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Abstract

Self-adaptive behaviors in the context of Component-based Architecture are generally designed based on past monitoring events,
configurations (component assemblies) as well as behavioural programs defining the adaptation logics and invariant properties.
Providing assurances on the navigation through the configuration space remains a challenge. That requires taking decisions on
predictions on the possible futures of the system in order to avoid going into branches of the behavioural program leading to bad
configurations. This article proposes the design of self-adaptive software components based on logical discrete control approaches,
in which the self-adaptive behavioural models enriches component controllers with a knowledge not only on events, configurations
and past history, but also with possible future configurations. We present Ctrl-F, a Domain-specific Language whose objective is to
provide high-level support for describing these control policies. Ctrl-F is formally defined by translation to Finite State Automata,
which allow for the exploration of behavioural programs by verification or Discrete Controller Synthesis, i.e., by automatically
generating a controller to enforce correct self-adaptive behaviours. We integrate Ctrl-F with FraSCAti, a Service Component
Architecture middleware platform and we illustrate the use of Ctrl-F by applying it to two case studies: a news web application and
a mutual exclusive task workflow.
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1. Introduction

Architecting software-intensive systems has become a chal-
lenging task. From tiny applications embedded in house ap-
pliances or automobiles, passing through highly connected cy-
ber physical systems, to huge and distributed services in the
Cloud, nowadays software systems have to fulfill a number of
requirements in terms of operational cost, safety and Quality of
Service (QoS) while facing highly dynamic environments (e.g.,
varying workloads and changing user requirements) and plat-
forms (e.g., software/hardware resource availability and fail-
ures). That level of dynamicity makes it difficult, often almost
impossible, to manage such software systems in a manual way.
It becomes thus imperative to engineer and architect with prin-
ciples of self-adaptiveness in mind, i.e., to equip these software
systems with capabilities to cope with environmental and con-
textual changes occurring at runtime.

The design of such complex computing systems has been
improved by the help of structural organization support of
component-based architecture, in which software components
encapsulates functionalities that can be accessed through well-

defined interfaces that do not depend on their particular imple-
mentations. In addition to the benefits of modularity and reuse
[1] – which are consequences of this structural organization –
adaptability and reconfigurability are key properties which are
sought with this approach: one wants to be able to adapt the
component assemblies (configurations) in order to cope with
new requirements and new execution conditions occurring at
runtime.

Architecture Description Languages (ADLs) captures the
high-level structure of software systems by describing how
they are organized by the means of a composition of com-
ponents. In order to attain self-adaptation, ADLs are gen-
erally used to define initial configurations, whereas adaptive
behaviours are achieved by programming fine-grained actions
(e.g., to add, remove, connect elements), in either general-
purpose languages within reflective component-based middle-
ware platforms [2, 3, 4], or with the support of reconfiguration
domain-specific languages (DSLs)[5, 6]. This low level of ab-
straction may turn the definition of transitions among configu-
rations into a very tedious and costly task, which consequently
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may lead to error-prone adaptive behaviours. In fact, it may
be non-trivial, especially for large and complex architectures
(e.g., web applications with hundreds/thousands of replicated
components with specific tuning parameters and constraints),
to conceive well-mastered self-adaptive behaviours, with as-
surances on the way the navigation through the configuration
space is performed. Our previous work [7] tackles this problem
by proposing a DSL that extends classic ADLs with high-level
constructs to describe adaptation in software components by
means of behavioural programs, i.e., in terms of order and/or
conditions under which reconfigurations take place; and poli-
cies, i.e., constraints that have to be enforced all along the exe-
cution.

Adaptation decisions are taken at runtime by choosing the
next configuration (e.g., a set of architectural elements) in func-
tion of not only the observed past history (monitoring events,
states, configurations), but also on behavioural programs de-
scribing the adaptation logics and properties to be kept invari-
ant all over the managed system’s execution [8][9]. That form
of decision must involve not only updating the current advance-
ment in the behaviors, but also some predictions on the possible
futures of the system. These guarantees can be achieved with
the support of control theoretical approaches, where the use of
behavioural models allows for predictive decisions. Control-
based approaches for software systems have been investigated,
mainly concerning quantitative aspects and using continuous
control [10]. The use of discrete control is however more ap-
propriated in the context of this work, since the purpose here
is to choose configurations in a logical-basis. In particular, we
address the design of such a decision-maker as a Discrete Con-
troller Synthesis (DCS) problem [11], which consists in auto-
matically generating a controller capable of controlling a set of
input variables such that a given temporal property is satisfied.

We propose the design of software components based on Fi-
nite State Automata (FSA) behavioural models, which provide
knowledge on events, states, past history as well as on possible
futures, i.e., the space of reachable configurations. This way,
we are be able to, by control, avoid going into behavioural pro-
gram branches leading to wrong configurations. For that pur-
pose, we formally define the semantics of Ctrl-F behavioural
programs by the translation to a FSA model [12]. More pre-
cisely, we provide full translation from Ctrl-F to the reactive
language Heptagon/BZR [13], which allows the compilation to-
wards formal tools and thereby benefit from exploration by both
DCS and verification.

Since the combinatorial complexity of that formal explo-
ration can be exponential in the number of configurations and
hence very costly to be performed at runtime, and given that
adaptive behavioural programs can be known in advance, we
advocate that the DCS should rather be performed off-line. That
is to say that controllers are compiled away so as to provide cor-
rect solutions at runtime. Furthermore, this is done in a max-
imal permissive way, meaning that besides ensuring the cor-
rectness of decisions, the generated controller makes it optimal,
in the sense that it keeps the maximum of possible configura-
tions not violating the stated policies, and hence making the
controlled system maximally flexible. The result of the compi-

lation of a given behavioural program is an executable function
which, at each decision step, takes the current state and current
events, and returns a control value corresponding to the next
configuration such that the stated policies are respected.

This article extends our previous work [7] and presents a de-
tailed description of Ctrl-F language as well as its translation
into Heptagon/BZR. In addition, we provide further details on
its implementation and integration with FraSCAti [4], a mid-
dleware allowing for runtime reconfiguration of Service Com-
ponent Architecture (SCA) software systems. We also illustrate
our approach throughout two case studies: a news web applica-
tion, with QoS and cost requirements [14]; and an application
with mutual exclusion requirements. Finally, we provide a dis-
cussion on the applicability of our approach by executing these
applications under different scenarios.

The remainder of this article is organized as follows. Sec-
tion 2 introduces the main concepts necessary to understand
our approach. Section 3 presents the Ctrl-F language. Its com-
pilation to Heptagon/BZR is detailed in Section 4. Section 5
provides some details on the integration of Ctrl-F with a FraS-
CAti middleware platform. Section 6 presents some case stud-
ies and provides some discussion on the applicability of our
approach. Related work is discussed in Section 7 and Section 8
concludes this article while pointing out some perspectives for
future work.

2. Background

2.1. Component-based Software Architecture

2.1.1. Architecture Basics and Description Language
Software architectures define the high-level structure of soft-

ware systems by describing how they are organized by the
means of a composition of components [1]. Architecture de-
scription languages (ADLs) [15] are usually used to capture
these architectures. Although the diversity of ADLs, the ar-
chitectural elements proposed in almost all of them follow the
same conceptual basis [16]. A component is defined as the most
elementary unit of processing or data and it is usually decom-
posed into two parts: the implementation and the interface. The
implementation describes the internal behaviour of the actual
component, whereas the interfaces define how the component
should interact with the environment. A component can be de-
fined as simple or composite (i.e., composed of other compo-
nents). A connector corresponds to interactions among compo-
nents. Actually, it mediates an inter-component communication
in diverse forms of interactions. A configuration corresponds to
a directed graph of components and connectors describing the
application’s structure and/or a description on how the interac-
tions among components evolve over the time. Other elements
like attributes, constraints or architectural styles may also ap-
pear in ADLs [16].

2.1.2. Dynamic Reconfiguration
Dynamic reconfiguration denotes a reconfiguration (the pas-

sage from one configuration to another) in which it is not nec-
essary to stop the system execution or to entirely redeploy it in
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order for the modification to take effect. As a consequence, the
number of interferences on the system execution is reduced and
availability is increased.

