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ABSTRACT

Exposure of DNA to ultraviolet (UV) light from the Sun or
from other sources causes the formation of harmful and car-
cinogenic crosslinks between adjacent pyrimidine nucle-
obases, namely cyclobutane pyrimidine dimers and
pyrimidine(6–4)pyrimidone photoproducts. Nature has devel-
oped unique flavoenzymes, called DNA photolyases, that uti-
lize blue light, that is photons of lower energy than those of
the damaging light, to repair these lesions. In this review, we
focus on the chemically challenging repair of the (6–4) photo-
products by (6–4) photolyase and describe the major events
along the quest for the reaction mechanisms, over the 20
years since the discovery of (6-4) photolyase.

INTRODUCTION
DNA absorbs photons of high energy (main absorption band
centered at ~265 nm, i.e. in the UV-C range, with tail extending
beyond 290 nm, i.e. in the UV-B). Photoexcited nucleobases
undergo various chemical reactions, leading to modifications and
to loss or alteration of the genetic information (1). A prominent
example is photocycloaddition between two adjacent pyrimidines
(see Fig. 1 for the case of thymine–thymine (TT) sites and
Fig. 10 for thymine–cytosine (TC) sites), which gives rise to the
formation of cyclobutane pyrimidine dimers (CPDs; specific
lesions are noted 50 base<>30 base) and pyrimidine(6–4)pyrimi-
done photoproducts, also called (6–4) photoproducts ((6-4) PPs;
specific lesions noted 50 base(6-4)30 base) (2). It is noteworthy
that (6-4) PPs are formed via an oxetane or an azetidine interme-
diate (Figs 1 and 10). The most frequent lesions induced by UV-
C and UV-B light are T<>T, T<>C and T(6-4)C; C<>T, C<>C
and T(6-4)T are less frequent; C(6-4)C and C(6-4)T are very rare
(3,4). (6-4) PPs can be isomerized into their Dewar valence

isomers (Dewar PPs; specific lesions noted 50 base(Dew)30 base;
see Figs 1 and 10) upon exposure to light in the 300-360 nm
range, where the absorption band of (6-4) PPs is located (Fig. 1)
(5). Significant amounts of Dewar PPs were observed upon
irradiation of cells with simulated solar light (6).

These UV lesions inhibit DNA replication and transcription,
thus leading to cell death or mutagenesis and carcinogenesis, if
they are not repaired correctly (7). To maintain their genetic
integrity, organisms have developed various DNA repair systems.
Among the repair pathways, nucleotide excision repair (NER) is
the most widespread (from bacteria to humans) and versatile
machinery for repair of UV lesions and a number of other bulky
lesions in DNA, and mutation of genes responsible for NER in
humans causes an inherent disease, xeroderma pigmentosum (8).
During NER, several proteins are associated to excise a short
fragment of the DNA strand containing the UV lesion, and gap-
filling DNA synthesis by DNA polymerase followed by ligation
can achieve restoration of the intact DNA (9). The same mecha-
nism was only recently established for plants (10). NER con-
sumes energy-rich factors such as ATP and nucleotide
triphosphates (11,12).

In 1949, a phenomenon named photoreactivation was inde-
pendently discovered by Kelner (13) and by Dulbecco (14). Bac-
teria inactivated by UV irradiation could be reactivated when
exposed to visible light (13); similarly, bacteriophages that had
been UV-inactivated could be reactivated when infected bacteria
were exposed to blue light (14). Rupert (15) demonstrated that
photoreactivation is caused by an enzyme. It was later named
DNA photolyase (PL) and was found in organisms from all king-
doms of life, with the remarkable exception of placental mam-
mals (16). Contrary to NER, repair of UV lesions by PLs uses
sunlight as the energy source and only involves one protein for
recognition and repair of the lesion. The originally discovered
PL selectively recognizes and repairs CPD lesions, but not (6-4)
PP lesions (17). A (6-4) PP-specific PL was found in 1993, in
the fly Drosophila melanogaster (18), followed by the frog
Xenopus laevis (19), the plant Arabidopsis thaliana (20,21) and
other higher organisms (22–24). After cloning of the PL genes
(for the first time by Sancar and Ruppert (25) for the CPD-

*Corresponding authors emails: yamamoto@chem.es.osaka-u.ac.jp (Junpei Yama-
moto), pascal.plaza@ens.fr (Pascal Plaza), klaus.brettel@cea.fr (Klaus Brettel)
†This article is part of the Special Issue highlighting Dr. Aziz Sancar’s outstanding
contributions to various aspects of the repair of DNA photodamage in honor of his
recent Nobel Prize in Chemistry.
© 2016 The American Society of Photobiology

51



specific PL from Escherichia coli), investigations using the puri-
fied enzymes have been performed, and their biochemical fea-
tures, structures and reaction mechanisms have been analyzed.

CPD-specific PLs (CPD PLs) and (6-4) PP-specific PLs ((6-4)
PLs) are rather homologous water-soluble globular proteins of
~55 kDa that harbor a non-covalently bound flavin adenine dinu-
cleotide (FAD) chromophore. FAD in PLs can be found in three
redox states, namely fully oxidized (FADox), semi-reduced
(FADH�) and fully reduced (FADH�) forms. Among them, the
fully reduced FADH�, which absorbs 350–500 nm light, is the
repair-active form. FADox and FADH� can be converted to
FADH� by a separate photoreaction called photoactivation,
which typically involves an intraprotein electron transfer (ET)
through a chain of three tryptophan residues (26), exceptionally
four in animal (6-4) PLs (27). A second chromophore (mostly a
pterin or a deazaflavin) is present in many PLs and serves as a
light-harvesting antenna that transfers excitation energy to the
catalytic FAD cofactor, thereby increasing the effective absorp-
tion cross section of the enzyme. PLs are phylogenetically clo-
sely related to cryptochromes, flavoproteins that are involved in
various blue light-regulated functions, but typically do not repair
DNA (28). For detailed information and references on the protein
organization of photolyases and cryptochromes, we refer to a
comprehensive review by Sancar (29).

