1976),
yielding multiscale Lempel-Ziv entropy (MLZ). To improve
the interpretability of our results, we also estimated a
normalized version of each, i.e., MSEn and MLZn (see
below).

MSE was introduced by Costa et al. (2002, 2005) to
evaluate the complexity of physiobiological signals, such
as heart rate, i.e., the degree to which long-range corre-
lations exist in such signals. The MSE algorithm combines
the calculation of SampEn with a coarse graining proce-
dure, acting similar, albeit not identical, to a low-pass
filter, thereby precluding a one-to-one comparison be-
tween time scales and frequency content of the signal.
SampEn is an improved version of the approximate en-
tropy algorithm (Pincus, 1991), which has been designed
to approximate the so-called Kolmogorov–Sinai entropy
of dynamical systems (that quantifies the global temporal
organization of time series and provides a meaningful
index for discriminating between various dynamic sys-
tems), or the metric entropy or mean entropy rate of
stochastic processes (that is, the rate with which such
processes create new information), for time series of rel-
atively short length, as it is usually the case in biology. In
short, we calculated MSE along the following steps:
1. For a particular time scale T(s), with scale s � 1. . .50,

and T � 4. . .200 ms in steps of 4 ms, we segmented
the time series x�j�into adjacent (nonoverlapping) win-
dows yws of a length of Nw(s) samples. Thus the
number of windows W(s) ranged as W � 2500. . .50,
and the number of samples per window as Nw �
1. . .50, respectively.

2. We averaged all points within each window yws to

generate new time series zws � 1 / Nw�s� �
j�1

Nw�s�

yws�j� for
each scale s.

3. Then, SampEn was calculated for each of the zws
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time series, resulting in a SampEn value for each
scale, as MSE�s� � �ln�N�m � 1�/N�m��, where N
�m� is the number of all possible sequences of m
points in zws that are closer to each other than a
distance r, i.e., where ��zws�i� � zws�j�� � r��
��zws�i � 1� � zws�j � 1�� � r�� . . .� ��zws�i �
m � 1� � zws�j � m � 1�� � r� and i � j (no
self-matches are counted). Thus, SampEn evalu-
ates the percentage of similar sequences of m
points that are still similar (in terms of distance)
when the next point, i.e., the m � 1, is added to the
sequence. In all our calculations we set m � 2 and
r as 50% of the SD of the original signal x�j�, i.e., at
scale 1.

However, the SampEn algorithm has not been analyti-
cally proven to converge toward metric entropy and re-
quires a preliminary setting of the parameter m that could
lead to an underestimation if set inappropriately. We
therefore also tested the LZ complexity, which is an adap-
tive entropy estimator. In addition to being parameter-
free, it was shown to be reliable even for short sequences
of a few hundreds of symbols (Lesne et al., 2009). We
used the same procedure as described above, but at step
3, we calculated LZ instead of SampEn. In the LZ com-
pression algorithm, a symbolic sequence of length Ns is
parsed recursively into words, considering as a new word
the shortest one that has not yet been encountered.
For instance, in a binary example the sequence
100110111001010001011 . is parsed according to 1 . 0 .
01 . 10 . 11 . 100 . 101 . 00 . 010 . 11 . . . . One then
computes LZ � Nw�1 � logkNw�/Ns, where Nw is the num-
ber of words used and k is the number of symbols in the
“alphabet”. Under the assumption that the source is sta-
tionary and ergodic (assumptions that apply to the Sam-
pEn estimator as well), Lempel–Ziv theorems ensure that
LZ coincides with the entropy rate up to a factor logk with
lim
N→�

LZ � h/logk, where h corresponds to metric entropy.

We used an equiquantization procedure (Hlavá�ková
et al., 2007) to convert signals into symbolic sequences
by partitioning them into four bins (k � 4). The bin size was
inversely proportional to the distribution of the amplitude
values of EEG, such that the number of values was the
same in all bins.

MSE curves have been shown to be highly influenced
by the effect of the coarse graining procedure on the SD
at each scale (Nikulin and Brismar, 2004). Therefore, we
also calculated the SD across scales SD(s) (i.e., after
coarse graining) as well as MSEn(s), for which we set a
different threshold r(s) for each scale that was equal to
50% of SD(s) (i.e., relative to the SD of the coarse grained
signal zws). This normalization was also applied to MLZ by
applying at each scale a new grid, adjusted to the vari-
ance of the coarse-grained signal.

Partial Least Squares statistical analysis
We used “contrast” or “non-rotated task partial least

squares” (PLS; as implemented in MATLAB by McIntosh
and Lobaugh, 2004; Krishnan et al., 2011 provides up-
dated information) to test the main effects of groups and