Component-based architectures are very suitable for dy-
namic reconfigurations. Indeed, thanks to their native charac-
teristics of modularity and reuse, it is possible to isolate the
modifications so that the interference on the system execution
is mitigated. In addition, with the advent of reflection, modern
component models like Fractal [2] and OpenRec [3], among
others, bring reflection capabilities to software architectures.
They a meta level, in which components are equipped with
control interfaces so as to allow for the introspection (observa-
tion on the architectural elements e.g., assemblies, interfaces,
connectors, and so forth) and intercession (reconfiguration e.g.,
creation/suppression of components, connectors, etc.).

The Fractal Component Model (cf. Figure 1) includes the ba-
sic architectural concepts of hierarchical composition of com-
ponents, required (client) and provided (server) interfaces, and
bindings connecting components’ interfaces. The model was
also designed with separation of concerns design principle in
mind. The main idea is to decouple a component implementa-
tion into two parts: content and membrane. The content man-
ages the functional concerns and its operations are exposed by
a set of functional interfaces. The membrane embodies a set of
controllers that takes care of the non-functional concerns. Con-
trol interfaces are access points to membrane controllers, which
in turn implement some introspection and/or intercession capa-
bilities, making Fractal a distinguished Component Model con-
cerning the support for dynamic reconfiguration. Examples of
controllers are the life-cycle, which controls the component’s
behavioural phases (e.g., starting, started, stopping, stopped,
etc.); and the binding controllers, to dynamically establish or
break bindings between component’s interface and its environ-
ment.
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Figure 1: Fractal Architectural Concepts.

In short, component-based architectures, and especially the
ones equipped with reflection capabilities like Fractal, have ca-
pabilities that are particularly interesting and applicable in the
domain of self-adaptive software systems. This is generally
achieved by first using ADLs, to define initial architectural con-
figurations, from which, by relying on introspection and recon-
figuration mechanisms [2] or languages [5], one can add or re-
move elements at runtime in response to environment changes,
while mitigating the interferences on their execution.

Software components can be controlled according to moni-

I W

A

a=false a=false

a=true

r ∧ ¬c

r ∧ c/se
c/s

lifecycle(r,c,e)=a,s

Figure 2: Graphical Representation of Component Lifecycle.

tored events, the current state, available configurations and in-
variant properties [17]. This reactive nature of software com-
ponents makes reactive systems and languages a very suited to
support design of such control behaviour.

2.2. Reactive Systems and Languages
Reactive Languages have been proposed to describe systems

that at each reaction perform a step taking input flows, com-
puting transitions, updating states, triggering actions, emitting
output flows [18]. Their definition is often based on Finite State
Automata (FSA), which constitute the basic formalism for rep-
resenting behaviours, as is the case of StateCharts [19] and of
synchronous languages [20].

2.2.1. Heptagon
Heptagon/BZR [13] is an example of such languages. It al-

lows the definition of reactive systems by means of generalized
Moore machines, i.e., with mixed synchronous data-flow equa-
tions and automata [21]. An Heptagon program is modularly
structured with a set of nodes. Each node corresponds to a re-
active behaviour that takes as input and produces as output a
set of stream values. The body of a node consists of a set of
declarations that take the form of either automata or equations.
The equations determine the values for each output, in terms
of expressions on inputs’ instantaneous values or other flows
values.

Figure 2 and Listing 1 show an Heptagon program respec-
tively in graphical and textual representations. The program
describes the control of a component lifecycle that can be in ei-
ther idle (I), waiting (W) or active (A) states. The program takes
as input three boolean variables: r, which represents a request
signal for the component; c, which represents an external con-
dition (to be used later on as controllable variable); and e, to
represent an end signal. It produces as output two boolean val-
ues, one that indicates whether the component is active (a) the
another indicating a start action (s). When in the initial state,
upon a request signal (i.e., when r is true), the automaton leads
to either waiting or active states, depending whether the condi-
tion c holds. If it does not, it goes first to the waiting state and
then to active when c becomes true. All the incoming transi-
tions arriving at active state triggers the start action (s). From
active state, it goes back to idle state upon an end signal.

Listing 1: Textual Representation of Component Lifecycle.
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1 node lifecycle(r,c,e:bool) returns(a,s:bool)
2 let automaton
3 state I do
4 a=false;s=r & c
5 until r & c then A | r & not c then W
6 state W do
7 a=false;s=c
8 until c then A
9 state A do

10 a=true;s=false
11 until e then I
12 end;
13 tel

One important characteristic of Heptagon/BZR is the support
for hierarchical and parallel automata composition. Figure 3 il-
lustrates an example of hierarchical composition, in which a
single state super-automaton embodies the lifecycle automaton
of Figure 2. It has a self-transition that results in the resetting
of the sub-automaton (i.e., lifecycle) at every occurrence of sig-
nal b. A stream of input/output values for this automaton can
be seen in Table 1. In particular, we can see at step 9, the re-
setting of the sub-automaton, which brings it from state active
back to idle (at step 10), without any explicit transition. List-
ing 2 illustrates the parallel composition of two instances of the
delayable node (and the operator ’;’). They run in parallel, in a
synchronous way, meaning that one global step corresponds to
one local step for every node.

lifecycle

b
reset(b,r,c,e)=a,s

node reset(b,r,c,e:bool)
returns(a,s:bool)

let automaton
state H do
(a,s)=lifecycle(r,c,e)
until b then H

end;
tel

Figure 3: Example of Hierarchical Composition.

Table 1: Execution of the Hierarchical Composition.
step # 1 2 3 4 5 6 7 8 9 10 . . .

b 0 0 0 0 0 0 0 0 1 0 . . .
r 0 1 0 0 0 0 1 0 0 0 . . .
c 0 0 1 0 0 0 1 0 0 0 . . .
e 0 0 0 0 1 0 0 0 0 0 . . .

a 0 0 0 1 1 0 0 1 1 0 . . .
s 0 0 1 0 0 0 1 0 0 0 . . .

2.2.2. Contracts and Discrete Controller Synthesis
BZR is an extension of Heptagon with specific constructs

for Discrete Controller Synthesis (DCS). That makes Hep-
tagon/BZR distinguishable since its compilation may involve
formal tools for DCS purposes. A DCS consists in automati-
cally generating a controller capable of acting on the original
program to control input variables such that a given temporal
property is enforced. In Heptagon/BZR, DCS is achieved by

associating a contract to a node. A contract is itself a pro-
gram with two outputs: eA, an assumption on the node envi-
ronment; and eG, a property to be enforced by the node. A set
{c1, c2, . . . , cq} of local controllable variables is used for ensur-
ing this objective. Putting it differently, the contract means that
the node will be controlled by giving values to {c1, . . . , cq} such
that given any input flow satisfying assumption eA, the output
will always satisfy goal eG. When a contract has no control-
lable variables specified, a verification that eG is satisfied in the
reachable state space is performed by model checking, even if
no controller is generated.

Listing 2: Example of Contract in Heptagon/BZR.

1 node twocomponents(r1,r2,e1,e2:bool) returns
(a1,a2,s1,s2:bool)

2 contract
3 assume true
4 enforce not(a1 and a2)
5 with (c1,c2)
6 let
7 (a1,s1)=lifecycle(r1 ,c1 ,e1);
8 (a2,s2)=lifecycle(r2 ,c2 ,e2)
9 tel

Listing 2 shows an example of contract on a node enclosing
a parallel composition of two instances of lifecycle (cf. Fig-
ure 2). It is composed of three blocks. The assume block
(line 3), which in this case, states that there is no assumption
on the environment (i.e., eA = true). The enforce block (line 4)
describes the control objective : eG = ¬(a1 ∧ a2), meaning that
both components are mutually exclusive, i.e., they cannot be
active at the same time. Lastly, the with block (line 5) defines
two controllable variables that are used within the node (line 7).
In practice they will be given values such that variables a1 and
a2 are never both true at the same instant.