The mechanism of CPD repair by CPD PL is rather well
established (see next section). In brief, the two intradimer C-C
bonds split almost spontaneously upon ET from the photoexcited
FADH� to the CPD, leading to restoration of two intact pyrim-
idines. Repair of (6-4) PPs is chemically more challenging
because cleavage of the C-C bond between the 50 and 30 compo-
nents alone would yield two damaged nucleobases. In addition,

(6-4) PL has to accomplish the back transfer of a functional
group (O40H in the case of T(6-4)T (see Fig. 1)) from the 50 to
the 30 base.

In the present review, we focus on major progress over the
past 20 years in understanding the reaction mechanism of repair
of (6-4) lesions by (6-4) photolyase and present our views (in-
cluding unpublished results) on the ongoing controversies. A
more detailed coverage of studies before 2003 can be found in
Sancar’s review (29). The reader may also consult Refs (2,30–
32) for additional reviews and viewpoints including more recent
works.

BACKGROUND: REPAIR OF CPD-TYPE
LESIONS BY CPD PHOTOLYASE
We start with a brief summary (see also Fig. 2) of the well-
established repair mechanism of CPD lesions by CPD pho-
tolyase, because the strong homology between (6-4) and CPD
photolyases (see Introduction) suggests a similarity in the pho-
torepair mechanisms for (6-4) and CPD lesions.

CPD PLs bind CPD-containing DNA substrates in a specific
manner, with dissociation constant (Kd) of the order of 10�9

M

and an association rate constant (kon) of the order of 107 M
�1s�1

(29). To ensure that the CPD comes close enough to the FAD
cofactor for efficient ET, CPD PL flips the CPD lesion out of
the DNA duplex (33,34) and accommodates it in the active site
where FAD is buried (35). Upon photoexcitation of the fully
reduced FADH�, an electron is transferred to the CPD in 30–
250 ps, forming an anion radical of the CPD and the semi-
reduced FADH� radical (36–39). The cyclobutane ring then splits
almost spontaneously and rearranges into one intact base and the
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anion radical of the other base (38,39). The excess electron of
the latter is finally returned to FADH� in ~1 ns (37–39), leading
to the restoration of the second intact base and the catalytically
active FADH�. The repaired DNA is released in ~50 ls (40),
and the enzyme is ready to bind and repair another CPD. CPD
repair by photolyase is a single-photon process, and its reaction
quantum yield is as high as 40–100% (29,41,42). Losses were
attributed to (i) decay of the excited state FADH�* to the ground
state (intrinsic time constant ~1.3 ns (37,38)) in competition with
ET to the CPD and to (ii) back ET from the reduced lesion to
FADH� in competition with cleavage of the two intradimer
bonds. The importance of loss channel (ii) (dashed arrow in
Fig. 2) is still controversial (43,44), the back ET time constant
having been estimated to 350 ps (38) or 2.4 ns (39).

REPAIR OF (6–4) PHOTOPRODUCTS
After their discovery, the binding and catalytic properties of (6-
4) PLs were analyzed. In analogy with CPD PL, it was found
that the repair-active redox state of the FAD cofactor was fully
reduced FADH� and that (6-4) PP-containing substrates were
bound in a specific manner, with Kd of the order of 10�9

M

(41,45). Repaired DNA was determined to be released in ~50 ls
(46), similar to the CPD case. However, the quantum yield (or
efficiency) of photorepair of (6-4) PPs was found to be ~4 times
(41) or even ~100 times (47) lower than for CPD repair. These
findings suggested that the repair reaction of (6-4) PLs could
share part of the reaction steps of CPD PLs, but that substantial
differences remain.

It is worth recalling that, in the formation of the (6-4) PPs, a
Patern�o–B€uchi reaction first yields an oxetane-bridged (or

azetidine-bridged for cytosine at 30) intermediate (48). This struc-
ture is thermodynamically unstable and rearranges (~2 ms for T
(ox)T in aqueous solution (49)), to form a (6-4) PP (see Figs 1
and 10a). During this reaction, the O40 (or N40H) in the 30 com-
ponent is transferred to the 50 component and has thus to be
returned to 30 during the repair reaction. Researchers have been
very active addressing the challenging question of how (6-4) PLs
achieve such return of the functional group.

A first working hypothesis: photoenzymatic splitting of a
thermally formed oxetane intermediate

Based on the homology between photolyases, it was initially
proposed that (6-4) PLs first catalyze the formation of a four-
membered ring, similar to the cyclobutane for CPDs, in the
dark. This intermediate was proposed to be the very oxetane-
(or azetidine-)bridged compound found in the formation of the
lesion. Photorepair would then follow just as for CPD PLs, by
ET from the excited FADH� to the transformed lesion (47).
The idea of photoenzymatic splitting of a preformed oxetane
intermediate was supported by studies of model compounds
bearing an isoalloxazine and an oxetane attached to thymine
derivatives. Illumination of such model compounds under reduc-
tive conditions resulted indeed in splitting of the oxetane ring
(50–52).

In 2001, two histidines exclusively conserved among (6-4)
PLs were identified (H354 and H358 in Xenopus laevis (6-4) PL
(Xl64); generically noted His1 and His2 in this review), and
mutation of either of these residues strongly impaired the pho-
torepair activity (53). Structural simulation indicated that these
residues were located in the putative active site of the (6-4) PL
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and were therefore considered to be responsible for an acid-base
catalytic formation of the oxetane intermediate (Fig. 3). To func-
tion as an acid-base catalyst, the imidazole moiety of His1 was
supposed to be protonated and that of His2 non-protonated (53).
Such a protonation pattern was indeed supported for Xl64 at pH
9.5 by electron nuclear double-resonance measurements (54).