conditions differences. In a nutshell, contrast task PLS is
a multivariate statistical method that is suitable for testing
hypotheses about spatial and/or time distributed signal
changes by combining information across the different
signal dimensions (in our case, channels and time scales
or frequencies). PLS addresses both the problem of mul-
tiple comparisons for statistical significance and of that of
elementwise reliability via a permutation test and a boot-
strap resampling test, respectively. A task PLS analysis
with Ng groups and Nc conditions starts with a data
matrix for each group and a contrast matrix of maximally
Ng � Nc � 1 (as many as the degrees of freedom) ortho-
normal contrasts that represent the hypotheses to be
tested. The rows of each data matrix contain a metric’s
data points or elements of participants within conditions,
which in our case were a metric’s values for all channel
and time scale or frequency combinations. From those
two matrices, a covariance matrix is calculated that con-
tains the covariance of each orthonormal contrast with
each element across participants. This matrix is subjected
to singular value decomposition (SVD) resulting in three
matrices: (1) the orthonormal matrix of the saliences of the
contrasts (as determined by the initial contrast matrix) i.e.,
it contains the task (or design) latent variables that de-
scribe the relations among the conditions and groups of
our design; (2) the orthonormal matrix of element sa-
liences that are proportional to the covariance of each
metrics’ element with each one of the task contrasts, i.e.,
it describes the so-called brain latent variables; and (3) the
diagonal matrix of singular values that are indicative of the
variance explained by each contrast. Then, a permutation
test on the singular values, with resampling of the initial
data matrices, results in a p value for each contrast
tested. Finally, a bootstrap test with resampling of the
initial data matrices, with replacement within conditions
and groups, results in statistical reliability estimations of
each element of both the task and the brain latent vari-
ables within a chosen level of confidence. Thus, the boot-
strap test controls for the robustness of the results among
participants. For the task latent variables, we plotted in-
tervals of 95% confidence. Conditions with nonoverlap-
ping intervals are robustly distinguished by the respective
contrast. For the brain latent variables, we calculated
bootstrap ratios by dividing each element with its SE as
calculated by the corresponding bootstrap sample distri-
bution. Bootstrap ratios �2.5758 approximate the 99th

two-tailed percentile for a particular element. Regarding
the statistical table (Table 2), we calculated the Agresti–
Coull 95% confidence intervals for the p value of all
permutation tests, assuming a binomial distribution for
the probability that a permutation sample will lead to a
larger eigenvalue than the observed one (Brown et al.,
2001), whereas for the bootstrap tests we direct the
reader to the corresponding figures, where the confidence
intervals of the task latent variables and the bootstrap
ratios of the brain latent variables are depicted.

In our design, we had two groups (i.e., Ng � 2), namely
Y and old O participants, and three conditions (Nc � 3),
i.e., R, OnC, and OC as explained above. We tested two
orthogonal contrasts. The weights for the first one before
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normalization were set to 1 for Y-Rest, Y-OnC, and Y-OC,
and to �1 for O-R, O-OnC, and O-OC, i.e., the main group
effect (Y-O). Similarly, the weights for the second contrast
were set to 1 for Y-R and O-Rest, 0 for Y-OnC, and
O-OnC, and �1 for Y-OC and O-OC, i.e., the main effect
of conditions that orders them from the task requiring the
least attention and effort (Rest) to the one demanding the
most (OC). Our choices for these contrasts were hypoth-

eses driven, and as such, they have clear interpretations.
However, they were also justified to a large degree in
terms of the amount of variance in our data that they
actually explain. We confirmed this by running an alterna-
tive explorative version of task PLS, namely a “mean-
centering task PLS”. Following this version of the method,
not only the brain latent variables but also the task ones
are allowed to “rotate” during the SVD of the mean-

Table 2 Statistical table

Effect Metric Data structure Type of test Confidence intervals
Group main effect P Empirical permutation [�0.0008, 0.0046]

bootstrap Figure 5 for Task LV confidence intervals and
Figure 6 for the Brain LV bootstrap ratios

ln(V) permutation [�0.0008, 0.0046]
bootstrap Figure 5 for Task LV confidence intervals and

Figure 6 for the Brain LV bootstrap ratios
SD permutation [�0.0008, 0.0046]

bootstrap Figure 5 for Task LV confidence intervals and
Figure 6 for the Brain LV bootstrap ratios

ln(F) permutation [�0.0008, 0.0046]
bootstrap Figure 5 for Task LV confidence intervals and

Figure 6 for the Brain LV bootstrap ratios
DoF permutation [�0.0008, 0.0046]

bootstrap Figure 5 for Task LV confidence intervals and
Figure 7 for the Brain LV bootstrap ratios

H permutation [�0.0008, 0.0046]
bootstrap Figure 5 for Task LV confidence intervals and

Figure 7 for the Brain LV bootstrap ratios
MSE permutation [0.0000, 0.0078]

bootstrap Figure 5 for Task LV confidence intervals and
Figure 8 for the Brain LV bootstrap ratios

MSEn permutation [�0.0008, 0.0046]
bootstrap Figure 5 for Task LV confidence intervals and

Figure 8 for the Brain LV bootstrap ratios
MLZ permutation [�0.0008, 0.0046]

bootstrap Figure 5 for Task LV confidence intervals and
Figure 8 for the Brain LV bootstrap ratios

MLZn permutation [�0.0008, 0.0046]
bootstrap Figure 5 for Task LV confidence intervals and

Figure 8 for the Brain LV bootstrap ratios
Condition main

effect
P permutation [�0.0008, 0.0046]

bootstrap Figure 9 for Task LV confidence intervals and
Figure 10 for the Brain LV bootstrap ratios

In(V) permutation [�0.0008, 0.0046]
bootstrap Figure 9 for Task LV confidence intervals and

Figure 10 for the Brain LV bootstrap ratios
SD permutation [�0.0008, 0.0046]

bootstrap Figure 9 for Task LV confidence intervals and
Figure 10 for the Brain LV bootstrap ratios

ln(F) permutation [�0.0008, 0.0046]
bootstrap Figure 9 for Task LV confidence intervals and

Figure 10 for the Brain LV bootstrap ratios
MSE permutation [�0.0008, 0.0046]

bootstrap Figure 9 for Task LV confidence intervals and
Figure 11 for the Brain LV bootstrap ratios

MSEn permutation [0.0000, 0.0078]
bootstrap Figure 9 for Task LV confidence intervals and

Figure 11 for the Brain LV bootstrap ratios
MLZ permutation [0.0548, 0.0865]

bootstrap Figure 9 for Task LV confidence intervals and
Figure 11 for the Brain LV bootstrap ratios

MLZn permutation [0.0018, 0.0120]
bootstrap Figure 9 for Task LV confidence intervals and

Figure 11 for the Brain LV bootstrap ratios
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centered and concatenated auto-covariance matrix of the
initial group data matrices, to explain as much variance of
the data as possible (always under the constraint of or-
thogonality; McIntosh and Lobaugh, 2004 shows a de-
tailed description of the method). For all metrics, the first
two latent variables of the mean-centering task PLS cor-
responded to contrasts similar (albeit not identical) to the
ones we tested (group and condition main effects), and
explained approximately 77–99% and 1–15% of the total
variance, respectively, and 88–99% in sum.