2.2.3. Compilation and code generation
The Heptagon/BZR compilation chain is as follows: from

source code, the Heptagon/BZR compiler produces as output
a sequential code in a general-purpose programming language
(e.g., Java or C) implementing the control logic, in the form of
a step function to be called at each decision in the autonomic
loop. At the same time, if the code provided as input contains
some contracts, the compiler will also generate a intermediary
code that will be given as input to the model checker (e.g., Si-
gali or Reax), which will, in turn, perform the DCS and produce
as output an Heptagon/BZR code corresponding to the gener-
ated controller. The latter is then compiled again so as to have
an executable code also for the generated controller.

3. Ctrl-F Language

This section presents Ctrl-F, our domain specific language
(DSL) for describing control policies. Section 3.1 introduces
the Znn.com scenario that will be used throughout the arti-
cle to illustre the concepts introduced with Ctrl-F. Section 3.2
presents the core concepts of Ctrl-F. Section 3.3 and 3.4 define
the notions of behaviour and policy that are specific to Ctrl-F.
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3.1. Example Application

Znn.com [14] is an experimental platform for self-adaptive
applications, which mimics a news website. As in any web
application, Znn.com follows a typical client-server n-tiers ar-
chitecture, meaning that it relies on a load balancer to redirect
requests from clients to a pool of replicated servers. The num-
ber of active servers can be regulated in order to maintain a
good trade-off between response time and resource utilization.
Hence, the objective of Znn.com is to provide news content
to its clients/visitors within a reasonable response time, while
keeping costs as low as possible and/or under control (i.e., con-
strained by a certain budget).

There might be times where only the pool of servers is not
enough to provide the desired Quality of Service (QoS). For in-
stance, in order to face workload spikes, Znn.com can be forced
to degrade the content fidelity so as to require fewer resources
to provide the same level of QoS. For this purpose, Znn.com
servers are able to deliver news contents in three different ways:
(i) with high quality images, (ii) with low quality images, and
(iii) with only text. Hence, content fidelity can be seen as an-
other criteria. In summary, the objectives are as follows:

• Keep the performance (in terms of response time) as high
as possible;

• Keep content fidelity as high as possible or above a certain
threshold;

• Keep the number of active servers as low as possible or
under a certain threshold.

In order to achieve them, we may tune:

• The number of active servers and

• The content fidelity of each server.

3.2. Core Concepts

Ctrl-F is our proposal for a architecture description language
with high-level constructs for describing reconfiguration be-
haviours and policies to be enforced all along the execution of
the target system.

As depicted in Figure 4, the abstract syntax of Ctrl-F can be
divided into two parts: a static one, which is related to the com-
mon architectural concepts (components, connections, configu-
rations, etc.); and a dynamic one, which refers to reconfigura-
tion behaviours and policies that must be enforced regardless of
the configuration.

The static part of Ctrl-F provides the same core concepts as
many existing ADLs (e.g., Fractal [2], Acme [16]). A compo-
nent consists of a set of interfaces, a set of event ports, a set of
attributes and a set of configurations. Interfaces define how a
component can interact with other components. They are used
to express a required functionality (client interface) that may
be provided by another component and/or to express a provided
functionally (server interface) that might be used by other com-
ponents. Event Ports describe the events, of the given Event
Type, a component is able to emit (port out) and/or listen to

Component

InterfaceBinding

Instance Behavior

PolicyAttribute

Configuration Assignment Value

Event Port

Event Type

1..*

source 1

target

1

source obj

1

target obj

1
1

1..*

1..*
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1..*
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0..1

1

1

0..*

0..1

1..*

1

1..*
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D
yn
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Figure 4: Language Abstract Syntax.

(port in). A configuration is defined as a set of instances of
components, a set of bindings connecting server and client in-
terfaces of those instances (i.e., an assembly), and/or a set of
attribute assignments to values.

The dynamic part consists of a behaviour and a set of poli-
cies that can be defined for each component. A behaviour takes
the form of orders and conditions (w.r.t. events and attribute
values) under which transitions between configurations (recon-
figurations) take place. The policies are high-level objectives/-
constraints, which may imply the inhibition of some of those
transitions.

The Znn.com example application of Section 3.1 can be mod-
eled as a hierarchical composition of four components: Main,
Znn, LoadBalancer, and AppServer. These components are in-
stantiated according to execution conditions, the system cur-
rent state (architectural composition), adaptation behaviours
and policies defined within each component. Listing 3 shows
the textual definition of such components with the static part
of Ctrl-F. In addition, to better illustrate the Ctrl-F concepts,
the graphical representation of those components is depicted in
Figures 5, 6 and 7, where the vertical bars, squares, triangles,
and upside-down triangles correspond to interfaces, attributes,
port in and out, respectively.

The Main component (lines 1-14) encompasses two in-
stances of Znn, namely soccer and politics within a single con-
figuration (lines 7 and 8). The server interfaces of both in-
stances (lines 9 and 10), which provides access to news ser-
vices, are bound to the server interfaces of the Main component
(lines 3 and 4) in order for them to be accessed from outside.
A policy to be enforced is defined (line 13) and discussed in
Section 3.4.

Component Znn (lines 16-33) consists of one provided inter-
face (line 18) through which news can be requested. The com-
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soccer:Znn

consumption fidelity

politics:Znn

consumption fidelity

main

Figure 5: Graphical Representation of Main component.

ponent listens to events of types oload (overload) and uload
(underload) (lines 20 and 21), which are emitted by other com-
ponents. In addition, the component also defines two attributes:
consumption (line 23), which is used to express the level of
consumption (in terms of percentage of CPU) incurred by the
component execution; and fidelity (line 24), which expresses
the content fidelity level of the component.

Three configurations are defined for Znn component: conf1,
conf2 and conf3. conf1 (lines 26-33) consists of one instance
of each LoadBalancer and AppServer (lines 27 and 28); one
binding to connect them (line 29), another binding to expose
the server interface of the LoadBalancer component as a server
interface of the Znn component (line 30), and the attribute as-
signments (lines 31 and 32). The attribute fidelity corresponds
to the counterpart of instance as1, whereas for the consumption
it corresponds to the sum of the consumptions of instances as1
and lb. conf2 (lines 34-39) extends conf1 by adding one more
instance of AppServer, binding it to the LoadBalancer and re-
defining the attribute values with respect to the just-added com-
ponent instance (as2).

In that case, the attribute fidelity values the average of the
counterparts of instances as1 and as2 (line 37), whereas for
the consumption the same logics is applied so the consumption
of the just-added instance is incorporated to the sum expres-
sion (line 38). The definition of configuration conf3 follows
the same idea: it extends conf2 by adding a new instance of
AppServer, binding it and redefining the attribute values.

Listing 3: Architectural Description of Components Main, Znn, Load Balancer
and AppServer in Ctrl-F.

1 component Main {
2

3 server interface sis
4 server interface sip
5

6 configuration main {
7 soccer:Znn
8 politics:Znn
9 bind sis to soccer.si

10 bind sip to politics.si
11 }
12

13 policy {...}
14 }
15

16 component Znn {
17

18 server interface si

lb:LoadBalancer as2:AppServer

as1:AppServer

as3:AppServer

conf3

consumption fidelity

∑
x̄

Figure 6: Graphical Representation of Znn component.

