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Abstract

The dynamics of a passive scalar gradient experiencing fluctuating velocity gradient

through the Lagrangian variations of strain persistence is studied. To this end, a

systematic, numerical analysis based on the equation for the orientation of the

gradient of a non-diffusive scalar in two-dimensional flow is performed. When the

gradient responds weakly its orientation properties are determined by the mean

value of strain persistence. Statistical alignment of the scalar gradient with the

direction defined by the opposed actions of strain and rotation, by contrast, requires

the gradient to keep up with strain persistence fluctuations. These results have

been obtained for both strain- and effective-rotation-dominated regimes and are

supported by relevant experimental data. Consequences of the unsteady behaviour

of the scalar gradient on mixing properties are also analyzed.
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1 Introduction

In random flows, in particular in chaotic or turbulent ones, the increase of the

local, instantaneous gradient of a scalar such as temperature or concentra-

tion results in the enhancement of mixing through acceleration of molecular

diffusion. This “gradient production” is caused by the mechanical action of

the velocity gradient, more precisely by its straining part, either in the pure

straining motion of hyperbolic regions or in the vicinity of vortices where

strain stems from differential rotation. Quite equivalently, at least as far as

only convective mechanisms are considered, hastening of the mixing process

in random flows finds expression in the stretching of material surface areas.

In turbulent flows the growth of the scalar gradient is closely connected to

the production of small scales of a scalar field and to cascade phenomena.

Actually, the mean dissipation rate of the energy of fluctuations of a scalar is

proportional to the variance of its fluctuating gradient.

In the view where mixing properties of flows are explained through the evolu-

tion of the gradient of a scalar the key mechanisms rest on the alignment of the

gradient with respect to the local strain principal axes [1–4]. The rise of the

scalar gradient is indeed promoted by alignment with the most compressive

direction of strain. But the general problem of scalar gradient alignment is

quite complicated. In turbulent flows the question amounts to understanding

how the gradient behaves under the combined actions of molecular diffusion

as well as of fluctuating strain and effective rotation (i.e. vorticity plus strain

basis rotation). In three-dimensional turbulence random alignment of vorticity
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and vorticity/strain interaction make the problem even more complex.

From pure kinematical considerations it is obvious that in incompressible flows

the scalar gradient is drawn by the local compressional direction. Yet it is also

quite understandable that the latter is generally not the equilibrium orien-

tation of the scalar gradient. In other words, when not only strain but also

rotation and, possibly, molecular diffusion are present, the fixed point of the

gradient orientation equations is certainly not the strain compressional axis.

In three-dimensional flows, the bare existence of this fixed point is even not

proved in the general case [5]. In two-dimensional flows [6] as well as in a spe-

cial, three-dimensional situation [7,8], however, the equilibrium orientation

and conditions for its existence have been derived analytically at least when

the scalar is non-diffusive. It has also been shown that in two-dimensional

turbulence the scalar gradient statistically aligns better with the local equilib-

rium direction defined by the balance between strain and rotation than with

the compressional direction [6].

Even so, the statistical alignment of the scalar gradient is determined by the

gradient dynamics. If the velocity field is time varying, alignment with a pos-

sible equilibrium orientation requires that the response time scale of the scalar

gradient is short enough compared to the time scale of velocity gradient fluctu-

ations. Alignment dynamics is thus an essential feature of the scalar gradient

behaviour and has already been addressed in some studies [2,4,7,9–11]. The

influence on mixing that follows from this nonstationary aspect is still not

clear.

Trying to understand how the mixing process is affected by the dynamics of

the scalar gradient is precisely one of the main goals of the present study. This
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is done in Section 3 by analyzing numerically the growth rate of the gradient

norm for different unsteady regimes in the two-dimensional case. We first de-

vote Section 2 to the numerical analysis of alignment statistics when the scalar

gradient undergoes a fluctuating strain persistence. This investigation aims at

bearing out the generality of the partial findings of Ref. [11]. In particular, the

orientation equation of the scalar gradient in a two-dimensional flow is solved

for simulating the strain-dominated as well as the effective-rotation-dominated

regimes. Different strain persistence signals are used to show the existence of

a gradient alignment that is neither the compressional nor the equilibrium

direction defined by the instantaneous strain persistence. Section 4 reports

on experimental results supporting the latter numerical study. Conclusion is

drawn in Section 5.