Results
To give the reader an intuition on the metrics and their

comparability, as well as some guidance in the interpre-
tation of the results, we illustrate in Figures 1 and 2
representative EEG traces and their respective metrics
curves. Figure 1, left column, depicts randomly selected
data segments from two participants, one young and one
old, for the resting state, requiring the least attention, and
the Oddball counting, requiring the most attention, con-
ditions. In Figure 1, right column, the corresponding
power spectra (P) and the associated DoF are shown. The
results of the respective mutliscale metrics are presented
in Figure 2. In the following sections, we report the ob-
served effects with respect to aging and experimental
conditions for all the different metrics.

Between group differences: aging effects
We first investigated group differences between young
and old participants by performing a separate contrast
task PLS analysis for each metric for the main effect Y – O.

Group differences can be inspected in Figures 3 and 4,
where the mean values with SE intervals are depicted. The
Cz electrode was chosen to visualize mean differences
because oddball responses are well represented by the
central electrodes (Müller et al., 2008, 2009), and gener-
ally Cz is less affected by muscle artifacts. The permuta-
tion tests showed that the contrast was significant for all
metrics (p � 0.001, except for MSE, for which p � 0.002).
These effects were to a large degree homogeneous
among conditions (albeit not identical), and statistically
reliable according to the bootstrap tests as shown in
Figure 3. In the following we describe the main patterns of
the results via the mean and SE intervals (Figs. 3 and 4),
and the bootstrap ratios of the brain latent variables (Figs.
6–8). As regards the magnitude of variability metrics (Figs.
3 and 6), it can be seen that the young participants had
reliably more power (P) at frequencies below 12 Hz (with
the exception of a narrow band around 8 Hz), as well as a
larger magnitude of detrended fluctuations [ln(F)], vari-
ance [ln(V)], and SD. The effects of the last three metrics
were generally reliable across channels and scales, al-
though they were the strongest for the parieto-occipital
channels and longer time scales. As for the metrics that
evaluate the structure of EEG variability across time
scales (Figs. 4, 7 and 8), the elderly’s degrees of freedom
of all channels’ power spectra were larger than that of the
young participants, i.e., the former’s spectra were flatter.
Moreover, the DoFs were the highest for the anterior
channels, as well as for the lateral ones, which were also
noisier (Fig. 4). Figures 4 and 7 also show that the mag-

Figure 1 EEG time series and power spectra of randomly chosen data segments. Time series (left column) and power spectra (right
column) of randomly chosen data segments for channel Cz of two participants, one young and one old, are shown. R condition is
presented in in blueish colors, and OC in reddish colors. From top to bottom, the two conditions for the young participant, and then
similarly for the old one. The corresponding DoF is reported with each power spectrum. A peak close to 10 Hz is apparent in all cases
but for the OC condition of the old participant.
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nitude of the detrended fluctuations coincided with a
larger Hurst exponent for young participants than for the
older. On average, H was around 1.5 for older participants
and 1.7 for the young one (Fig. 3). In both groups, H values
were the highest for more posterior, as well as midline
(and also less noisy), channels. With respect to the en-
tropic metrics (Fig. 8), relative to the young participants,
entropy was higher for the older participants at time
scales shorter than 24 ms, and lower at longer scales from
this point on. Exemplified in Figure 4, the MSE curves of

channel Cz across all conditions show a crossing point.
The effect below the crossing point (i.e., higher entropy for
the old participants for short time scales) was slightly
stronger at the parieto-occipital channels, whereas the
effect above the crossing point (i.e., higher entropy for the
young participants for long time scales) was stronger at
the frontocentral channels, and was present at least up to
the scale of 80 ms (Fig. 8). After normalizing for the SD at
each scale after coarse graining, the resulting MSEn also
showed group differences, but in this case mainly so for

Figure 2 Multiscale metrics of randomly chosen data segments. The multiscale metrics of the same data segments of Figure 1 are
shown, the metrics being arranged from top to bottom ln(V) and ln(F), also depicting the value of H, in logarithmic scale, then, SD, MSE
(solid line), and MLZ (dotted line), and finally, SEn (solid line) and MLZn (dotted line), in linear scale, and data segments arranged from
left to right column, in the same colors as in Figure 1. The frequency peaks close to 10 Hz correspond to local minima of ln(V) at the
time scale of 100 ms. The peaks of MSE and MLZ, as well as the first peaks of the ln(V), close to the time scale of 40 ms, are related
to the fact that most of the power of the signals lies below 50 Hz. Accordingly, the instances where ln(V) reduces again after the time
scale of 148 ms correspond to additional power peaks in the low theta and delta frequencies. However, in general, there is no
straightforward relationship between frequencies of the power spectra and time scales of the metrics that undergo either detrending
ln(F) of DFA or coarse graining (SD, MSE, MLZ, MSEn, and MLZn).
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time scales lower than 32 ms, where SampEn was higher
for old participants. In contrast, the differences between
groups for longer time scales were not as strong. Results
were similar for the Lempel-Ziv entropy metrics (MLZ and
MLZn) shown in Figures 4 and 8. However, effects were
statistically weaker than for MSE, and the crossing point
tended to be one scale shorter for MLZ, i.e., at 20 ms, and
one scale longer for MLZn, i.e., at 36 ms.