19

20 port in oload
21 port in uload
22

23 attribute consumption
24 attribute fidelity
25

26 configuration conf1 {
27 lb:LoadBalancer
28 as1:AppServer
29 bind lb.ci1 to as1.si
30 bind lb.si to si
31 set fidelity to as1.fidelity
32 set consumption to sum(as1.consumption ,

lb.consumption)
33 }
34 configuration conf2 extends conf1 {
35 as2:AppServer
36 bind lb.ci2 to as2.si
37 set fidelity to avg(as1.fidelity ,as2.

fidelity)
38 set consumption to sum(as1.consumption ,

as2.consumption ,lb.consumption)
39 }
40

41 configuration conf3 extends conf2 {...}
42

43 behaviour {...}
44 policy {...}
45 }
46

47 component LoadBalancer {
48 server interface si
49 client interface ci1 ,ci2 ,c3
50

51 port out oload
52 port out uload
53

54 attribute consumption =0.2
55 }
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56

57 component AppServer {
58 server interface si
59

60 port in oload
61 port in uload
62

63 attribute fidelity
64 attribute consumption
65

66 configuration text {
67 set fidelity to 0.25
68 set consumption to 0.2
69 }
70 configuration img -ld {
71 set fidelity to 0.5
72 set consumption to 0.6
73 }
74 configuration img -hd {...}
75

76 behaviour {...}
77 policy {...}
78 }

Component LoadBalancer (lines 47-55) consists of four in-
terfaces: one provided (line 48), through which the news are
provided; and the others required (line 49), through which the
load balancer delegates each request for balancing purposes.
We assume that this component is able to detect overload and
underload situations (in terms of number of requests per sec-
ond) and in order for this information to be useful for other
components we define two event ports that are used to emit
events of type oload and uload (lines 51 and 52). Like for
component Znn, attribute consumption (line 54) specifies the
level of consumption of the component (e.g., 0.2 to express
20% of CPU consumption). As there is no explicit definition of
configurations, LoadBalancer is implicitly treated as a single-
configuration component.

Lastly, the atomic component AppServer (lines 57-78) has
only one interface (line 58) and listens to events of type oload
and uload (lines 60 and 61). It has also two attributes: fi-
delity and consumption (lines 63 and 64), just like component
Znn. Three configurations corresponding to each level of fi-
delity (lines 66-69, 70-73 and 74) are defined, and the attributes
are valuated according to the configuration in question, i.e., the
higher the fidelity the higher the consumption.

3.3. Behaviours

A particular characteristic of Ctrl-F is the capability to com-
prehensively describe behaviours in component-based applica-
tions. We mean by behaviour the process in which architectural
elements are changed. More precisely, it refers to the order and
conditions under which configurations within a component take
place.

Behaviours in Ctrl-F are defined with the aid of a high-level
imperative language. It consists of a set of behavioural state-
ments (sub-behaviours) that can be composed together so as to
provide more complex behaviours in terms of sequences of con-
figurations. In this context, a configuration is considered as an
atomic behaviour, i.e., a behaviour that cannot be decomposed

LoadBalancer

cons.=0.20

oload uload

(a)

AppServer
img-ld

cons.=0.6 fidel.=0.5

(b)

AppServer
text

cons.=0.20 fidel.=0.25

oload uload

AppServer
img-hd

cons.=1 fidel.=0.75

Figure 7: Graphical Representation of (a) Load Balancer and (b) App Server
components.

Table 2: Summary of Behaviour Statements.

Statement Description
B when e1 do B1,

... , While executing B when ei exe-
cute Bi

en do Bn end
case c1 then B1,

... , Execute Bi if ci holds, otherwise
execute Be

cn then Bn

else Be end
B1 | B2 Execute either B1 or B2

B1 || B2 Execute B1 and B2 in parallel
do B every e Execute B and re-execute it at

every occurrence of e

into other sub-behaviours. A reconfiguration occurs when the
current configuration is terminated and the next one is started.
We assume that configurations do not have the capability to di-
rectly terminate or start themselves, meaning that they are ex-
plicitly requested or ended by behaviour statements according
to the defined events and policies. Nevertheless, as components
are capable to emit events, it would not be unreasonable to de-
fine components whose objective is to emit events in order to
force a desired behaviour.

3.3.1. Statements
Table 2 summarizes the behaviour statements of the Ctrl-

F behavioural language. During the execution of a given be-
haviour B, the when-do statement states that when a given event
of type ei occurs the configuration(s) that compose(s) B should
be terminated and that (those) of the corresponding behaviour
Bi are started.

The case-then statement is quite similar to when-do. The dif-
ference resides mainly in the fact that a given behaviour Bi is
executed if the corresponding condition ci holds (e.g., condi-
tions on attribute values), which means that it does not wait for
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a given event to occur. In addition, if none of the conditions
holds (c1 ∧ ... ∧ cn = 0), a default behaviour (Be) is executed,
which forces the compiler to choose at least one behaviour. The
parallel statement states that two behaviours are executed at the
same time, i.e., at a certain point, there must be two independent
branches of behaviour executing in parallel. This construct is
also useful in the context of atomic components like AppServer,
where we can, for instance, define configurations composed of
orthogonal attributes like fidelity and font size/color (e.g., text
|| font-huge).

The alternative statement allows to describe choice points
among configurations or among more elaborated sequential be-
haviour statements. They are left free in local specifications
and will be resolved in upper level assemblies, in such a way as
to satisfy the stated policies, by controlling these choice points
appropriately. Finally, the do-every statement allows for execu-
tion of a behaviour B and re-execution of it at every occurrence
of an event of type e. It is noteworthy that behaviour B is pre-
empted every time an event of type e occurs. In other words,
the configuration(s) currently activated in B is (are) terminated,
and the very first one(s) in B is (are) started.

3.3.2. Example in Znn.com
We now illustrate the use of the statements we have in-

troduced to express adaptation behaviours for components
AppServer and Znn of the Znn.com case study. The expected
behaviour for component AppServer is to pick one of its three
configurations (text, img-ld or img-hd) at every occurrence of
events of type oload or uload. To that end, as it can be seen
in Listing 4, the behaviour can be decomposed in a do-every
statement, which is, in turn, composed of an alternative one. It
is important to mention that the decision on one or other con-
figuration must be taken at runtime according to input variables
(e.g., income events) and the stated policies, that is, there must
be a control mechanism for reconfigurations that enforces those
policies. We come back to this subject in Section 4.

Listing 4: AppServer’s Behaviour.

1 component AppServer { ...
2 behaviour {
3 do
4 text | img -ld | img -hd
5 every (oload or uload)
6 }
7 }

Regarding component Znn, the expected behaviour is to start
with the minimum number of AppServer instances (configu-
ration conf1) and add one more instance, i.e., leading to con-
figuration conf2, upon an event of type (oload). From conf2,
one more instance must be added, upon an event of type oload
leading to configuration conf3. Alternatively, upon an event of
type uload, one instance of AppServer must be removed, which
will lead the application back to configuration conf1. Similarly,
from configuration conf3, upon a uload event, another instance
must be removed, which leads the application to conf2. It is
notorious that this behaviour can be easily expressed by an
automaton, with three states (one per configuration) and four

transitions (triggered upon the occurrence of oload and uload).
However, Ctrl-F is designed to tackle the adaptation control
problem in a higher level, i.e., with process-like statements over
configurations.

For these reasons, we describe the behaviour with two em-
bedded do-every statements, which in turn comprise each a
when-do statement, as shown in Listing 5 (lines 6-14 and 8-12).
We also define two auxiliary configurations: emitter1 (line 2)
and emitter2 (line 3), which extend respectively configurations
conf2 and conf3, with an instance of a pre-defined component
Emitter. This component does nothing but emit a given event
(e.g., e1 and e2) so as to force a loop step and thus go back to the
beginning of the when-do statements. The main do-every state-
ment (lines 6-14) performs a when-do statement (lines 7-13) at
every occurrence of an event of type e1. In practice, the firing of
this event allows going back to conf1 regardless of the current
configuration being executed. conf1 is executed until the oc-
currence of an event of type oload (line 7), then the innermost
do-every statement is executed (lines 8-12), which in turn, just
like the other one, executes another when-do statement (lines
9-11) and repeats it at every occurrence of an event of type e2.
Again, this structure allows the application to go back to con-
figuration conf2. Configuration conf2 is executed until an event
of type either oload or uload occurs. For the former case (line
9), another when-do statement takes place, whereas for the lat-
ter (line 10) configuration emitter1 is the one that takes place.
Essentially, at this point, an instance of component Emitter is
deployed along with conf2, since emitter1 extends conf2. As
a consequence, this instance fires an event of type e1, which
forces the application to go back to conf1. The innermost when-
do statement (line 9) consists in executing conf3 until an event
of type uload occurs, then configuration emitter2 takes place,
which makes an event of type e2 be fired in order to force going
back to conf2.