2 Analysis of statistical scalar gradient alignment

2.1 Equation for scalar gradient orientation

We restrict the analysis to two-dimensional, incompressible flow and non-

diffusive passive scalar. Writing the scalar gradient in the fixed frame of ref-

erence as G = |G|(cos θ, sin θ), the equation for the gradient orientation is

[6,9]

dζ

dτ
= r − cos ζ, (1)

where ζ = 2(θ+Φ) gives the gradient orientation in the local strain basis; angle

Φ defines the orientation of the strain principal axes through tanΦ = σn/σs

with σn = ∂u/∂x− ∂v/∂y and σs = ∂v/∂x+ ∂u/∂y denoting the normal and
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shear components of strain, respectively. Time τ is a strain-normalized time

τ =

t
∫

0

σ(t′) dt′,

with t standing for the Lagrangian time and σ for strain intensity, σ2 = σ2

n+σ2

s .

Note that Eq. (1) just proceeds from the usual equation for the passive scalar

(with molecular diffusion neglected) through the equation for the scalar gra-

dient [4,7] which is handled as explained in Ref. [6].

Parameter r represents the persistence of strain [6,12] and is defined as

r =
ω + 2dΦ/dt

σ
,

where ω = ∂v/∂x − ∂u/∂y is vorticity. Strain persistence, r, defines an ob-

jective criterion for partitioning the flow; in strain-dominated regions r2 < 1,

while in regions where effective rotation prevails r2 > 1. In this article these

regions are occasionally termed hyperbolic and elliptic respectively. It is to

be noticed that this partition does not necessarily coincide with the one de-

rived from the Okubo-Weiss criterion; because r includes the pressure Hessian

through strain basis rotation, dΦ/dt, the corresponding criterion is more gen-

eral [13].

Lapeyre et al. [6] analyzed Eq. (1) assuming slow variations of r along La-

grangian trajectories and showed the way in which the scalar gradient ori-

entation is determined by the local flow topology. For prevailing strain the

orientation equation has a stable fixed point,

ζeq = − arccos(r),
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which corresponds to an equilibrium orientation. In the special case r = 0 (i.e.

in the pure hyperbolic regime) the equilibrium orientation, ζeq, coincides with

the local compressional direction,

ζc = −π/2.

If effective rotation dominates, Eq. (1) has no fixed point; there is no equi-

librium orientation for the scalar gradient, but a most probable one given

by

ζprob = [1− sign(r)]π/2.

Exact balance between strain and effective rotation, namely r2 = 1, drives the

scalar gradient to align with the bisector of strain principal axes. The general

solution, ζ(τ), of Eq. (1) can be derived for any of the latter three different

regimes [6].

The study of Garcia et al. [11] reveals that the above approach remains valid as

long as the response time scale of the scalar gradient is short enough compared

to the time scale of the Lagrangian fluctuations of r. They also put forward

that in the opposite case, namely when the gradient does not keep up with

r fluctuations and its response is poor, the alignment of the scalar gradient

is determined by the mean value of r, 〈r〉. In the following we try to gener-

alize and support these results by the study of regimes that have not been

originally addressed. Indeed we extend the previous analysis by examining

the effective-rotation-dominated regime in addition to the strain-dominated

one. Considering different values of 〈r〉 we also confirm the existence of the

orientation defined by the mean value of strain persistence.
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2.2 Alignment of scalar gradient in the case of fluctuating strain persistence

We simulate the fluctuations of strain persistence, r, with a stochastic differ-

ential equation,

dr = −(r − 〈r〉)β⋆dτ + (2r′2β⋆dτ)
1/2

ξ. (2)

In Eq. (2) ξ is a standardized Gaussian random variable. This equation de-

pends on three parameters, namely β⋆, 〈r〉 and r′. Giving β⋆ a value is equiv-

alent to prescribe the nondimensional integral time scale of r, T ⋆, through

T ⋆ = 1/β⋆. Parameter r′ stands for the root mean square of r. The few data

on strain persistence statistics [6,11] show it is not a Gaussian variable. How-

ever, the actual statistics are immaterial here, for the concern is mainly in the

gradient response to time-varying strain persistence.