In summary, the metrics that primarily evaluate the mag-
nitude of variability across scales (the power spectrum, the
detrended fluctuations’ amplitude, the variogram, and the
SD), indicated that the young participants exhibited larger
fluctuations, mainly so for low-frequencies, long time scales,
and for the posterior channels. Inversely, entropy differences
between groups reversed at the scale of 20–24 ms, and
showed higher entropy for old (young) participants at shorter
(longer) time scales, mainly so for posterior (anterior) chan-
nels, respectively. Normalizing for the standard deviation

after coarse graining substantially weakened the effect at the
long time scales. The generalized Hurst exponent, as a
metric of complexity (or structure in the variability), was in
accordance with the SampEn at long-scales, which was higher
for the young participants, whereas the more DoF of the old
participants was to be expected given their “flatter” power
spectrum, especially for the lower frequencies �12 Hz.

Effects of experimental conditions
We next tested for the main effect of condition, mainly
contrasting R and OC, as the OnC was placed in the
middle. The permutation test showed that the contrast
was significant with p � 0.001 for P, ln(V), SD, ln(F), and
MSE, and with p � 0.002 for MSEn, p � 0.069 for MLZ,
and p � 0.005 for MLZn. The contrast was not significant
for DoF and H (p � 0.1). Notably, the contrast for condi-
tion explained much less variance in our data than that for
group, which was revealed by comparing the singular

Figure 3 Group means and SE intervals of the metrics of the variability magnitude across conditions. From top to bottom: P, ln(V), SD, and ln(F)
are shown for channel Cz, for all conditions (R, bluish colors; OnC, greenish colors; OC, reddish colors, from left to right columns), with darker
colors for old participants (lighter for young). Thick lines and areas of faded colors represent the means and the SE intervals, respectively.
Horizontal axes depict frequency for P, and time scale logarithmically for ln(F) and ln(V), and linearly for SD. Please note the group differences,
which are similar (but not identical) among conditions. The magnitude of variability is generally higher for young participants than old participants
across scales, particularly so for longer time scales and lower frequencies (except for a small interval 	8 Hz).
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values of the condition contrast for each metric in Figure
8 with the corresponding ones for the group contrast in
Figure 5 (the latter were much larger). As further illustrated
in Figure 8, the bootstrap test showed that for P, ln(V), SD,
and ln(F) the three conditions could not be separated
reliably with a confidence of 95% (the respective confi-
dence intervals around the weights of the task latent
variables were largely overlapping). Instead, for the en-

tropic metrics (MSE, MSEn, MLZ, and MLZn) R was gen-
erally reliably separated from the task conditions (OC and
OnC), which was more clearly so for young participants.
To evaluate the statistically reliable effects, as well as the
statistically un- or less-reliable tendencies, we here pres-
ent the brain latent variables for all metrics (Figs. 10 and
11). As for the metrics of the magnitude of variability, ln(V)
and ln(F) were generally higher for the resting condition

Figure 4 Group means and SE intervals of the metrics of the of variability structure across conditions. From top to bottom: DoF, generalized H,
MSE, MSEn, MLZ, and MLZn for all conditions. The arrangement of columns, as well as the color and line conventions, are similar to Figure 1,
except for DoF and H, where error bars are used to depict the standard error intervals. For DoF and H, all channels are shown along the horizontal
axis (from frontal to occipital and left to right hemisphere ones), whereas channel Cz is shown for the rest of the metrics. Thus, the horizontal axes
for those metrics depict time scale in a linear scale. Please note the group differences, which are similar (but not identical) among conditions. In
particular, DoF are more and H is lower for the old participants than the young participants across all channels, MSE and MLZ are higher for old
participants for short time scales, �24 and 20 ms, respectively, and the inverse for longer scales. MSEn and MLZn are also higher for old
participants for scales �32 ms, but the effect for longer time scales is weaker.
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across all scales and channels, but particularly so for
parieto-occipital channels. The SD was higher also for R
at time scales up to 100 ms, also particularly for the
posterior channels. Regarding P, R had more power in the
5–10 and 15–30 Hz frequency intervals than the task
conditions, whereas OC had more power in the delta
band (i.e., 1–4 Hz), particularly so for frontocentral chan-
nels. Regarding the entropic metrics shown in Figure 11,
MSE was higher (lower) for R than for OC for time scales
shorter (longer) than 44–48 ms, respectively. The effect
below those scales was stronger for the frontocentral
channels. The result for MLZ was very similar for short
scales, but was statistically weaker, and with the crossing
point moving at shorter scales (32–36 ms). However,
above the crossing point, i.e., for long time scales, the
effect was practically lost. In addition, MSEn and MLZn
were generally higher for R across all scales, mainly so for
the frontocentral channels. This effect was statistically

much stronger for the time scales �56 ms, and more
generally for MSEn compared with MLZn.

In summary, the resting state resulted generally in
larger fluctuations (except for the SD at long time scales
and power at the delta band at the frontal channels).
Moreover, the resting condition exhibited higher (lower)
entropy than the task condition with counting (OC) at
short (long) time scales, respectively. However, after
normalizing for the SD at each scale after coarse grain-
ing, this effect tended to reverse for long time scales. It
is worth noticing that the patterns of results for P and
MSE, as well as for MSEn, MLZ, and MLZn, at short
scales only for the last three, were to a large degree
inverse to those of the group main effect, i.e., the
results for the attentive task (rest) condition followed
the ones for the young (old) participants. This rough
correspondence, however, reversed for the rest of the
metrics, i.e., ln(V), SD, and ln(F).