A crystal structure disproving thermal oxetane formation

In 2008, the crystal structure of Drosophila melanogaster (6-4) PL
(Dm64) bound to a 15-mer DNA duplex containing a central T(6-
4)T lesion was solved (55). The structure (see Fig. 4a) revealed
that the lesion was flipped out of the double helix and accommo-
dated in the active site of the enzyme, in a manner similar to the
CPD case. Unexpectedly though, the lesion was seen to retain its
original T(6-4)T structure; an oxetane was not formed in the dark,
upon binding of the lesion to the enzyme. The conserved His1 and
His2 residues (H365 and H369 in Dm64) were seen to form,
together with a conserved tyrosine residue (Y423 in Dm64), a
hydrogen bond network, proximal to the lesion. His1 directly inter-
acts with the hydroxy group (at the C5 position of the 50 compo-
nent) that should be transferred during photorepair.

Remarkably, when the crystal of the enzyme-substrate com-
plex was illuminated with white light in the presence of a reduc-
ing agent, the resulting structure showed that the (6-4) PP was
perfectly repaired, with almost no change in the positions of the
amino acid residues located in the close vicinity of the lesion.

Based on these observations, a first non-oxetane repair mecha-
nism was proposed by the authors (55). Namely, upon formation of
the anion radical of the (6–4) PP by ET from excited FADH�, the
O40 located at the 50 component would be protonated by the initially
protonated His1, and a water molecule would transiently detach
from C5 and subsequently attack C40 at the 30 component, thereby
achieving the transfer of the O40H functional group. Splitting of the
C6-C40 bond would then follow, accompanied by back transfer of
the excess electron (to FADH�) and loss of a proton (Fig. 4b). Com-
putational studies (see next section) did not retain this “transient
water pathway” because of a too high activation barrier, but variants
of this mechanism were devised and are still under consideration.

Computational search for a feasible reaction pathway

The structural data of Maul et al. (55) described above triggered a
wealth of theoretical studies (30,56–67) aimed at finding a feasible
repair mechanism for (6-4) PPs that does not imply the thermal for-
mation of an oxetane intermediate prior to photoexcitation. A num-
ber of the explored pathways turned out to include steps with

unreasonably high activation barriers and were hence abandoned.
This was in particular the case for the transient water pathway orig-
inally suggested by Maul et al. (55) (see Fig. 4b), for which Faraji
et al. (62) calculated a barrier of nearly 50 kcal mol�1 for the addi-
tion of the water molecule at the C40 position. In the following, we
focus on those structure-based reaction mechanisms that were
retained as feasible by their authors in their most recent publica-
tions. We tried to summarize them in Fig. 5 in a way that should
facilitate comparisons. It should be noted that, as experimentalists,
we avoided judging ourselves the appropriateness of the various
computational methods used in the theoretical studies and focused
on reporting main outcomes as presented by their authors.

Domratcheva and Schlichting (56) were the first to propose a vari-
ant of the transient water pathway based on a direct transfer of the
hydroxyl group (O40H), from the 50 to the 30 base. The mechanism
was later refined by including the His1 residue (H365 in Dm64) in
the calculations (59) (“simple OH transfer” in Fig. 5, upper row).
Forward electron transfer (FET) from photoexcited FADH� to the
(6-4) PP lesion would form the “50 base radical anion,” in which
the unpaired electron resides essentially on the 50 base (Fig. 5,
intermediate IIa). The O40H group would then move spontaneously
(without barrier) from C5 to C40, followed by spontaneous cleav-
age of the C6-C40 bond and electron return to FADH�.

Remarkably, the 50 base radical anion was found to be an
electronically excited state of the (6-4) PP radical anion, in the
initial configuration (56). It is the high energy of this state that
would allow transferring the OH group without barrier. It has
been disputed whether the energy of the photon absorbed by
FADH� is sufficient to simultaneously transfer an electron to the
lesion and excite electronically its radical anion (57,59).

It should be pointed out that, while several studies concluded
that His1 was protonated in the majority of the proteins
(54,58,66,68,69), Domratcheva (59) retained that this residue
should be found in its neutral (non-protonated) statea. It is of
note that Condic-Jurkic et al. (60) also concluded from their cal-
culations that His1 should be neutral at pH 7.

Several potential reaction pathways were explored and discussed
by Faraji et al. (30,61–63,65,66). They finally retained a mecha-
nism here termed “proton-transfer-steered OH transfer” (Fig. 5,
middle row). In contrast to the “simple OH transfer” mechanism,
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aDomratcheva (59) calculated that if His1 were initially protonated, the most stable
state of the complex would be a biradical featuring the N30 protonated T(6-4)T
neutral radical and FADH�, coexisting with neutral His1. This remarkable dark
configuration would result from spontaneous (non-photoinduced) transfer of a pro-
ton (from His1H

+) and an electron (from FADH�) to the lesion. As the corre-
sponding absorption spectrum was not experimentally detected in the dark,
Domratcheva (59) anticipated that neutral His1 was present in the active site.