The evolution of the scalar gradient orientation, then, is derived by solving

numerically

dζ = [r(τ)− cos ζ ] dτ. (3)

Since dτ = σdt, it is clear from Eq. (3) that the response time scale of the

gradient orientation to the forcing mechanism represented by r is of the order

of 1/σ. Parameter β⋆ gives a measure of the gradient response compared to

forcing stimulation. Small values of β⋆ (resp. slow variations of r) mean that

the scalar gradient responds well to r fluctuations, while large values (resp.

fast variations of r) correspond to a poor response of the scalar gradient. In

the special case for which strain intensity, σ, is constant β⋆ = 1/σT where T is

the integral time scale of r signal and thus β⋆ is the ratio of gradient response
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time scale to r fluctuations time scale.

Garcia et al. [11] have shown that the approach of Lapeyre et al. [6] (Section

2.1) does not apply to scalar gradient orientation if strain persistence fluctuates

too rapidly for the scalar gradient to respond. They argued that in this case

the most probable orientation of the gradient should be determined by the

mean value of r, 〈r〉, rather than by the instantaneous one. In particular, it

was put forward that if 〈r〉2 < 1 (in other words, if the regime is hyperbolic on

an average) and the time scale of r fluctuations is shorter than the gradient

response time scale, the preferential orientation of the gradient should be

defined by

ζ〈r〉 = − arccos〈r〉.

In reality, the most probable orientation cannot be determined analytically,

but is close to ζ〈r〉. This results from the fact that the weaker the gradient

response, the closer ζ to ζ〈r〉. A simplified proof is given in Appendix A. The

behaviour of the scalar gradient when its response to r fluctuations is poor is

confirmed by the present simulations for two different values of 〈r〉 as well as

for small and large values of β⋆.

The p.d.f’s of scalar gradient alignment have been derived from the numerical

evolution of ζ computed using Eq. (3) and Eq. (2) with 〈r〉 = 0 and r′2 = 4.

The fluctuations of r thus describe the hyperbolic regime (r2 < 1), but also

make significant inroads into the elliptic one (r2 > 1). The p.d.f’s of ζ − ζeq

and ζ − ζ〈r〉 conditioned on r2 < 1 are shown in Fig. 1. They indicate which

of the orientations ζeq (determined by the instantaneous value of r; Section

2.1) and ζ〈r〉 (defined by 〈r〉) is statistically the best one in the hyperbolic
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regime. Clearly, for β⋆ = 0.01 the scalar gradient preferentially aligns with

the instantaneous, equilibrium direction, ζeq, which is generally different from

the compression one, in agreement with the approach by Lapeyre et al. [6].

For β⋆ = 5 it is the alignment with the direction defined by ζ〈r〉 which is the

most probable one. Note that for 〈r〉 = 0 ζ〈r〉 = −π/2 and thus coincides

with the compressional direction. Interestingly, in the present case the scalar

gradient thus statistically aligns with the compressional direction because the

gradient response to r fluctuations is poor (β⋆ > 1) and the mean value of r

corresponds to a pure hyperbolic regime (〈r〉 = 0). This is reminiscent of the

experimental situation analyzed by Garcia et al. [11].

The results in the elliptic regime (p.d.f’s conditioned on r2 > 1; Fig. 2) are

similar. For β⋆ = 0.01 the most probable gradient orientation is given by

ζprob (Section 2.1) which agrees with the analysis of Lapeyre et al. [6]. In the

case β⋆ = 5 the scalar gradient again aligns preferentially with the direction

defined by ζ〈r〉, that is, the compressional one. Yet this is not paradoxical.

When the scalar gradient does not respond to the fluctuations of r its orien-

tation is governed by the mean value, 〈r〉, rather than by the instantaneous

one and remains close to ζ〈r〉. This may drive the gradient to align with the

compressional direction, even though r takes elliptic values, provided that 〈r〉

is close to zero. Note that the secondary maxima in Fig. 2 are explained by

|ζ〈r〉 − ζprob| = |ζc − ζprob| = π/2.