Figure 5 Task latent variables for the group main effect. Each panel shows the weights of the task latent variables of the contrast that
corresponds to the group main effect Y-O. Each bar corresponds to a group-condition combination, with groups being arranged in
increasing age from left to right, and conditions arranged in an order of increasing attention and/or task demands (i.e., from R to OC),
also from left to right. Color conventions are identical to previous figures. The name of each metric together with the corresponding
p value (as derived from the parametric test for significance) and the singular value s of the SVD (proportional to the variance explained
by the contrast) are shown on top of the respective panel. Nonoverlapping confidence intervals signify that conditions and/or groups
are separated reliably by the contrast. Thus, the contrast is significant and reliably separates the two groups.
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Discussion
The present study investigates the changes of cortical
dynamics with aging through the use of a battery of
multiscale metrics, which allows that characterize the
structure and the magnitude of EEG fluctuations.

Age-related differences in the magnitude of EEG
signals variability across time scales

Our results show that the cortical activity of older partici-
pants displayed smaller fluctuations than young participants
in a (close to) scale-independent manner. Consistent with

Figure 6 Brain latent variables for the group main effect of the magnitude of variability metrics. The panels show how much each data
element, i.e., a metric’s data point, covaries with the contrast that corresponds to the group main effect (Figure 3), in terms of
bootstrap ratios, from left to right: ln(V), SD, and ln(F). Absolute values �2.5758 approximate the 99th two-tailed percentile. The
vertical axis for all panels depicts channels arranged from top to bottom, starting from frontal and left hemisphere channels, to
occipital and right hemisphere ones. The horizontal axes depict frequency for P and time scale in a logarithmic scale for ln(V) and ln(F),
and in a linear one for SD. Because the contrast is Y-O, positive values in reddish colors signify points where young (old) participants
had higher values, and the inverse for negative/bluish values. All metrics are higher for young participants: P for frequencies �12 Hz
with the exception of a short band around 8 Hz, ln(F) for time scales longer than 20–32 ms, ln(V) for almost all time scales, and SD
for all time scales. In general, the effect is statistically stronger for parieto-occipital channels, and for longer time scales and lower
frequencies.
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previous studies (Dustman et al., 1993, 1999; Gaal et al.,
2010; Müller and Lindenberger, 2012), EEG signals of the
elderly generally contained less spectral power than that
of the young adults. Similarly, the DFA, SD, and variogram
results also indicated a decrease in the fluctuations’ mag-
nitude with aging. Although, to our knowledge, this aspect
of brain signal variability has never been explicitly ad-
dressed before in EEG recordings, it is in-line with recent
fMRI studies (Garrett et al., 2013a,b), where older adults
were found to display a reduction of SD BOLD signals in
most brain areas (especially cortical) in both resting and
task-driven states (Garrett et al., 2011, 2013a). Our study
extends these observations to scalp EEG and shows that
it is indeed a pervasive characteristic of the aging brain
across time scales.

Effects of aging on the organization of cortical
fluctuations across time scales
In the frequency domain, older adults showed flatter
power spectra with a lower alpha peak, and more spectral
DoF, suggestive of increased ‘broadband’ noisiness of
the cortical activity. Further, long-range autocorrelations
were less present in older participants’ data (higher H
exponent). The multiscale entropy metrics revealed a
time-scale-dependence of aging effects regardless of the
used estimator (SampEn or LZ) with the elderly’s EEG
signals being more irregular at fine/shorter scales, and
less complex at coarser/longer scales. Thus, young and
old brains appear to operate at different time constants
making them, under the effect of coarse graining, reach
maximal entropy at different time scales. After reaching
their respective peak, both young and older adults’ MSE/
MLZ curves decreased; however, those of the young
remained significantly higher. This loss of complexity
across the long scales may be indicative of diminished
global information integration with aging, because these
scales relate mostly to low-frequency oscillations mediat-
ing long-range interactions. Mind, however, that the in-
verse does not directly apply, because the short scales

enclose information about both high- and low-frequency
oscillations. Furthermore, it is known also that (multiscale)
entropy-based measures reflect both variance and corre-
lation properties of time series (Costa et al., 2002, 2005).
To extract variance-related changes, we compared the
multiscale entropy curves (MSE, MLZ) with their normal-
ized versions (MSEn, MLZn) and the SD curves. A
crossing-over was present for the entropy metrics (re-
gardless of the normalization), but not for SD, for which
young and elderly’s curves were parallel. It is notable
however, that, although the age-group differences in en-
tropy remained mostly significant after normalization, they
were substantially weakened. The normalization affected
essentially the part of MSE/MLZ curves after the peak that
contains the scales accounting for the autocorrelated (low
frequencies) content of the signal, which actually contain
the most power (	�20 Hz).

The above results are in accordance with the current
literature, and extend it with several new findings. First,
we reproduced McIntosh et al.’s (2014) results and
extended them to longer time scales, as well as to
resting-state activity. For the first time scale, our find-
ings (i.e., more irregularity for older adults) are consis-
tent with those of other EEG studies using single-scale
measures of complexity (Anokhin et al. 1996; Pierce
et al. 2000, 2003; Müller and Lindenberger 2012). Con-
versely, our observations at longer scales approximate
the observations of fMRI studies, in which the time
resolution is much lower than in EEG. Indeed, fMRI
investigations at resting state have also shown a loss of
entropy with aging (Yang et al., 2013; Smith et al., 2014;
Sokunbi, 2014).