54 Junpei Yamamoto et al.



the histidine His1 was assumed to be protonated in the dark
(His1H

+)b. Forward electron transfer from photoexcited FADH�

would yield the 50 base anion radical of the lesion (IIb, redrawn
from their most recent publication (65)). Remarkably, the original
calculations (61,62) indicated that the electron transferred from
photoexcited FADH� was first localized on His1 (intermediate
IIb’), a possibility also considered by Moughal Shahi and Dom-
ratcheva (64). It was pointed out (61,62) that this contrasts with an
experimental finding that the electron is initially transferred to the
lesion (68). The discrepancy was suggested to be possibly due to

limitations in the calculation methods (61,62); it was also sug-
gested that the electron on His1 could be transferred immediately
further to the lesion within small thermal fluctuations (66). The
next step would be proton transfer from His1H

+ to the lesion anion
radical, yielding IIIb. The overall process of formation of IIIb from
photoexcited FADH� was qualified as a proton-coupled electron
transfer (61,62,66). Then, the O40H group would be transferred
from C5 to C40 (passing through an “oxetane-like” transition state
(62,65) and yielding IVb), followed by cleavage of the C6-C40

bond, return of the proton to His1 and return of the excess electron
to FADH�. The highest barrier in this pathway is ~20 kcal mol�1

(for the OH transfer itself). It was argued that this value is likely to
be overestimated due to limitations in the calculation methods and
that the real value should be ~16 kcal mol�1 or even lower (62).
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bDreuw and Faraji (66) argued that proton transfer from His1H
+ to the lesion in the

dark, as proposed by Domratcheva (59) if His1 were initially protonated (see foot-
note a), would in fact be too slow to play any relevant role in the repair
mechanism.
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In contrast to the above proposals, Sadeghian et al. (58) claimed that
(6-4) PPs could not be repaired by photolyase upon one single pho-
toexcitation. Based on their calculations, they proposed a reaction
mechanism that involves two successive photoexcitations of
FADH�, each of them inducing ET to the lesion, bond rearrange-
ments and electron return to FADH�. Their two-photon mechanism
is summarized in Fig. 5, lower row. The first two reaction steps are
very similar to the “proton-transfer-steered OH transfer” (except
that the unpaired electron is mainly distributed in the 30 base for IIc
(58) rather than in the 50 base as drawn for IIb in Ref. (65)). How-
ever, instead of a direct transfer of the O40H group, O40 then forms
a bond with C40 while keeping a bond with C5; this process occurs
together with electron return to FADH� and proton return to His1,
yielding the oxetane-bridged dimer in its singlet ground state (Ox),
the fully reduced flavin FADH� and the protonated His1H

+. The
calculated barrier for the overall IIIc?Ox process is ~7 kcal mol�1

(58).c

Upon re-excitation of FADH� by a second photon, an electron is
injected into the oxetane intermediate, forming the oxetane radical
anion Ox��. The C5-O40 bond splits spontaneously in concert with
protonation of O40 by His1H

+, yielding intermediate IVc where the
O40H group is completely transferred to the 30 base. The following
steps are again very similar to the “proton-transfer-steered OH trans-
fer” mechanism. The highest barrier in the second photoreaction
would be ~9 kcal mol�1 (for the cleavage of the C6-C40 bond), close
to the ~10 kcal mol�1 in the “proton-transfer-steered OH transfer.”

It is known that the T(ox)T oxetane converts to the T(6-4)T lesion
in ~2 ms in aqueous solution (49). Such a short lifetime of the oxetane
intermediate would make the sequential two-photon repair mechanism
very inefficient under natural sunlight on Earth (estimated to excite
FADH� only about once every 3 s in average on a sunny day (72)).
Sadeghian et al. (58), however, calculated that reversion to T(6-4)
T of T(ox)T bound to (6-4) photolyase has an activation barrier as
high as ~16 kcal mol�1d. Taking this value as the activation free
energy in transition state theory, the minimum lifetime (for a trans-
mission coefficient of 1) of the enzyme-bound T(ox)T would be
0.14 s at 20 °C, that is much closer to the average time between
two excitations of FADH� under natural sunlight than the solution
value. A much longer lifetime of T(ox)T in the binding pocket of
(6-4) PL as compared to aqueous solution is consistent with

calculations showing a strong decrease in the activation barrier for
the transition to T(6-4)T due to the presence of water molecules
(73).

Sadeghian et al. (58) also considered other reverse reactions,
which could potentially compete with the productive pathway
and diminish the efficiency of photorepair. In the first photoreac-
tion, two reversion channels leading to state Ic from precursors
of state IIIc

e were calculated to have low barriers (~2/
3 kcal mol�1). In the second photoreaction, the IVc?Ox rever-
sion was predicted to have a modest barrier (~7 kcal mol�1). It
should be stressed that these reversion reactions involve coupled
proton and electron transfer and that theoretical prediction of the
corresponding reaction rates is not straightforward (see footnote
c). However, in view of the substantial barriers calculated for
some of the potential forward reactions (see Fig. 5), we feel that
it is desirable that potential reverse reactions are included as
properly as possible in the computational quest for a feasible
repair pathway.

The large number of controversial computational studies
sketched above clearly called for experiments that could distin-
guish between the suggested mechanisms (or establish an alterna-
tive one).

Experimental investigation of primary processes

Remarkably, there is a strong predominance of computational
over experimental studies of the (6-4) PP repair mechanism. This
may be due to technical difficulties in monitoring a photoreaction
that has a low quantum yield and is irreversible (so that improve-
ment of the signal-to-noise ratio by signal averaging is particu-
larly laborious). An additional difficulty is that proper test
substrates must include several intact nucleobases (to ensure cor-
rect binding to the protein), which provide a strong background
absorption around 265 nm, where restoration of intact nucle-
obases could be monitored directly.