Alignment p.d.f’s derived with 〈r〉 = −0.8 are plotted in Figs. 3 and 4. If

β⋆ is small the value of 〈r〉 is immaterial; the scalar gradient preferentially

aligns with the equilibrium direction, ζeq, and the same orientation p.d.f’s as

those plotted in Figs. 1 and 2 for β⋆ = 0.01 are derived. Figures 3 and 4 thus

only display the orientation p.d.f’s in the case where β⋆ is given a large value,
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β⋆ = 100. Results for the hyperbolic regime are presented in Fig. 3. Plainly, ζ〈r〉

(which is computed as ζ〈r〉 = − arccos(−0.8)) is the most probable orientation

of the scalar gradient. Alignment with the equilibrium direction, ζeq, is weak

and as shown by the p.d.f of ζ − ζc there is no trend of the gradient to align

with the compressional direction.

In the elliptic regime (Fig. 4), too, the orientation defined by 〈r〉 is statistically

the best one. As a matter of course, the gradient does not align with the

compressional direction, but there is also no trend at all toward the direction

defined by ζprob.

3 “Gradient production” and mixing properties

With the same assumptions as those stated in Section 2.1 the equation for the

norm of the scalar gradient is [6,9]

2

|G|

d|G|

dτ
= − sin ζ,

from which it is clear that the mean growth rate of the gradient norm, ρ, is

given by ρ = −〈sin ζ〉. Note that alignment with the compressional direction,

ζ = ζc = −π/2, corresponds to the maximum growth rate.

The mean growth rate has been derived from the statistics of ζ computed by

solving Eqs. (2) and (3). The simulations have been run for three different r

signals, namely r′2 = 0.1, r′2 = 4 and r′2 = 16 with β⋆ ranging from 0.1 to

100. For all cases 〈r〉 = 0.
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Figure 5 shows the evolution of ρ vs. β⋆−1. Interestingly, ρ decreases with

β⋆−1 whatever the value of r′2; in other words, the better the response of gra-

dient orientation to r fluctuations (large values of β⋆−1), the lower the mean

growth rate of the norm. When it responds to r fluctuations the scalar gra-

dient preferentially aligns with either ζeq or ζprob which are determined by the

instantaneous value of r and are both mostly different from the compressional

direction (Section 2.2). Hence the weaker growth rate. This feature gets more

pronounced as the variance r′2 is increased. For the lowest variance (r′2 = 0.1)

r mostly fluctuates within the bounds of the hyperbolic regime assuming low

values around r = 0 and makes ζeq not much different from the compressional

direction. Wider fluctuations (r′2 = 4 or r′2 = 16), by contrast, bring about

instantaneous orientations ζeq corresponding to larger values of |r| and thus

lying further from the compressional direction; in addition, more frequent,

deep inroads into the elliptic regime (r2 > 1) even lead the gradient to align

with ζprob, that is, 45o away from the compressional direction, during longer

time intervals. As a result, for moderate and large values of β⋆−1 the mean

growth rate of the scalar gradient norm is lowered as the amplitude of r fluc-

tuations is increased. For the smallest values of β⋆−1, though, the growth rate

is insensitive to r variance and is close to its maximum value. Indeed a slug-

gish response to r fluctuations compels the gradient to remain aligned with

the direction defined by 〈r〉 (Section 2.2) which in the present case (for which

〈r〉 = 0) coincides with the compressional direction.

There is an interesting consequence for mixing properties. If 〈r〉 ≃ 0, then

favourable conditions for mixing are not only achieved in the hyperbolic regime;

provided that the gradient response is weak, they are also fulfiled in those cases

where large fluctuations of r span both the hyperbolic and elliptic regimes.
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More generally, when r fluctuates with 〈r〉 remaining close to 0 it is the poor

response of the scalar gradient to r fluctuations that promotes the best con-

ditions for fast mixing.

4 Analysis of experimental data on scalar gradient alignment

As far as we know, simultaneous measurements of velocity and scalar gradi-

ents are scarce. Apart from experiments in turbulent flows [14], joint statistics

of velocity gradient and temperature gradient have been measured in a low-

Reynolds number, two-dimensional, Bénard - von Kármán street [15,16]. The

latter data confirm that for fast fluctuations of strain persistence the pref-

erential orientation of the scalar gradient is determined by the mean strain

persistence rather than by its instantaneous value.