It is important to notice that this kind of construction allows
to achieve the desired behaviour while sticking to the language
design principles, that is, high-level process-like constructs and
configurations. It also should be remarked that while in Listing
5, we present an imperative approach to forcibly increase the
number of AppServer instances upon uload and oload events,
in Listing 4 we let the compiler choose the most suitable fidelity
level according to the runtime events and conditions. Although
there is no straightforward guideline, an imperative approach is
clearly more suitable when the solution is more sequential and
delimited, whereas as the architecture gets bigger, in terms of
configurations, and less sequential, then a declarative definition
becomes more interesting.

3.4. Policies
Policies are expressed with high-level constructs for con-

straints on configurations, either temporal or on attribute val-
ues. In general, they define a subset of all possible global con-
figurations, where the system should remain invariant: this will
be achieved by using the choice points in order to control the
reconfigurations. An intuitive example is that two component
instances in parallel branches might have each several possi-
ble configurations, and some of them have to be kept exclu-
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Listing 5: Znn’s Behaviour.

1 component Znn {...
2 configuration emitter1 extends conf2 { e:Emitter }
3 configuration emitter2 extends conf3 { e:Emitter }
4

5 behaviour {
6 do
7 conf1 when oload do
8 do
9 conf2 when oload do (conf3 when uload do emitter2 end),

10 uload do emitter1
11 end
12 every e2
13 end
14 every e1
15 }
16 }

sive. This exclusion can be enforced by choosing the appropri-
ate configurations when starting the components.

3.4.1. Constraints/Optimization on Attributes
This kind of constraints are predicates and/or primitives of

optimization objectives (i.e., maximize or minimize) on com-
ponent attributes. Listing 6 illustrates some constraints and op-
timization on component attributes. The first two policies state
that the overall fidelity for component instance soccer should be
greater or equal to 0.75, whereas that of instance politics should
be maximized. Putting it differently, instance soccer must never
have its content fidelity degraded, which means that it will have
always priority over politics. The third policy states that the
overall consumption should not exceed 5, which can be inter-
preted as a constraint on the physical resource capacity, e.g., the
number of available machines or processing units.

Listing 6: Example of Constraint and Optimization on Attributes.

1 component Main { ...
2 policy { soccer.fidelity >= 0.75 }
3 policy { maximize politics.fidelity }
4 policy { (soccer.consumption +
5 politics.consumption) <= 5 }
6 }

3.4.2. Temporal Constraints
Temporal constraints are high-level constructs that take the

form of predicates on the order of configurations. These con-
structs might be very helpful when there are many possible re-
configuration paths (by either parallel or alternative composi-
tion, for instance), in which case the manual specification of
such constrained behaviour may become a very difficult task.

To specify these constraints, Ctrl-F provides four constructs,
as follows:

• con f1 precedes con f2: con f1 must take place right be-
fore con f2. It does not mean that it is the only one, but
it should be among the configurations taking place right
before con f2.

• con f1 succeeds con f2: con f1 must take place right after
con f2. Like in the precedes constraint, it does not mean
that it is the only one to take place right after con f2.

• con f1 during con f2: con f1 must take place along with
con f2.

• con f1 between (con f2, con f3): once con f2 is started,
con f1 cannot be started and con f3, in turn, cannot be
started before con f2 terminates.

Listing 7 shows an example of how to apply temporal con-
straints, in which it is stated that configuration img-ld comes
right after the termination of either configuration text or con-
figuration img-ld. In this example, this policy avoids abrupt
changes on the content fidelity, such as going directly from text
to image high definition or the other way around. Again, it does
not mean that no other configuration can take place along with
img-ld, but the alternative statement in the behaviour described
in Listing 4 leads us to conclude that only img-ld must take
place right after either text or img-hd has been terminated.

Listing 7: Example of Temporal Constraint.

1 component AppServer { ...
2 policy { img -ld succeeds text }
3 policy { img -ld succeeds img -hd }
4 }

4. Heptagon/BZR Model

4.1. Approach Overview

Our approach consists in seamlessly conceiving autonomic
component-based applications by relying on a high-level be-
havioural description. The principle is to have an autonomic
manager (AM) embodying a feedback control loop within each
component. The manager takes decisions in response to oc-
curred events, while taking into consideration the current/past
configurations, a behavioural program, and determining as re-
sult which configurations have to be terminated and which ones
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Figure 8: Approach Overview.

have to be started. We rely on Ctrl-F to specify: (i) behaviours
in a process-like manner (in terms of sequences, alternative/-
conditional/parallel branches and loops of configurations); and
(ii) policies, which take the form of properties that have to be
kept invariant regardless of the configuration, as depicted in
Figure 8(a).

The behavioural program defined by Ctrl-F provides the AM
an extra level of knowledge on the possible futures of the com-
ponent configuration: that is, it enables the AM to explore the
space of reachable configurations so as to avoid branches that
may lead, in the future, to configurations violating the stated
policies. To that end, we provide a set of translation schemes
allowing for the automatic translation from a Ctrl-F descrip-
tion to the reactive language Heptagon/BZR and thereby ben-
efiting from DCS. an Heptagon/BZR automaton and contract
corresponding to the behavioural program and policies will be
associated to each component under control, as can be seen in
Figure 8(b). The Heptagon/BZR program, once equipped with
contracts, allows us to either perform formal verification on the
behavioural program with respect to the policies; and/or to ob-
tain, via DCS, a correct-by-construction controller (cf. Figure
8 (c)). That is to say that the generated controller will be ca-
pable of controlling the automaton that models the component
behaviour so as to prevent it going in branches leading to bad
states (i.e., configurations that violate the policies). This pro-
cess, from the Ctrl-F description to the Heptagon/BZR transla-
tion, is detailed next.

4.2. General FSA Model Structure

The component is the core of Ctrl-F description and can be
modeled as an Heptagon/BZR node, as shown in Figure 9. The
node takes as input external request (r) and end notification
(e) signals, and a set of events {v1, . . . , vk}, which corresponds
to the event types the component in question (comp) listens
to. As output, it produces a set of request (resp. end) signals
{r1, . . . , rm} (resp. {e1, . . . , em}) for each configuration con fi, for

i ∈ [1,m], defined within the concerned component. In addi-
tion, it also returns a set of weights {w1, . . . ,wl}, for the attribute
valuation for each attribute in the component. The main node
(comp in Figure 9) may contain a contract in which a set of con-
trollable variables {c1, . . . , cq} (in the case there is any choice
point such as a behaviour with an alternative statement) and the
reference to the set of stated policies ({p1, . . . , pt}) in order for
them to be enforced by the controller resulting from the DCS.
The details on how policies are translated are given in Section
4.4.

Idle conf1 conf2 ...
r/r1 r/r2, e1 r/r3, e2

bcomp(r, e, v1, . . . , vk, c1, . . . , cq)=(r1, e1, . . . , rm, em,w1, . . . ,wl)

with c1, . . . , cq

enforce p1 ∧ . . . ∧ pt

rsub1 = (r1 ∨ . . . ∨ rm) ∧ ¬(e1 ∨ . . . ∨ em)
esub1 = (e1 ∨ . . . ∨ em) ∧ ¬(r1 ∨ . . . ∨ rm)

...

sub1(rsub1, esub1, . . .)=(rsub1
1 , esub1

1 , . . . ,wsub1
1 , . . .)

.

.

.

rsubn = (r1 ∨ . . . ∨ rm) ∧ ¬(e1 ∨ . . . ∨ em)
esubn = (e1 ∨ . . . ∨ em) ∧ ¬(r1 ∨ . . . ∨ rm)

...

subn(rsubn, esubn, . . .)=(rsubn
1 , esubn

1 , . . . ,wsubn
1 , . . .)

comp(r, e, v1, . . . , vk)=(r1, e1, . . . , rm, em,w1, . . . ,wl)

Figure 9: Translation Scheme Overview.