Despite these difficulties, Li et al. (68) could monitor primary
reactions related to the repair of a T(6-4)T lesion by the (6-4) PL
of Arabidopsis thaliana (At64), by ultrafast fluorescence and
transient absorption spectroscopy between 315 and 800 nm.
Upon excitation of the fully reduced FADH� cofactor, they
observed electron transfer to the (6-4) PP in 225 ps, similar to
the corresponding reaction for CPD repair by CPD photolyase.
However, in contrast to the CPD case, ~90% of the FADH� radi-
cals formed by this primary ET were re-reduced very quickly (in
50 ps) by back ET. The remaining ~10% of FADH� did not
decay in the accessed time window (up to 3 ns), also in contrast
to the CPD case where repair is completed by electron return to
FADH� in ~1 ns (37–39). Transient absorption changes in the
315-370 nm range were attributed to a proton transfer from (pro-
tonated) His1 (His364 in At64) to the reduced substrate, occur-
ring in 425 ps. This assignment was supported by a significant
kinetic isotope effect on this reaction (upon H2O to D2O
exchange) and by a sensitivity to mutation of His1 to asparagine.
It was further shown that several point mutations of His1
(H364N/M/Y/A/D/K) had no significant effect on the time con-
stant of electron transfer from the excited FADH� to the lesion,
but completely suppressed long-lived (>1 ns) FADH�. DNA

cFollowing discussions we had with theoreticians (F. Cailliez and A. de la Lande, per-
sonal communication), we would like to point out that using this barrier for an estima-
tion of the reaction rate via transition state theory (TST) would be problematic. The
methodology used in Ref. (58) is indeed based on the Born–Oppenheimer approxima-
tion. Yet, reaction IIIc?Ox is likely to operate beyond this approximation, depending
on the couplings between the electronic states that are involved. Evaluation of rate con-
stants of bond breaking/formation (including proton transfer) in fact necessitates Mar-
cus-like theories when they are coupled to ET (70,71). Only in the case of strong
electronic coupling between charge transfer states can one reduce the rate expression to
a TST-like equation. When the electronic coupling is weak, as is probably the case here
in view of the spatial separation between the lesion and the flavin, the transmission
coefficient should include an electron hopping probability, proportional to the square of
the coupling. In this regime, estimating the kinetics of the reaction from the free-energy
barrier solely is ill-advised as the prefactor equally matters and has the potential to
severely diminish the reaction rate.
dAccording to Ref. (58), this reversion would proceed in two steps: (i) concomitant
reprotonation of O40 by His1H

+ and cleavage of the C4-O40 bond of T(ox)T (bar-
rier ~16 kcal mol�1) and (ii) back proton transfer from N30 of the lesion to His1
(barrier ~2 kcal mol�1). One may note that the product of step (i) is a closed-shell
configuration where the protonated lesion coexists with FADH�. It is different
from the biradical (open shell) ground state calculated by Domratcheva (59) if
His1 were initially protonated, where the reduced protonated lesion coexists with
FADH� (see footnote a). Neither step (i) nor step (ii) is coupled to electron trans-
fer, so that transition state theory might be applied to estimate the reaction rate (cf.
footnote c).

eIn these precursors (not shown in Fig. 5), N30 is already protonated, but the O40

proton is still hydrogen bonded to the water oxygen. These precursors could be
reached from state IIIc by overcoming a barrier of 8 kcal mol�1 (58).
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repair was found to be completely shut off as well in these
mutant proteins, in line with a previous report for the corre-
sponding H354A mutation in Xl64 (53).

Figure 6 shows the reaction scheme proposed by Li et al.
(68). Importantly, the very unfavorable competition between pro-
ductive protonation of the anion radical (structure II) (in 425 ps)
and futile back ET (in 50 ps) would explain the relatively low
quantum yield of (6-4) PP repair (as compared to CPD repair
where the corresponding futile back ET is much slower; see
above and Fig. 2).

Recent QM/MM calculations of the absorption spectra of dif-
ferent potential reaction intermediates assigned the spectral fea-
ture observed around 325 nm by Li et al. (68) to a (6-4) PP
radical protonated at the N30 position by His1 (65).

The essential role of His1 in the repair reaction has recently
been put into question by Yamada et al. (74). They concluded
from an FTIR analysis of the repair function, that the His1-to-ala-
nine mutant of Xl64 (H354A) conserved its repair activity,
although at much lower (not quantified) efficiency than the wild
type. We have therefore tried to determine the absolute repair
quantum yield of this very mutant.

Samples containing the photoreduced H354A mutant PL and
an oligonucleotide carrying a central T(6-4)T were illuminated
by strong continuous laser light (2 W cm�2) at 408 nm for up to

65 min. Repair was quantified during the illumination period by
monitoring the bleaching of the 325-nm absorption band of T(6-
4)T (see Fig. 7a). The sample illuminated for 65 min was ana-
lyzed by reverse phase HPLC, confirming the restoration of
intact thymine pairs within the substrate (Fig. 7b). The repair
quantum yield was found to be 0.013%, that is ~500 times lower
than that for the wild type (72). Yamada et al. (74) pointed out
that “a decrease in volume by the H-to-A mutation is possibly
compensated by the addition of water molecule(s).” We tenta-
tively suggest that another protonated residue could protonate the
(6-4) PP anion radical in the mutant protein, possibly via such
water molecules. The associated proton transfer rate would, how-
ever, be much lower than with His1 in the wild type and the effi-
ciency of the proton transfer, in competition with back electron
transfer to FADH�, much reduced.

Experimental evidence for a two-photon mechanism

As mentioned above, Sadeghian et al. (58) theoretically proposed
a repair mechanism of (6-4) PP by (6-4) PL involving a
sequence of two photoreactions. This possibility has never been
experimentally tested until our recent work (72), which will be
described below. It is in fact not so easy to distinguish between
an ordinary one-photon mechanism and a sequential two-photon

Figure 6. Reaction cycle for photorepair of a T(6-4)T lesion by the (6-4) PL of Arabidopsis thaliana, as proposed by Li et al. (68), on the basis of an
experimental study of the reaction by ultrafast fluorescence and transient absorption spectroscopy. Adapted from Ref. (68) with permission from Macmil-
lan Publishers Ltd: Nature, copyright 2010.
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mechanism. To illustrate this difficulty, let us consider a simple
repair experiment under continuous illumination (with a constant
excitation rate kexc) and compare the following simplified models
of both mechanisms:

1 photon : D �!hv
k¼kexcg

R

2 photons : D �!hv
k1¼kexcg1

X �!hv
k2¼kexcg2

R

Here, D represents the initial (6-4) PP lesion complexed to the
(6-4) PL in the dark; X stands for the intermediate involved in
the two-photon mechanism; R is the repaired lesion. The repair
quantum yield for the one-photon mechanism is noted g, while
the quantum yields of the consecutive reactions within the two-
photon process are g1 and g2. Let us additionally make the fol-
lowing basic assumptions: (1) The substrate binding and product
release are much faster than the overall repair rate and are thus
non-limiting, and (2) the substrate concentration is always in
excess of the enzyme concentration and much higher than the
dissociation constant of the complex. It is then straightforward to
see that the repair ratio (i.e. lesions repaired per enzyme; noted
xr) increases linearly with irradiation time (t) in the one-photon
mechanism; the slope is kexc g. For the two-photon mechanism,

we derived an analytical expression of the repair ratio (see Ref.
(72), Supporting Information, §4.2) that can be recast as follows
within the present simplified framework:

xr ¼ g1g2
expð�ðg1 þ g2ÞkexctÞ � 1

ðg1 þ g2Þ2
þ kexct
g1 þ g2

" #
ð1Þ

Equation 1 shows that the onset of photorepair is quadratic,
as intuitively expected for a two-photon process, but that a linear
regime rapidly follows (slope: kexc g1 g2/(g1 + g2). This regime
corresponds to a photostationary equilibrium, where the concen-
tration of X remains constant. The steady state builds up expo-
nentially with rate constant kexc (g1 + g2). Hence, unless both g1
and g2 are very small, the linear regime is reached when each
enzyme has been excited just a few times. In any case, it is
reached before one lesion has been repaired in average per
enzyme. The quadratic onset may thus easily be missed in stan-
dard experiments. As an example, we compare in Fig. 8 the sim-
ulated dose-effect curves for a one-photon process with g = 6%
(black line) and for the simplified two-photon process according
to Eq. 1 with either g1 = 6.6%, g2 = 66% (red line) or
g1 = g2 = 12% (blue line), both yielding the same final slope as
the one-photon process with g = 6%.
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Figure 7. Photorepair of the (6-4)PP by Xenopus laevis (6-4) PL having His1 (H354) mutated to alanine. (a) Samples of 100 lL containing 2.64 lM of the
photoreduced H354A mutant PL and 40 lM of the 8-mer substrate, d(CGAT(6-4)TGAT), in a buffer composed of 10 mM phosphate (pH 7.0), 100 mM NaCl,
5% glycerol and 6 mM cysteine, were prepared anaerobically in a quartz cell with self-masking solid black walls and a sample chamber of 292910 mm
(16.40-F/Q/GL14/Z15 from Starna) and kept at 10 °C. The accessible volume of the samples (40 lL) was irradiated through the 2 9 2 mm window by con-
tinuous light of 2 W cm�2 at 408 nm from a laser diode (iBeam smart 405-S from Toptica). After given irradiation times, the samples were homogenized by
shaking and absorption spectra were recorded in a spectrophotometer (Uvicon XS from Secoman). The light-minus-dark difference spectra are presented in
panel a; the absorption changes at 325 nm for relatively short irradiations are plotted versus irradiation time in the inset. The repair quantum yield was calcu-
lated from the slope of a linear fit (solid line; forced to go through the origin), using a molar decadic absorption coefficient (e) of 3600 M

�1 cm�1 for FADH�

at 408 nm (72) and a differential absorption coefficient (De) of �6000 M
�1 cm�1 for the repair of T(6-4)T at 325 nm (72). (b) The sample irradiated for 65

min (ii) was analyzed by reversed-phase HPLC using a lBondasphere C18 column (Waters), in a Gilson gradient-type analytical HPLC system equipped
with a Waters 2996 photodiode-array detector. The flow rate was 1.0 mL min�1, using a linear gradient of 5–13% acetonitrile in 0.1 M triethylammonium
acetate (pH 7.0), generated over 20 min. The chromatogram of the pure 8-mer with intact TT bases (d(CGATTGAT)) is shown for reference (i). The black
traces (254 nm) demonstrate the restoration of intact TT bases upon irradiation of H354A mutant PL mixed with the T(6-4)T-containing 8-mer. The peak in
the red trace (325 nm) of sample (ii) marks the position of the (unrepaired) T(6-4)T-containing 8-mer.
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Revisiting previous experiments in the literature where repair
curves were fitted linearly (41,47), we realized that in most cases
the scattering of the data exceeded the deviation from linearity
that could be expected for a two-photon process. Interestingly, in
one of the experiments reported by Kim et al. (47) (Fig. 2B
therein), the first data point is below the linear fit by more than
the scattering of the other data, but this was not mentioned in
the text and may hence not be considered as significant. Our
own attempt to resolve the relevant onset of the repair curve
under continuous illumination was unsuccessful because of an
insufficient amplitude resolution (72).

To distinguish between a one- and a two-photon process, we
devised a special experiment (72) where repair was triggered by
non-saturating 100-ps laser flashes. The pulse duration was
shorter than the reported lifetime of the excited flavin in the pres-
ence of substrate (225 ps (68)), which theoretically excludes dou-
ble excitations of FADH� within one flash. The repair reaction
was monitored by recording absorption changes at 265 nm,
where the recovery of the intact nucleobases is expected and, at
325 nm, where depletion of the T(6-4)T lesion should appear
(see species spectra in Fig. 1). The observation at 265 nm was
made possible by using a special substrate in which a single T
(6-4)T was flanked by non-absorbing 5,6-dihydrothymines,
instead of thymines. Using this approach, it was shown that the
effect of the first flash was to deplete the T(6-4)T lesion without
yielding substantial repair. Conversely, the effect of subsequent
flashes, sent after a pre-irradiation burst, was to simultaneously
deplete the T(6-4)T lesion and produce repair. An initial

quadratic behavior could be clearly observed at 265 nm with of
series of 20 flashes spaced by 2 s (the so-called stairs experi-
ment; see Fig. 9a). These results strongly suggested that photore-
pair by (6-4) PL actually requires two photoexcitations.