A detailed description of the experiment and measurement techniques are

given in Refs. [15–17]. In brief, the experimental set-up consists of a 2 mm-

diameter (D) circular cylinder used for generating a two-dimensional Bénard

- von Kármán street; the Reynolds number based on the cylinder diameter is

Re = 63. Temperature is passively injected through a 20 µm-diameter heated

line source located in the near wake of the cylinder (Fig. 6). The line source can

be set either in or off the centre of the street. Velocity gradients and temper-

ature gradients are derived from simultaneous measurements of temperature

and velocity components. These data have been used to obtain Lagrangian

statistics of the scalar gradient orientation conditioned on the strain persis-

tence parameter, r, as explained in Refs. [7,11].

Part of the latter results have been already analyzed [7,11]. In particular, it
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has been found that in this experiment the temperature gradient does not

respond to r fluctuations. More precisely, 〈σ〉T ≪ 1, where the mean value of

strain, 〈σ〉, and T , the autocorrelation time scale of r, have been computed

by averaging over Lagrangian trajectories. This previous statistical study was

mainly focused on the hyperbolic zones of the flow, far enough downstream

(i.e. (x − xs)/D > 4 with xs the distance of the source to the cylinder),

when the heated line source is in the centre of the cylinder wake. The analysis

showed (Fig. 7) that the alignment of the temperature gradient with the com-

pressional direction is statistically better than with the equilibrium direction

derived from the approach of Lapeyre et al. [6] (Section 2.1). This result lends

support to the findings of the numerical study presented in Section 2.2. Most

likely, preferential alignment of the temperature gradient with the compres-

sional direction does not result from any kinematic attraction, but from the

gradient dynamics. Because of the poor response of the temperature gradient

to r fluctuations, the preferential alignment is given by 〈r〉 computed along

Lagrangian trajectories which, in the above conditions, is found to be close to

0 and thus defines an orientation that almost coincides with the compressional

direction.

Previous studies [9,18] suggest that molecular diffusion may influence scalar

gradient orientation, but that large gradients are weakly affected. As to the

present case, Garcia et al. [11] have shown that the departure of the experimen-

tal results from the Lapeyre et al. approach is not to be ascribed to molecular

diffusion. The latter certainly plays on the shape of the orientation p.d.f’s,

but is not the cause for the compressional direction being more probable than

the equilibrium one.

Further experimental data for the elliptic regions of the flow and in the case
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where the line source is located off the centre of the cylinder wake confirm the

above picture. Results for elliptic regions when the line source is in the centre

of the wake are displayed in Fig. 8. They concern the p.d.f’s of orientation of

the temperature gradient with respect to the compressional direction, ζc, and

to direction ζprob imposed by dominating effective rotation [6] (Section 2.1).

The p.d.f of orientation with respect to direction ζN
−

is also shown. The latter

direction corresponds to the lowest eigenvalue of tensor N which is defined

as:

d2|G|2

dt2
= G

T
NG

and is related to the pressure Hessian [10]. According to Klein et al. [10], when

strain intensity varies significantly along Lagrangian trajectories ζN
−

is the

preferential orientation of the scalar gradient in effective-rotation-dominated

regions. From Fig. 8 it is clear that the temperature gradient does not tend

to align with ζprob. There is a trend of the gradient to align with ζN
−

, but the

best alignment is with the compressional direction. This striking behaviour

strongly pleads for the above-described scenario and for the conclusions of the

numerical analysis of Section 2.2: when strain persistence fluctuations are too

fast for the scalar gradient to respond (which in the experiment is measured

by the low value of 〈σ〉T ) the latter is blind to the local topology and its

orientation is entirely governed by the mean value of the strain persistence

parameter.

When the heated line source is set off the centre of the Bénard - von Kármán

street (more precisely, at transversal distance y/D = 1 from the previous po-

sition) the mean value 〈r〉 of strain persistence computed for Lagrangian tra-

jectories along which the temperature gradient keeps significant values (|G| ≥
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100) is found to be close to -0.8. Figure 9 shows the p.d.f’s of temperature gra-

dient orientation with respect to either the compressional direction or the equi-

librium direction, ζeq, derived from the approach of Lapeyre et al. [6], in strain-

dominated regions. There is a trend of the gradient to align with ζeq. However,

a much better statistical alignment is found with the direction corresponding

to ζ − ζc ≃ −1, that is, with ζ ≃ −1 − π/2 ≃ − arccos(−0.8) = − arccos〈r〉.