Component behaviours are modeled as a sub-node (bcomp in
Figure 9), which consists of an automaton describing the or-
der and conditions under which configurations take place. For
this purpose, it gets as input the same request (r), end (e) and
event ({v1, . . . , vk}) signals of the main node. As a result of the
reaction to those signals, it produces the same signals for re-
questing ({r1, . . . , rm}) and ending ({e1, . . . , em}) configurations
as the weights ({w1, . . . ,wl}) corresponding to the attributes val-
uation in the current state (configuration) of the behaviour. We
provide further details on the translation of behavioural state-
ments in Section 4.3. Lastly, there might also be some other
sub-nodes ({sub1, ..., subn}) referring to components instanti-
ated within the concerned component, i.e., comp. They have
interfaces and contents which are structurally identical to those
of the main node. That is to say, that sub-nodes may have,
in turn, a contract, a behaviour sub-node and a sub-node per
component instance defined inside it. It is noteworthy that
the request (rsubi) and end (esubi) signals for a sub-component
subi ∈ {sub1, . . . , subn} are defined as equations of request and
end signals. {r1, . . . , rm} and {e1, . . . , em} are respectively the
sets of request and end signals for the configurations con f1, . . . ,
con fm to which component subi belongs. That means that a
sub-component subi will be requested if any configuration it
belongs to is also requested (r1 ∨ . . . ∨ rm) and none of them
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is terminated ¬(e1 ∨ . . . ∨ em), which avoids emitting a request
signal for an already active component. The same applies for
its termination.

Listing 8 shows an excerpt of Heptagon/BZR model for com-
ponents Znn (lines 5-21) and AppServer (lines 1-3). For node
appserver, besides the request and end signals, it gets as inputs
the events of type oload and uload (line 1). As output (line
2), it produces request and end signals for configurations text
(r text and e text), img-ld (r ld and e ld) and img-hd
(r hd and e hd), apart from weights, i.e., attribute valuations
(fidelity and consumption). Node znn has a very similar
interface as appserver, except that it produces as output request
and end signals for configurations conf1 (r conf1 and e -

conf1), conf2 (r conf2 and e conf2) and conf3 (r conf3

and e conf3). Regarding its body (lines 8-20), znn comprises
one instance of the node that models the behaviour (bznn, line
15) and three instances of node appserver (lines 16-18). The
request and end signals for these instances can be derived from
the request and end signals for configurations (lines 8-13). At
last, attributes are values based on the values of attributes of the
instances of node appserver (line 19).

4.3. Behaviours

For each program in Ctrl-F, we need to construct a FSA
model, in Heptagon/BZR, of all its possible behaviours. We
translate each behaviour statement defined inside another be-
haviour as sub-automaton, hierarchically decomposing the
whole behaviour into smaller pieces, down to a configuration.

4.3.1. The top-most behaviour
The top-most automaton i.e., the automaton modeling the

whole behaviour consists of a two-state model, as depicted in
Figure 10 (a). The automaton is in state Idle when the com-
ponent does not take part in the current configuration. Upon a
request signal (r), it goes to Active state, from where it can go
back again to Idle state again upon an end signal (e). Active
state accommodates a behaviour statement itself, which is itself
modeled as a sub-automaton of state A.

I A

r

e

(a)

B

B1

B2

Bn

v1/

r b1, e b
v2 ∧ ¬v1/

r b2, e b

vn ∧ ¬(∨n−1
i=1 vi)/

r bn, e b

(b)

Figure 10: FSA Modeling: (a) Lifecycle; (b) When-Do.

4.3.2. Statements
The automaton that models the statement when-do (cf. Fig-

ure 10(b)) consists of an initial state B corresponding to the first
behaviour statement to be executed. The automaton goes to
state Bi (corresponding to the execution of the next behaviour)

upon a signal (event) vi while producing signals for requesting
the initiation of to the next behaviour (r bi) and the termina-
tion (e b) the current one (for 1 ≤ i ≤ n). It is important to
notice that upon two events at the same time, a priority is given
according to the order behaviours are declared. For instance, if
v1 and v2 triggers, respectively, behaviours B1 and B2, then B1
will be triggered if declared before B2.

Both behaviour statements case and alternative can be mod-
eled by the automaton shown in Figure 11. As the sub-
behaviour statements should be executed at the very first in-
stant upon the request of the case or alternative statement, the
automaton must be composed in parallel with the automaton
modeling the main behaviour (inside node bcomp, in Figure 9).
Hence, a case or an alternative statement is modeled as a simple
state inside the (super) automaton in the hierarchy that models
the main behaviour. Upon a request to those statements (signal
r), the main automaton emits a request signal r′ that will trigger
a transition from state W to the next state (B1 or B2) according
to variable c. Then it can go either to another behaviour, if an-
other r′ is emitted and c states so; or back to W if an end signal
(e′) is emitted.

W

B1 B2

r′
∧

c/
r

b 1

r ′
∧
¬c/r

b
2

e′ ∧ r′ ∧ c/r b1 e′ ∧ r′ ∧ ¬c/r b2

e′ ∧ ¬r′/
e b2

e′ ∧ r′ ∧ ¬c/
e b1, r b2

e′ ∧ r′ ∧ c/
e b2, r b1

e′ ∧ ¬r′/
e b1

...

B

...

r/r′

e/e′

Main
Behaviour Case/Alternative

Figure 11: Parallel Composition of Automata Modeling the Main Behaviour
and the Case/Alternative Statement.

There are two differences between the use of this automa-
ton for a case or an alternative statement. First, for the case
statement, several (i.e., more than two) branches are allowed,
so there might be more states (B1, B2, . . . , Bn) referring to each
branch as well as their corresponding conditions c1, c2, ..., cn,
which was omitted here for readability reasons. Second, for the
alternative statement, the conditions ci will be considered as
controllable variables in Heptagon/BZR. Thus, a DCS should
be performed to guarantee that the stated policies are not vio-
lated.

The automaton model for the do-every statement is shown
in Figure 12(a). It consists of a single-state automaton, which
means that it starts by directly executing statement B. It has a
self-transition at every occurrence of signal s, while emitting
end (e b) and request (r b) signals, that is, statement B is re-
executed at every occurrence of event s. Finally, Figure 12(b)
presents the model for the Parallel statement: simply in the
parallel composition of sub-automata.
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Listing 8: Heptagon/BZR code for Znn and AppServer.

1 node appserver(r,e,oload ,uload:bool) returns
2 (r_text ,e_text ,r_ld ,e_ld ,r_hd ,e_hd:bool;fidelity ,consumption:int)
3 let ... tel
4

5 node znn(r,e,oload ,uload:bool) returns
6 (r_conf1 ,e_conf1 ,...,r_conf3 ,e_conf3:bool;fidelity ,consumption:int)
7 let
8 r_as1 = r_conf1 or r_conf2 or r_conf3 and not(e_conf1 or e_conf2 or e_conf3);
9 r_as2 = r_conf2 or r_conf3 and not(e_conf2 or e_conf3);

10 r_as3 = r_conf3 and not(e_conf3);
11 e_as1 = e_conf1 or e_conf2 or e_conf3 and not(r_conf1 or r_conf2 or r_conf3);
12 e_as2 = e_conf2 or e_conf3 and not(r_conf2 or r_conf3);
13 e_as3 = e_conf3 and not(r_conf3);
14

15 (r_conf1 ,e_conf1 ,...) = bznn(r,e,oload ,uload);
16 (r_text_as1 ,...,fid_as1 ,conso_as1) = appserver(r_as1 ,e_as2 ,oload ,uload);
17 ...
18 (r_text_as3 ,...,fid_as3 ,conso_as3) = appserver(r_as3 ,e_as3 ,oload ,uload);
19 consumption = conso_as1 + conso_as2 + conso_as3;
20 ...
21 tel

B

s/e b, r b

(a)

B1 . . . Bn

(b)

Figure 12: Automata Modeling: (a) the Every and (b) Parallel statements.