In a complementary experiment (72), we pre-irradiated a sam-
ple by a series of flashes (to accumulate the putative intermediate
X) and then monitored the absorbance over minutes in the dark.
We observed a slow recovery (time constant of ~100 s at 10 °C)
of the 325-nm band of the initial T(6-4)T lesion (Fig. 9b), thereby
proving that intermediate X has a finite lifetime and spontaneously
decays to the initial form of the lesion. We checked that a lifetime
of 100 s is long enough to allow the absorption of a second photon
under natural sunlight and thus to complete photorepair (72). Our
spectral data are compatible with Sadeghian et al.’s proposal (58),
according to which X would be an oxetane-bridged lesion (ex-
pected to absorb at lower wavelengths than the more conjugated T
(6-4)T (49)), although a positive proof for this assignment is still
lacking. As pointed out in Ref. (72), a lifetime of 100 s at 10 °C
would, according to transition state theory, correspond to an acti-
vation free energy of at most 19.2 kcal mol�1 (for a transmission
coefficient j = 1; for instance, 17.9 kcal mol�1 would be obtained
with j = 0.1). These values are rather close to the energy barrier
of ~16 kcal mol�1 calculated by Sadeghian et al. (58) for the
reversion of the enzyme-bound oxetane to the (6-4) PP. It thus
appears that the observed lifetime of intermediate X is also consis-
tent with the oxetane proposal, but, again, this does not constitute
a proof. The two-photon repair cycle suggested by our results (72)
is summarized in Fig. 9c.

The quantum yields of the individual photoreactions were esti-
mated by fitting the stairs experiment with a two-photon repair
model. The best fit (red line in Fig. 9a) yielded g1 = 6.7% and
g2 = 83%. Based on an error analysis of all data, confidence
intervals of 5.8% ≤ g1 ≤ 8.8% and 47% ≤ g2 ≤ 100% were
obtained (72).

REPAIR OF DEWAR PHOTOPRODUCTS
Dewar PPs are isomers of the (6-4) PPs featuring the 2-oxo-1,3-
diazabicyclo[2.2.0]hex-5-ene structure in the 30 component (see
Fig 1 for T(Dew)T and Fig. 10 for T(Dew)C). They are formed
via an electrocyclic reaction of the 30 pyrimidone ring in (6-4)
PPs upon photoexcitation in the 325-nm band of the (6-4) PP.
No specific photolyase for Dewar PPs has been discovered so far
(32), but (6-4) photolyase was found to repair the most frequent
Dewar lesion, T(Dew)C, albeit with a very low quantum yield
(one to two orders of magnitude lower than for the correspond-
ing (6-4) PP, as estimated by ourselves from data by Glas et al.
(75)). For the Dewar PP formed at TT sites, T(Dew)T, no signifi-
cant repair by (6-4) PL was observed (47,75,76). The crystal
structure of (6-4) PL complexed with DNA carrying an analogue
of the T(Dew)C lesion revealed that this Dewar PP was accom-
modated in the active site in the same way as the corresponding
(6-4) PP (77).

Concerning the reaction mechanism of repair of the T(Dew)C
lesion by (6-4) PL, theoretical (78–80) and experimental studies
(77,80) agree that that the first step is reversion of the Dewar PP
to a (6-4) PP upon electron injection by photoexcited FADH�.
The (6-4) PP would subsequently be repaired as discussed above.
This implies that repair of the T(6-4)C lesion requires at least
two subsequent photoreactions (or even three, if repair of the T

kexct

x r

Figure 8. Simulated repair experiment under continuous illumination,
illustrating the difficulty to distinguish between an ordinary one-photon
mechanism and a sequential two-photon mechanism (see text for details).
The buildup of the repair ratio (xr) is plotted as a function of the irradia-
tion dose (kexc t). In black is represented the strictly linear repair curve
corresponding to a one-photon process with quantum yield g = 6%. The
red and blue curves were calculated according to Eq. (1) for a simplified
two-photon process with either g1 = 6.6%, g2 = 66% (red) or
g1 = g2 = 12% (blue). They both exhibit a brief quadratic onset, fol-
lowed by a linear regime having the same final slope as the above one-
photon process.
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time constant of ~100 s, attributed to the lifetime of the intermediate X formed by the first photoreaction. Inset: normalized amplitudes associated with the
decay (squares, with corresponding error bars representing the standard amplitude errors of the fit), superimposed with the normalized absorption spectrum
of T(6-4)T. (c) Proposed two-photon reaction cycle. The exact nature of intermediate X could not be determined by the experiments, but the spectroscopic
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(6-4)C requires two photoreactions, as in the T(6-4)T case). The
reversion (isomerization) of the Dewar PP would be the rate-lim-
iting step of overall repair (Fig. 10b). Experimentally, this reac-
tion sequence was derived from the accumulation of the (6-4) PP
when its repair in the second step was blocked (using a His1-to-
asparigine mutant photolyase) or slowed (using a TC-Dewar PP
analog, consisting of thymidine and N4-methyl-20-deoxycytidine)
(77), while no accumulation of the (6-4) PP was observed in
experiments with WT photolyase and the unmodified T(Dew)C
lesion (80).

With respect to the inability of (6-4) PL to repair the T(Dew)
T lesion (47,75,76), this cannot be attributed to poor substrate
binding, as a high affinity for T(Dew)T-containing substrates has
been demonstrated (41,45). Rather, reversion of the T(Dew)T to
the T(6-4)T lesion appears to be inhibited, either by an unfavor-
able electron transfer from photoexcited FADH� to T(Dew)T
(2,77) or by a higher activation barrier for the splitting of the

N30-C60 bond in the anion radical of the T(Dew)T lesion (com-
pared to T(Dew)C) (79–81).