P.d.f’s of Fig. 9 are more distributed and thus display lower peaks than those

corresponding to the source being in the centre of the cylinder wake (Fig. 7).

This may result from a bigger influence of rotation on the temperature gra-

dient when the line source is off the centre of the wake. Orientation statistics

in effective-rotation-dominated regions have similar trends. Figure 10 shows

that the temperature gradient aligns slightly better with ζN
−

than with ζprob.

But in this case, too, the best statistical alignment – broader though the p.d.f

is – is found around ζ ≃ − arccos(−0.8). These latter experimental data with

〈r〉 6= 0 thus give a more general support to the previous findings on the

dynamics of scalar gradient orientation.

5 Conclusion

Analysis of the behaviour of the passive scalar gradient undergoing the in-

fluence of varying velocity derivatives through fluctuating strain persistence

uncovers some interesting results regarding both the statistical gradient ori-

entation and mixing properties.

Generalizing the analysis of Garcia et al. [11] to the effective-rotation-domina-

ted regime, we confirm that the statistics of scalar gradient alignment depend

on the gradient response to strain persistence fluctuations. More precisely,
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the numerical study based on the equation for the scalar gradient orientation

in two-dimensional flow shows that perfect response drives the gradient to

preferentially align with a direction determined by the instantaneous value

of strain persistence as predicted by the analysis of Lapeyre et al. [6]. When

the response of the scalar gradient is poor, though, the preferential alignment

is given by the mean value of strain persistence which indicates whether the

flow regime is, on an average, either strain- or effective-rotation-dominated. It

follows interestingly that the scalar gradient preferentially aligns with the com-

pressional direction provided that it is almost insensitive to strain persistence

fluctuations and the mean strain persistence is close to the pure hyperbolic

value. This result opposes the usual statement that it is a perfect response to

the fluctuating rotation of the strain basis (which in the two-dimensional case

is explicit in the strain persistence parameter) that leads the gradient to align

with the compressional direction.

The general picture derived from the numerical study is firmly supported by

experimental, Lagrangian joint statistics of velocity gradient and scalar gra-

dient derived from simultaneous measurements of velocity and temperature

in a two-dimensional, low-Reynolds number Bénard - von Kárman street. It

is worth noting that its low Reynolds number marks this flow from the simu-

lated two-dimensional turbulent flows in which scalar gradient alignment was

previously studied [6,9]. In particular, it may be that alignment with the equi-

librium direction found by Lapeyre et al. [6] results from a good response of

the scalar gradient to r fluctuations in turbulent flows (moderate or large σT ).

Checking this surmise would require Lagrangian data on strain persistence in

two-dimensional turbulence. Regarding the Lagrangian properties of strain

persistence and scalar gradient dynamics, another interesting and unanswered
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issue is whether the present flow is a special one or belongs to a more general

class of flows.

Finally, unsteady behaviour of the scalar gradient may unexpectably affect

mixing properties through alignment statistics. An interesting result is that

poor response of the gradient to strain persistence fluctuations does not in-

evitably oppose efficient mixing. In particular, the study of the growth rate

of the gradient norm clearly shows that when the mean strain persistence is

close to the pure hyperbolic value (in other words, strain is persistent on an

average) it is the weak response of the gradient to strain persistence fluctu-

ations which promotes the highest growth rate and thus the best conditions

for mixing.

A Behaviour of scalar gradient orientation for fast fluctuations of

strain persistence

We restrict to the case where 〈r〉2 < 1 and ζ〈r〉 = − arccos〈r〉 is defined.

From Eq. (1) the equation for the difference ζ⋆ = ζ − ζ〈r〉 is:

dζ⋆

dτ
= r − 〈r〉 cos ζ⋆ − γ sin ζ⋆ (A.1)

with τ =
∫ t
0
σ(t′)dt′ and γ = (1− 〈r〉2)

1/2
.

We get rid of the nonlinearity of Eq. (A.1) by assuming small values of ζ⋆. To

first order, then:

dζ⋆

dτ
+ γζ⋆ = r′ (A.2)

17



with r′ = r − 〈r〉. The proof is thus not general, but is given as an additional

argument for the behaviour of the scalar gradient when its response to r

fluctuations is poor.