4.3.3. Znn.com Example

Figure 13 illustrates the translation for the AppServer com-
ponent behaviour defined in Listing 4. It consists of a paral-
lel composition of two automata: one to model the behaviour
itself (on the left-hand side), and another to model the alter-
native sub-behaviour statement (on the right-hand side). The
first automaton corresponds to the top-most automaton, as the
one shown in Figure 10(a). The active state comprises a sub-
automaton representing the do-every statement, which starts by
state B and restarts it at every occurrence of events oload (over-
load) or uload (underload) while emitting at the same time re-
quest and end signals (r b and e b, respectively). The request
signal (r b) is used by the second automaton in order to enable
transitions to states representing configurations (txt, ld and hd)
according to the controllable variables c1 and c2, while emitting
proper request signals (r txt or r ld) for the next configura-
tions and end signals (e txt or e ld) for the current one. The
end signal (e b), on the other hand, is used to enable transi-
tions to other or even the same configuration, in the presence of
the request signal, or to the waiting state W, in the absence of
the request signal. It should be mentioned that due to the lack
of space, we omitted the outgoing and incoming transitions of

state hd (configuration img-hd). In the generated executable

I

Brb

oload ∨ uload/
rb, eb

r e

W

txt ld ... hd

e b ∧ r b
∧c1/

r txt, e txt

e b ∧ r b∧
c2 ∧ ¬c1/
r ld, e ld

e b ∧ ¬r b/e ld

e b ∧ r b ∧ c2∧

¬c1/e txt, r ld

e b ∧ r b ∧ c1/
e ld, r txt

e b ∧ ¬r b/e txt

r b ∧ c1/r txt r b ∧ c2 ∧ ¬c1/r ld

Figure 13: Translation of the component AppServer behaviour.

code, the output of those automata will be connected to pieces
of code dedicated to trigger the actual reconfigurations. For in-
stance, the presence of signals r ld and e txt will trigger the
reconfiguration script that changes the content fidelity of given
component from text to img-ld (cf. Section 5).

4.4. Policies
4.4.1. Constraints/Optimization on Attributes

For illustration, Listing 9 shows how the last policy of the
Main component (Listing 6, line 4) is translated into Hep-
tagon/BZR. This constraint is defined as an equation (line 8)
that depends on the integer outputs soccer consumption and
politics consumption, which are produced by the respective
instances of node znn (lines 6 and 7). This equation is hence
used in the enforce block of the contract (line 3). Although
the declaration of optimization objectives are currently not sup-
ported by Heptagon/BZR, one may model a one-step optimiza-
tion directly within the DCS tools Heptagon/BZR relies on [11]
[22]. Please see [23] for more details.
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Listing 9: Example of Constraint on Attribute in Heptagon/BZR.

1 node main(r,e:bool ;...) returns (...,p1:bool)
2 contract
3 enforce p1 and ...
4 with (...)
5 let ...
6 (..., soccer_consumption)=znn (...);
7 (..., politics_consumption)=znn (...);
8 p1=( soccer_consumpton +

politics_consumption) <= 5
9 ... tel

4.4.2. Temporal Constraints
Temporal constraints refer to constraints on the logical or-

der of configurations. They are modeled in Heptagon/BZR
by a set of boolean equations of request (r) and end (e) sig-
nals that are emitted by automata modeling behaviours. For
simple constraints like conf1 succeeds conf2 (resp. conf1

precedes conf2), just a predicate like e con f 2 ⇒ r con f 1
(resp. e con f 1 ⇒ r con f 2) suffices. However, whenever
there is a need for keeping track of the sequence of signals
(to request and/or end configurations), the use of observer au-
tomata is needed. Observer automata are placed in parallel with
the behavior automata, and generated in Heptagon/BZR as part
of the contract. The principle is to have an automaton that ob-
serves the sequence of signals that leads to a policy violation
and state that the state resulting from that sequence (an “error”
state) should never be reached. Again, here we can rely on the
enforce block of a Heptagon/BZR contract. The DCS objec-
tive is the invariance of the state set deprived of those where the
variable error is true.

Figure 14(a) depicts an observer that models the policy dur-
ing (conf1 during conf2), where r1 and r2 (resp. e1 and e2)
correspond to the request (resp. end) signal for configurations
conf1 and conf2, respectively. The error state (E) is reached if
conf2 terminates before conf1 (e2∧¬e1) or if conf2 terminates
before conf1 has started. The observer that models the con-
straint between (conf1 between (conf2,conf3)) is depicted
in Figure 14(b). Similarly, r1, r2 and r3 (resp. e1, e2 and e3)
correspond to the request (resp. end) signal for configurations
conf1,conf2 and conf3, respectively. The automaton goes to
the error state (E) whenever configuration conf3 is started (r3
is emitted) after configuration conf2 (e2), except when configu-
ration conf1 is started and terminated (r1 and e1) in the between.

E

e1

r2 ∧ r1
r2 ∧ ¬r1

r1 ∧ ¬e2

e2 ∧ ¬e1 e2

(a) During

E

e2

e1 ∧ ¬r3 ∧ r2
e1 ∧ ¬r3 ∧ ¬r2

r2 ∧ ¬r3

r3 ∧ ¬e2 r3

e 1
∧

r 3

(b) Between

Figure 14: Observer Automata for Temporal Constraints.

5. Implementation

5.1. FraSCAti and Service Component Architecture

Despite the fact that our contribution is technology-agnostic,
for the sake of proof-of-concept, we rely on the Service Com-
ponent Architecture (SCA) 1 as target component model. SCA
is a component model for building applications based on the
Service Oriented Architecture principles. SCA provides means
for constructing, assembling and deploying software compo-
nents regardless of the programming language or protocol used
to implement and make them communicate. Figure 15 depicts
the basic concepts of SCA model illustrated with the Znn.com
example. A component can be defined as simple or compos-
ite, that is, composed of other components. A simple compo-
nent is defined by an implementation, a set of services, refer-
ences and properties. The implementation points to the actual
implementation of the component (e.g., a Java Class). A ser-
vice (resp. reference) refers to a business function provided
(resp. required) by the component and is specified by an inter-
face (e.g., via a Java Interface). Properties are attributes defined
within components whose values can be set/got from outside
the component. In order for services, references and proper-
ties be accessible from/or access outside the composite, they
should be promoted to composite (or external) services/refer-
ences/properties. Bindings define which methods and/or trans-
ports (e.g., HTTP, SOAP 2) are allowed to access services or
to be accessed by references. Lastly, service and reference are
connected by wires.

main

znn-soccer

...

znn-politics

External
Service

External
Reference

Promoted
Reference

Promoted
Service

PropertyProperty Access Wire

Composite

lb:LoadBalancer as2:AppServer

as1:AppServer

as3:AppServer

Binding

Reference

Service

Figure 15: Service Component Architecture Concepts in Znn.com.

The objective is that a middleware platform implementing
the SCA specifications takes care of component implementa-
tion, interoperability and communication details, so architects
and developers can focus only on the architecture. In this work,
we rely on the Java-based SCA middleware FraSCAti [4], since

1http://www.oasis-opencsa.org/
2http://www.w3.org/TR/soap/
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it provides mechanisms for runtime reconfiguration of SCA ap-
plication. The FraSCAti Runtime is itself conceived relying on
the SCA model, that is, it consists of a set of SCA components
that can be deployed a la carte, according to the user’s needs.
For instance, one can instantiate the frascati-fscript component,
which provides services allowing for the execution of an SCA-
variant of FPath/FScript [5], a domain-specific language for
introspection and dynamic reconfiguration of Fractal compo-
nents.

5.2. Compilation Tool-chain

As can be seen in Figure 16, the compilation process can be
split into two parts: (i) the reconfiguration logics and (ii) the
behaviour/policy control and verification. The reconfiguration
logics is implemented by the ctrlf2fscript compiler, which takes
as input a Ctrl-F definition and generates as output a FraSCAti
FPath/FScript (1) containing a set procedures allowing going
from one configuration to another. To that end, we rely on ex-
isting differencing/match algorithms for object-oriented mod-
els [24].

The script is later on used by a FraSCAti component (Man-
ager) in charge of controlling the actual running component
software system (2). Listing 10 shows an example of script
describing a reconfiguration from configuration conf1 to conf2
of Znn component. In this example, the script just wires the
reference of instance lb:LoadBalancer to the as2:AppServer in-
stance’s service, then it starts the instance as2:AppServer.

Listing 10: Reconfiguration Logics in FScript.