In view of the very low or insignificant quantum yields of
Dewar PP repair by (6-4) PL, NER has been considered to be
the most important repair mechanism for Dewar PPs even in
cells expressing (6-4) PLs (32).

CONCLUDING REMARKS
More than 20 years after the discovery of (6-4) photolyase (18),
the mechanism by which it repairs (6-4) photoproducts is still far
from being established in detail. We have focused in this contri-
bution on major experimental and theoretical advances in the
field. At least for the T(6-4)T lesion, there is strong experimental
evidence (72) that two consecutive photoreactions are required
for the repair, in accordance with one singular previous theoreti-
cal study (58).
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We feel that it should be a top priority of future research to
establish experimentally the nature of the intermediate resulting
from the first photoreaction (an oxetane-bridged dimer according to
the theoretical prediction (58)). FTIR difference spectroscopy upon
photoaccumulation of the intermediate could be a convenient tech-
nique. However, only small signals would be expected, because
with quantum yields in the order of only 5–10% for the 1st photore-
action, but 50–100% for the 2nd one (72), only ~10% accumulation
of the intermediate per photolyase could be achieved even under
strong continuous light. Another obvious priority is to characterize
each of the two photoreactions experimentally in as much detail as
possible. Here, the quantum yields mentioned provide a serious
challenge for monitoring the 2nd photoreaction. Ideally, one should
study a sample in which 100% of the photolyases bind the interme-
diate, but at best ~10% would be accumulated by continuous light
or repetitive flashes. Experiments on such a sample would monitor
a mixture of ~90% photolyases bound to a (6-4) PP (and hence
showing the 1st photoreaction) and of only ~10% photolyases
bound to the intermediate (showing the 2nd photoreaction).

Primary steps of the repair reaction were studied by ultrafast
spectroscopy (68) prior to the prediction of a two-photon process
(58) and were hence discussed within the framework of a one-
photon reaction. As the study used repetitive excitation, a fraction
of the photolyases may have been bound to the intermediate, and
the observed transient absorption changes may have represented a
mixture of the 1st and 2nd photoreaction. For the reasons outlined
above, however, at most ~10% should have been due to the 2nd
photoreaction. As the sample was stirred during the experiment,
the percentage was presumably even lower. We hence believe that
the ultrafast data (68) essentially represent the 1st photoreaction.
Indeed, the two primary forward reaction steps concluded from
this study (electron transfer from FADH�* to the (6-4) PP lesion
and subsequent proton transfer from His1 to the lesion anion radi-
cal; see Fig. 6) agree with the theoretical prediction for the 1st
photoreaction (see Fig. 5, bottom row). Furthermore, the unfavor-
able competition between the productive proton transfer to the
lesion anion radical (in 425 ps) and futile back electron transfer
from the latter to FADH� (in 50 ps) concluded by the ultrafast
study (68) would largely account for the low quantum yield of the
1st photoreaction concluded from our flash sequence experiments
(72). The fraction of FADH. that escaped back electron transfer
did not decay in the accessed time window (up to 3 ns), indicating
that electron return from the lesion at the end of the photoreaction
took longer than 10 ns (68).

We have undertaken preliminary transient absorption studies
to estimate the electron return kinetics at 10 °C for both the 1st
photoreaction (using single excitation flashes given to samples
that were dark adapted for over 10 min) and the 2nd photoreac-
tion (by using repetitive excitation and subtracting the contribu-
tion from the 1st photoreaction) and obtained time constants in
the order of tens of microseconds and hundreds of nanoseconds,
respectively. We mention these unpublished data here hoping
that future computational quests for a repair pathway could
already take them into account. More importantly, future experi-
mental work should try to establish the missing steps of the 1st
photoreaction (rearrangements of the lesion radical after its proto-
nation) and to detail the 2nd photoreaction from its beginning.

So far, (6-4) photolyases from three different higher organ-
isms were used for in-depth experimental and theoretical studies
of (6-4) PP repair: the fly D. melanogaster, the frog X. laevis
and the plant A. thaliana. These three proteins show strong

sequence homology, and it was implicitly assumed that results
obtained on one protein apply to the other ones as well. Experi-
mental verification of this assumption appears desirable.
Recently, several members of the photolyase/cryptochrome fam-
ily in microorganisms were found to repair (6-4) lesions, in addi-
tion to typical cryptochrome functions (82–85). Among these,
the PhrB protein of the soil bacterium Agrobacterium tumefa-
ciens (84,86) and the closely related CryB protein of the purple
bacterium Rhodobacter sphaeroides (85) are of particular inter-
est, because they are phylogenetically very distant from canoni-
cal (6-4) photolyases and feature specific structural elements and
cofactors, like a [4Fe-4S] cluster. Homologous proteins exist in
at least 350 bacterial organisms (86). It will be interesting to
examine whether a (6-4) PP repair mechanism different from that
of canonical (6-4) photolyases has evolved in prokaryotes.

Most of the experimental and theoretical investigations on the
photorepair by (6-4) PL have been performed using T(6-4)T-con-
taining substrates, but T(6-4)C lesions are formed in cells more
efficiently than T(6-4)T (4,87), suggesting a more important role
of the repair of T(6-4)C. It has early been reported that T(6-4)C
and T(6-4)T are repaired with similar quantum yields (45), but it
is not yet experimentally established whether or not the photore-
pair mechanism for T(6-4)T is applicable to T(6-4)C. A compu-
tational study (63) indicated that T(6-4)C could be repaired by a
mechanism analogous (OH replaced by NH2) to the “proton-
transfer-steered OH transfer” shown in Fig. 5, middle row. It is
worth mentioning that photorepair of T(Dew)C would require
three photons, if photorepair of T(6-4)C proceeded via a two-
photon mechanism. Detailed studies of the photorepair of the T
(6-4)C lesion and of the first photoreaction in the repair of the T
(Dew)C lesion should be included in future research.
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