We assume a sine signal for r′, r′ = a sinω⋆τ , in which frequency is normalized

as ω⋆ = ω/〈σ〉 with 〈σ〉 = τ/t. The nondimensional frequency, ω⋆, thus gives a

measure of the response of the scalar gradient to r fluctuations. In particular,

poor response is expected for large values of ω⋆.

The solution of Eq. (A.2) is:

ζ⋆ =

[

ζ⋆(0) +
aω⋆

ω⋆2 + γ2

]

exp(−γτ) +
a

γ(1 + ω⋆2/γ2)

(

sinω∗τ −
ω⋆

γ
cosω⋆τ

)

.(A.3)

Note that Eq. (A.3) can be recast in the more standard form:

ζ⋆ =

[

ζ⋆(0) +
aω⋆

ω⋆2 + γ2

]

exp(−γτ) +
a

γ(1 + ω⋆2/γ2)
1/2

sin(ω⋆τ − φ)

with cosφ = (1 + ω⋆2/γ2)
−1/2

and phase, φ, is present when the response to

the stimulation is not perfect.

From Eq. (A.3) the long-time evolution of ζ⋆ is given by:

ζ⋆ ≃
a

γ(1 + ω⋆2/γ2)

(

sinω∗τ −
ω⋆

γ
cosω⋆τ

)

.

For ω⋆ ≫ 1:

ζ⋆ ≃
a

ω⋆2/γ

(

sinω∗τ −
ω⋆

γ
cosω⋆τ

)

.

Since ω⋆/γ ≫ 1, ζ⋆ is bounded as:

−
a

ω⋆
≤ ζ⋆ ≤

a

ω⋆
.
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It follows that when r fluctuates on a much shorter time scale than the response

time scale of the scalar gradient so much so that the latter does not keep up

with r fluctuations the gradient orientation, ζ , remains close to ζ〈r〉. Increasing

the amplitude of r fluctuations, however, leads to the opposite behaviour.
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FIGURE CAPTION

FIG. 1 P.d.f’s of scalar gradient orientation for 〈r〉 = 0 and r′2 = 4 conditioned

on r2 < 1 (dominating strain). P.d.f of ζ − ζ〈r〉: • β⋆ = 5, ◦ β⋆ = 0.01; p.d.f of

ζ − ζeq: � β⋆ = 5, � β⋆ = 0.01.

FIG. 2 P.d.f’s of scalar gradient orientation for 〈r〉 = 0 and r′2 = 4 conditioned

on r2 > 1 (dominating effective rotation). P.d.f of ζ−ζ〈r〉: • β
⋆ = 5, ◦ β⋆ = 0.01;

p.d.f of ζ − ζprob: � β⋆ = 5, � β⋆ = 0.01.

FIG. 3 P.d.f’s of scalar gradient orientation for 〈r〉 = −0.8, r′2 = 4 and

β⋆ = 100 conditioned on r2 < 1 (dominating strain). • p.d.f of ζ−ζ〈r〉; � p.d.f

of ζ − ζeq; × p.d.f of ζ − ζc.

FIG. 4 P.d.f’s of scalar gradient orientation for 〈r〉 = −0.8, r′2 = 4 and

β⋆ = 100 conditioned on r2 > 1 (dominating effective rotation). • p.d.f of

ζ − ζ〈r〉; � p.d.f of ζ − ζprob; × p.d.f of ζ − ζc.

FIG. 5 Mean production rate of scalar gradient norm vs. β⋆−1. ⋄ r′2 = 0.1; ◦

r′2 = 4; � r′2 = 16.

FIG. 6 Experimental set-up (from Godard [15]).

FIG. 7 Experimental p.d.f’s of temperature gradient orientation conditioned

on r2 < 1 (dominating strain) and |G| > 100 in the far field of the heated

line source (x/D > 4). The source is in the centre of the cylinder wake;

experimental 〈r〉 ≃ 0. ◦ p.d.f of ζ − ζc; � p.d.f of ζ − ζeq.
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FIG. 8 Experimental p.d.f’s of temperature gradient orientation conditioned

on r2 > 1 (dominating effective rotation) and |G| > 100 in the far field of the

heated line source (x/D > 4). The source is in the centre of the cylinder wake;

experimental 〈r〉 ≃ 0. ◦ p.d.f of ζ − ζc; � p.d.f of ζ − ζprob; × p.d.f of ζ − ζN
−

.