Overall, we show that aging effects on cortical fluctua-
tions are time-scale-dependent with regard to structure
(i.e., less regular fluctuations at shorter scales and less
complex fluctuations at longer scales), but not in terms of
magnitude (i.e., a systematic reduction regardless of the
time scale).

Figure 7 Brain latent variables for groups’ main effect for DoF and H. The two panels depict the bootstrap ratios of the group main
effect for DoF and H (left and right, respectively) across a whole brain with the nose at the top. Interpretations are the same as in Figure
4. The old participants showed reliably more DoF and lower H for (almost) all channels than the young participants.
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Spatial patterns of variability changes with aging
The observed aging effects on EEG variability were rather
robust for almost all channels. Nevertheless, some spatial
patterns showing stronger effects for certain electrodes
were distinguishable over the scalp. Notably, the posterior
channels were found to display the highest young–old
differences in terms of variability magnitude (across all
scales), with the younger adults being furthermore vari-
able than the elderly for these regions. This was also the

case for the power spectrum, the variogram, and the DFA
analyses. This spatial pattern of age-related differences in
terms of fluctuations magnitude is consistent with the
observation that young adults have more power in most of
the frequency bands at the posterior areas (seen in our
results, and previously reported by Gaal et al., 2010).
Conversely, entropy-wise, young–old differences for the
longer/coarser scales were stronger at the frontocentral
channels, because EEG signals of the younger partici-

Figure 8 Brain latent variables for groups’ main effect of metrics of the structure of variability. The panels depict the bootstrap ratios
of the group main effect for MSE, MSEn, MLZ, and MLZn, from left to right. Interpretations, vertical axes, and color conventions are
the same as in Figure 4. The horizontal axes depict time scale in a linear scale. All metrics are higher for old participants below some
scale (approximately 24, 32, 20, and 36 ms, respectively); this effect is statistically stronger for parieto-occipital channels. Above these
scales, MSE and MLZ are higher for young participants than for the old participants up to at least the scale of 80 ms. This effect is
marginally reliable for MSEn and MLZn, and stronger for frontocentral channels.
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pants were more complex for these channels than for the
occipital ones.

These results suggest that the detected anterio-
posterior difference in the magnitude of group effects
stems from a fronto-occipital differentiation expressed
only in the younger adults’ brains. This interpretation cor-
roborates the view of spatial dedifferentiation in the aged
brain, as shown for instance in Garrett et al.’s (2013a,b)
studies, wherein older adults were found to exhibit low
and nearly indistinguishable levels of variability across
brain structures in both resting and task-driven states.

Differences between experimental conditions
The differences between resting and the auditory stimuli
conditions (with and without counting) followed a similar
pattern across metrics, with the contrast driven mainly by
the difference between resting state and the cognitively
most demanding oddball counting task. However, this
distinction could only be made reliably through MSE, and
more consistently so for young participants. The limited
change between rest and task situations might be related
to the fact that in all experimental conditions participants
were instructed to keep their eyes closed. Eyes opening
was indeed shown to significantly affect brain signals

complexity elsewhere (Hogan et al., 2012; Müller and
Lindenberger, 2012), as was also found in our preliminary
analysis including the eyes-open condition. In addition,
the cognitive task we used is not very demanding. With
respect to MSE, the pattern of difference between the
resting (least demanding) and oddball counting (most
demanding) condition resembled the one differentiating
the age groups (old vs young): the EEG of the less de-
manding task was more complex at shorter scales. A
stronger difference was found for the frontocentral chan-
nels, most likely due to the attentional load imposed by
the task. This difference was reversed at longer scales,
where the OdC condition yielded the most entropic sig-
nals. To our best knowledge, this is the first time a specific
MSE pattern with obvious time-scale-dependence is
shown to differentiate between brain states at different
cognitive loads. Nevertheless, the low differentiability be-
tween conditions in elderly was reported previously and
seems to be one of the general signatures characterizing
the senescent brain (Garrett et al. 2013a). This lack of
specificity in the aged brain manifests itself, thus, both
through a spatial (within experimental condition, as shown
in the section before) and a “states” (between conditions)
dedifferentiation.

Figure 9 Task latent variables for condition main effect. This figure has an identical arrangement and conventions as Figure 3 (DoF
and H are omitted because they were not significant). This latent variable contrasts R versus OdC with OnC being in the middle, i.e.,
it arranges conditions in an order of increasing attention and/or task demands. It is significant for almost all metrics with a p � 0.001,
except for MSEn and MLZn that have slightly higher values (p � 0.002 and p � 0.005, respectively), whereas MLZ is significant only
to a value of p � 0.069. However, confidence intervals are largely overlapping, i.e., conditions are not separated reliably, except for
the entropic measures (MSE, MSEn, MLZ, and MLZn), where R is generally separated reliably from the task conditions, mainly so for
young participants.
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Convergence of aging theories and empirical
findings
The dedifferentiation hypothesis initially introduced by
Baltes and Lindenberger (1997) is repeatedly referred to in
the literature to describe and explain cognitive declines
with advanced age (for review, see Park and Reuter-
Lorenz, 2009). Notwithstanding its initial framework (i.e.,
correlations between sensory and cognitive functions),

dedifferentiation can be used to account for several facets
of age-related changes in brain and behavior (Sleimen-
Malkoun et al., 2014). In the brain, it can be seen through
increased interdependence between functional domains
(e.g., cognition and motor control; Schäfer et al., 2006,
2010), decreased specialization of brain regions (Park
et al., 2004; Dennis and Cabeza, 2011), and more wide-
spread activations (Reuter-Lorenz et al., 2000; Heuninckx