FIG. 9 Experimental p.d.f’s of temperature gradient orientation conditioned

on r2 < 1 (dominating strain) and |G| > 100 in the far field of the heated

line source (x/D > 4). The source is off the centre of the cylinder wake

(y/D = 0.1); experimental 〈r〉 ≃ −0.8. ◦ p.d.f of ζ − ζc; � p.d.f of ζ − ζeq.

FIG. 10 Experimental p.d.f’s of temperature gradient orientation conditioned

on r2 > 1 (dominating effective rotation) and |G| > 100 in the far field of the

heated line source (x/D > 4). The source is off the centre of the cylinder wake

(y/D = 0.1); experimental 〈r〉 ≃ −0.8. ◦ p.d.f of ζ − ζc; � p.d.f of ζ − ζprob; ×

p.d.f of ζ − ζN
−

.
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Fig. 1. P.d.f’s of scalar gradient orientation for 〈r〉 = 0 and r′2 = 4 conditioned on

r2 < 1 (dominating strain). P.d.f of ζ − ζ〈r〉: • β⋆ = 5, ◦ β⋆ = 0.01; p.d.f of ζ − ζeq:

� β⋆ = 5, � β⋆ = 0.01.
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Fig. 2. P.d.f’s of scalar gradient orientation for 〈r〉 = 0 and r′2 = 4 conditioned on

r2 > 1 (dominating effective rotation). P.d.f of ζ − ζ〈r〉: • β⋆ = 5, ◦ β⋆ = 0.01; p.d.f

of ζ − ζprob: � β⋆ = 5, � β⋆ = 0.01.
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Fig. 3. P.d.f’s of scalar gradient orientation for 〈r〉 = −0.8, r′2 = 4 and β⋆ = 100

conditioned on r2 < 1 (dominating strain). • p.d.f of ζ − ζ〈r〉; � p.d.f of ζ − ζeq; ×

p.d.f of ζ − ζc.
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Fig. 4. P.d.f’s of scalar gradient orientation for 〈r〉 = −0.8, r′2 = 4 and β⋆ = 100

conditioned on r2 > 1 (dominating effective rotation). • p.d.f of ζ − ζ〈r〉; � p.d.f of

ζ − ζprob; × p.d.f of ζ − ζc.
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Fig. 5. Mean production rate of scalar gradient norm vs. β⋆−1. ⋄ r′2 = 0.1; ◦ r′2 = 4;

� r′2 = 16.
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Fig. 6. Experimental set-up (from Godard [15]).
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Fig. 7. Experimental p.d.f’s of temperature gradient orientation conditioned on

r2 < 1 (dominating strain) and |G| > 100 in the far field of the heated line source

(x/D > 4). The source is in the centre of the cylinder wake; experimental 〈r〉 ≃ 0.

◦ p.d.f of ζ − ζc; � p.d.f of ζ − ζeq.
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Fig. 8. Experimental p.d.f’s of temperature gradient orientation conditioned on

r2 > 1 (dominating effective rotation) and |G| > 100 in the far field of the heated

line source (x/D > 4). The source is in the centre of the cylinder wake; experimental

〈r〉 ≃ 0. ◦ p.d.f of ζ − ζc; � p.d.f of ζ − ζprob; × p.d.f of ζ − ζN
−

.
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Fig. 9. Experimental p.d.f’s of temperature gradient orientation conditioned on

r2 < 1 (dominating strain) and |G| > 100 in the far field of the heated line source

(x/D > 4). The source is off the centre of the cylinder wake (y/D = 0.1); experi-

mental 〈r〉 ≃ −0.8. ◦ p.d.f of ζ − ζc; � p.d.f of ζ − ζeq.
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Fig. 10. Experimental p.d.f’s of temperature gradient orientation conditioned on

r2 > 1 (dominating effective rotation) and |G| > 100 in the far field of the heated

line source (x/D > 4). The source is off the centre of the cylinder wake (y/D = 0.1);

experimental 〈r〉 ≃ −0.8. ◦ p.d.f of ζ − ζc; � p.d.f of ζ − ζprob; × p.d.f of ζ − ζN
−

.
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