Figure 10 Brain latent variables for the condition main effect of the variability magnitude metrics. The panels depict the bootstrap
ratios of the condition main effect for P, ln(V), SD, and ln(F), from left to right. Interpretations, axes, and color conventions are the same
as in Figure 4, only now positive (negative) values in reddish (bluish) colors signify values that were higher for condition R (OC). ln(V)
and ln(F), were generally higher for the resting condition across all scales and channels, but mainly so for parieto-occipital channels.
SD was higher also for R for shorter time scales up to 100 ms, also mainly for posterior channels. Regarding P, R had more power
in the 5–10 and 15–30 Hz frequency intervals, whereas OC had more power in the delta band, mainly so for frontocentral channels.
Notice that P has almost an inverse pattern with the groups’ main effect in Figure 4.
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et al., 2005, 2008). Nevertheless, neurobehavioral variabil-
ity is not an outcome measure in the dedifferentiation
approach and its extensions. In this regard, for a long
time, the aging literature essentially focused on behavioral
variability (e.g., response times) in relation to changes in
patterns of brain activations (Hultsch et al., 2008; Mac-
Donald et al., 2009), rather than on characterizing brain
signals fluctuations themselves. The neural noise hypoth-

esis (Li et al., 2000; Li and Sikström, 2002) is one of the
first and most established approaches dealing with this
aspect. It argues in favor of an increased random back-
ground activity in the aged CNS (referred to as neural
noise), resulting in a higher intraindividual variability in
performance (Li et al., 2000, 2001; Li and Sikström, 2002;
Hultsch et al., 2002). Currently, it is widely recognized that
the variability of brain activations in space and time is of

Figure 11 Brain latent variables for conditions’ main effect for the structure of variability metrics. The panels depict the bootstrap
ratios of the condition main effect for MSE, MSEn, MLZ, and MLZn from left to right. Interpretations, axes, and color conventions are
the same as in Figure 6, only now positive values in reddish colors signify values that were higher for condition R (OC), and the inverse
for negative (bluish) values. All metrics are higher for R below some scale (	48, 56, 36, and 56 ms, respectively) for frontocentral
channels. MSE is higher for OC for scales above 48 ms for all channels, as well, whereas MSEn and MLZn showed a statistically
weaker tendency to be higher for R for scales further than the points mentioned above and for almost all channels. Notice that the
pattern of the results is to a large degree inverse to the results of the group main effect, mainly so for MSE and for short scales.
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high relevance to understand brain functioning in health
(e.g., development; Vakorin et al., 2011; and normal aging;
McIntosh et al., 2014) and disease (e.g., autism; Bosl
et al., 2011; and Alzheimer disease; Mizuno et al., 2010).
This rather recent interest succeeds a more established
view in the domains of physiology and motor behavior
where the loss of complexity hypothesis (LOCH) was
developed (Lipsitz and Goldberger, 1992; Lipsitz, 2002,
2004). In this framework, the structure of fluctuations is
considered to reflect the complexity of the underlying
functional organization and interactions within and be-
tween different subsystems. The LOCH stipulates that
during aging, as well as disease, there is a generic ten-
dency toward less-complex (behavioral and physiological)
outputs that could be in the direction of an increased
regularity or an increased randomness (Goldberger, 1996;
Vaillancourt and Newell, 2002, 2003), both supposedly
indicative of a breakdown of functional synergies and a
decoupling of components. The LOCH can be connected
to dedifferentiation of brain activations by looking at the
spatial distribution of variability and linking time scales of
fluctuations to information processing in the brain. A more
uniform spatial representation of variability across cortical
and subcortical structures expresses the characteristic
spatial dedifferentiation of the aging brain (Garrett et al.,
2011). Conversely, the time scales view presumes that
complexity at finer scales characterizes local processing,
and may thus be related to short neural connections,
whereas the coarser scales (by filtering out higher fre-
quencies) reflect the more long-range (i.e., global) inter-
actions, and therefore depend on longer neuronal fibers
(Mizuno et al., 2010; Vakorin et al., 2011; McIntosh et al.
2014). McIntosh et al. (2014) argued in favor of this as-
sumption and showed that scale differences observed
with MSE follow closely those that can be quantified
through other entropy measures that distinguish local and
distributed informational exchanges (i.e., conditional en-
tropy and mutual information).

All the aforementioned aging hypotheses could be
linked to underlying alterations of neural structures and
interactions, as well as dysregulation of neurotransmis-
sion, together leading to a less rich and flexible repertoire
of functional synergies. Structurally and physiologically,
the aging brain is known to incur changes characterized
by a marginal neuronal loss (Wickelgren, 1996; Morrison
and Hof, 1997; Bishop et al., 2010), but a substantial
decline in the integrity of white matter (Sullivan et al.,
2010; Madden et al., 2012), as well as a disruption in the
synthesis of some neuro-transmitters (dopamine, norepi-
nephrine, acetylcholine). These modifications greatly
affect large-scale brain networks by disturbing interhemi-
spheric functional connections and interactions (Duffy
et al., 1996; Kikuchi et al., 2002; Langan et al., 2010), as
well as somatosensory cortical inhibition (Cheng and Lin,
2013). Impaired dopaminergic neurotransmission further
compromises the modulation of neural noise, which is an
additional cause of inflexibility of brain activity and behav-
ior (Hong and Rebec, 2012). The conjunction of all these
alteration is most likely responsible for the observed
changes in multiscale variability and activation patterns,

which nicely merges with the predictions stemming from
main aging theories. Indeed, although these theories were
developed to cover different domains and mechanisms,
they converge to describe systemic modifications char-
acterizing the senescence process(es) in the neurobehav-
ioral system (Sleimen-Malkoun et al., 2014). An essential
current debate that needs to be settled is the relative
importance of local (i.e., grey matter and neurotransmis-
sion degradation) and global (i.e., white matter degrada-
tion and demyelination) network changes, as well as the
beneficial or detrimental role of stochastic components of
brain dynamics (i.e., noise), and how these factors affect
functional connectivity, brain signal variability, and perfor-
mance. In the framework of dedifferentiation the degra-
dation of neurotransmission is thought to reduce the
signal-to-noise ratio in local networks leading to less dis-
tinct cortical representations, and potentially to less spe-
cific functional connectivity (Li and Lindenberger, 1999; Li
et al. 2001; Li and Sikström, 2002). Functional connectiv-
ity and complexity are considered to entertain an inverse
relationship, according to which higher entropy is found
when connectivity is poor, and vice versa (Friston, 1996;
Müller and Lindenberger, 2012; Ghanbari et al., 2013).
However, from a different perspective, the reverse is com-
monly suggested (cf. Vakorin et al., 2011) based on the
assumption that information processing and (neural) com-
plexity go hand in hand (Tononi et al., 1994, 1998; Slifkin
and Newell, 1999). Conversely, following the finding that
neural information transmission is determined by both the
degree and time scale of synchrony (Baptista and Kurths,
2008), a different view can be suggested. Accordingly,
neural processing would be maximized when synchroni-
zation is high at coarse time scales (strong connectivity
requiring complexity to be low) and low at fine scales
(weak connectivity allowing the expression of greater
complexity). Evidence for such time-scale-dependence,
with a negative connectivity–complexity association at
fine scales and the reverse at coarser scales was found in
resting-state fMRI data (McDonough and Nashiro, 2014),
as well as in mean field model and BOLD simulations
(Jirsa et al. 2010; Nakagawa et al., 2013). Therefore, it
could be concluded that entropic and variability changes
convey different information depending on the time scale
under scrutiny. More precision should be gained in the
future by accounting for the recently uncovered nonsta-
tionarity of the dynamics of resting state fMRI (Allen et al.,
2014), which is expressed through different functional
connectivity measures for different time windows and
moments in time. Hansen et al. (2015) demonstrated that
the nonstationarity of the resting-state dynamics is evi-
dent in rapid changes in functional connectivity patterns,
which are otherwise relatively invariant during epochs
lasting one to two minutes. These transitions are reminis-
cent of phase transitions as known from statistical phys-
ics and were referred to as functional connectivity
dynamics (FCD; Hansen et al., 2015). A successful quan-
tification of FCD promises to provide a more profound
understanding of variability- and complexity-related phe-
nomena in brain networks, and thus ageing-related
changes in brain and behavior.
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Overall, it appears that although the aging brain dis-
plays more widespread activations, in terms of informa-
tion processing, it is characterized by an increased spatial
clustering with a shift toward a lesser contribution of
long-range connections (Meunier et al., 2009). However,
the contribution of changes in connectivity and nonsta-
tionaries remains to be unraveled.

Conclusion
Our findings provide support to the importance of multi-
scale brain signal variability as a means to assess the
effects of aging on brain functioning. Even though no
absolute value or a single metric can currently be offered
as a biomarker of brain age, the contribution of a system-
atic study of variability through multiple measures and
scales rests in the link that can be established with func-
tional and structural connectivity, as well as the richness
of activation patterns. Nevertheless, we argue that any
expected or discussed effect of aging should meet the
complexity of the functional organization within the hu-
man neurophysiological and neurobehavioral system,
which makes simple, strict, and irrevocably generalizable
correspondences unlikely to be found. It would be mis-
leading, for instance, to expect that aging is a process of
“loss”, and that what is observed in term of behavior
mirrors sensu stricto changes in brain activations. In the
brain, what counts most to insure a rich adaptable behav-
ior is the interplay between multiple factors, namely, local
and global neuroanatomical connectivity, noise levels,
and interaction delays (Ghosh et al., 2008; Jirsa et al.,
2010; Deco et al., 2011). Accordingly, the healthy brain
expresses critical magnitudes and structures of variability
that undergo significant changes with development, ag-
ing, and disease. Regarding aging, some general features
can be extracted. Mainly, a pervasive reduced level of
variability, in terms of magnitude, an increased irregularity
at shorter time scales, a decrease complexity at long
scales, and finally a spatial dedifferentiation in activations
and between brain states (e.g., rest vs task). The meaning
of these changes and their link with structure, function,
and dynamics can be significantly furthered and made
more explicit through theoretical and simulation studies,
and empirical investigations. Systematic investigation of
how aging-relevant functional and structural modifica-
tions affect the outcome of multiscale variability and com-
plexity metrics would offer a major contribution. A wider
set of entropy estimators (e.g., epsilon entropy) and met-
rics can also be covered (multivariate measures, synchro-
nization measures, Lyapunov exponents, etc.). However,
it is to be expected that these supplementary methods will
provide converging evidence in terms of global effects, as
it has been found in the present study for the measures
quantifying fluctuations’ magnitude and those quantifying
their structure. Therefore, based on our findings we con-
tend that adding more metrics would not profoundly ad-
vance our current understanding of aging. Conversely, a
novel and more promising direction would be appropri-
ately taking into account the nonstationary nature of brain
processes, which seem to be an inherent property of brain
functioning and to occur on various scales of organization

(Hansen et al., 2015). Finally, combining different modal-
ities of brain imaging and investigating different brain
states in a single aging experiment would make it possible
to irrefutably relate the different phenomena that have
been separately shown to characterize aging (e.g., dedi-
fferentiation, loss of complexity, variability changes), as
well as integrate newly uncovered ones (e.g., nonstation-
aries in functional connectivity; Allen et al., 2014; Hansen
et al., 2015), while establishing the link with performance
and behavior.
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