1 action conf1_conf2(znn){
2 stop($znn/scachild ::lb);
3 r=$znn/scachild :: loadbalancer/scareference

::as2;
4 s=$znn/scachild ::as2/scareference ::s;
5 addscawire($r ,$s);
6 start($znn/scachild ::as2);
7 start($znn/scachild ::lb);
8 }

The behaviour control and verification is performed by the
ctrlf2ept compiler, which takes as input a Ctrl-F definition
and provides as output a synchronous reactive program in
Heptagon/BZR (3). This code is given as input to the Hep-
tagon/BZR compiler, which produces a code for the model
checking and discrete controller synthesis tool (4). Hep-
tagon/BZR is currently integrated with ReaX [22] tool. Thus, if
the Heptagon/BZR code translated from the Ctrl-F description
contains a contract with controllable variables, the tool gener-
ates a controller (if there is any) such that the stated properties
are guaranteed (5). Conversely, if there is no need for controller
synthesis, the corresponding tool simply verifies the correctness
of the Heptagon/BZR program. The Heptagon/BZR program
corresponding to the target system model (3) along with the
generated controller (5), if that is the case, are compiled again
with the Heptagon/BZR compiler.

The result of the compilation of an Heptagon/BZR code is a
sequential code (6) in a general-purpose programming language
(in our case Java) comprising two methods: reset and step.
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Figure 16: Ctrl-F Compilation Chain.

The former initializes the internal state of the program, whereas
the latter is executed at each logical step to compute the output
values based on a given vector of input values and the current
state.

These methods are encapsulated by the FraSCAti component
that controls the managed system (7) and they are typically used
by first executing reset and then by enclosing step in an in-
finite loop, in which each iteration corresponds to a reaction to
an event (e.g., oload or uload), as sketched in Listing 11. The
step method returns a set of signals corresponding to the start or
stop of configurations (line 4). From these signals, we can find
the appropriate script that embodies the reconfiguration actions
to be executed (lines 5 and 6).

Listing 11: Control Loop Sketch.

1 reset ();
2 ...
3 on event oload or uload
4 <...,stop_conf1 ,start_conf2 ,...>= step(oload ,

uload);
5 reconfig_script=find_script (..., stop_conf1 ,

start_conf2 ,...);
6 execute(reconfig_script);

5.3. Wrapping the Compilation Result into SCA Components

We wrap the control loop logics into three components,
which are enclosed by a composite named Manager. Com-
ponent EventHandler exposes a service allowing itself to be
sent events (e.g., oload and uload). The method implementing
this service is defined as non-blocking so the incoming events
are stored in a First-In-First-Out queue. Upon the arrival of an
event coming from the Managed System (e.g., Znn.com), com-
ponent EventHandler invokes the step method, implemented by
component Architecture Analyzer. The step method output is
sent to component Reconfigurator, that encompasses a method
to find the proper reconfiguration script to be executed.
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Figure 17: Manager Prototype Wrapping the Control Loop.

6. Case Studies

This section shows the application of Ctrl-F in two different
situations. We first present an adaptive scenario by simulating
the Znn.com case study, whose Ctrl-F model has been already
detailed throughout the previous section. Then when provide a
second case study, in which we apply Ctrl-F in order to control
an application with a workflow of mutually exclusive tasks.

6.1. Case Study 1: Znn.com

W
or

kl
oa

d

Politics Soccer Constraint

 0

 1

 2

 3

 4

 5

R
es

ou
rc

e

 0

 0.5

 0.7

F
id

el
ity

Idle
Text

LD
HD

as
1

Idle
Text

LD
HD

as
2

Idle
Text

LD
HD

as
3

Idle
Text

LD
HD

as
1

Idle
Text

LD
HD

as
2

Idle
Text

LD
HD

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

as
3

Step

Figure 18: Execution of the Znn.com Adaptation Scenario.

We simulate the execution of the two instances of Znn.com
application, namely soccer and politics, under the administra-
tion of the Manager presented in previous section, to observe

the control of reconfigurations taking into account a sequence
of input events. The behaviours of components AppServer and
Znn are stated in Listings 4 and 5, respectively, while policies
are defined in Listing 6 and 7.

As it can be observed in the first chart of Figure 18, we sched-
uled a set of overload (oload) and underload (uload) events
(vertical dashed lines), which simulate an increase followed by
a decrease of the income workload for both soccer and politics
instances. The other charts correspond to the overall resource
consumption, the overall fidelity, and the fidelity level (i.e., con-
figurations text, img-ld or img-hd) of the three instances of com-
ponent AppServer contained in both instances of component
Znn.

As the workload of politics increases, an event of type oload
occurs at step 2. That triggers the reconfiguration of that
instance from conf1 to conf2, that is, one more instance of
AppServer is added within the Znninstance politics. We can
observe also the progression in terms of resource consumption,
as a consequence of this configuration. The same happens with
soccer at step 3, and is repeated with politics and soccer again
at steps 4 and 5. The difference, in this case, is that at step 4,
the politics instance must reconfigure (to conf3) so as to cope
with the current workload while keeping the overall consump-
tion under control. In other words, it forces the AppServer in-
stances as2 and as3 to degrade their fidelity level from img-hd
to img-ld. It should be highlighted that although at least one
of the AppServer instances (as2 or as3) could be at that time at
maximum fidelity level, the knowledge on the possible future
configurations guarantees the maximum overall fidelity for in-
stance soccer to the detriment of a degraded fidelity for instance
politics, while respecting the temporal constraints expressed in
Listing 7. Hence, at step 5, when the last oload event arrives,
the fidelity level of soccer instance is preserved by gradually
decreasing that of politics, that is, both instances as2 and as3
belonging to the politics instance are put in configuration text,
but without jumping directly from from img-hd. At step 9, the
first uload occurs as a consequence of the workload decrease. It
triggers a reconfiguration in the politics instance as it goes from
conf3 to conf2, that is, it releases one instance of AppServer
(as3). The same happens with soccer at step 10, which makes
room on the resources and therefore allows politics to bring
back the fidelity level of its as2 to img-ld, and to the maxi-
mum level again at step 11. This is repeated at steps 13 and
14 for instances politics and soccer respectively, bringing their
consumptions at the same levels as in the beginning.

6.2. Case Study 2: Mutual Exclusive Tasks

Figure 19 presents the example of a workflow, where boxes
represent computing tasks to be executed, and where links are
their execution dependencies from left to right. The application
has parallel branches (indicated by a black dot), where all are
executed starting at the same time. Alternative branches (indi-
cated by a white dot) are also present: one and only of them
will be executed, to be chosen by a controller according to the
environing states and to a given global control objective coordi-
nating parallel activities around constraints. These alternatives
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Figure 19: An Example Application Workflow, Showing Parallel and Alternative Branches.

correspond to the fact that, in a software component-based sys-
tem, a given service or functionality can have different imple-
mentations, or can use different resources. Hence, each task
corresponds to the execution of a components assembly, or pos-
sibly hierarchically to a sub-workflow. When the current situ-
ation is that task Ti j, the jth in branch i, is active, then upon
reception of event ei j, the reaction is to go to the next task in
sequence in the flow (there can possibly be several tasks to start
if there is a parallel branch). This is done by a reconfiguration
from the current global configuration, towards a new configu-
ration where the sub-assembly corresponding to the terminated
task is replaced by the sub-assembly corresponding to the new
ones.

6.2.1. Control Problem
In many cases, constraints forbidding the concurrent execu-

tion of some tasks e.g., because of their combined consumption
of a resource exceeding available capacity, need to be defined.
In this case the control must enforce their exclusivity. In this
example, T13a2 and T22b2 must be kept exclusive. Therefore, a
controller supervising the reconfigurations of the system should
make the appropriate choices when choosing between alterna-
tive implementations of services. An alternative branch should
be entered only if there is no risk that one of its tasks would have
a conflict with another task in a parallel branch. This choice can
be solved simply by having a semaphore-like mechanism, such
that the first of the two tasks to be started would take the re-
source, and the other one, if started before the first one is termi-
nated, must wait for the resource to be released again. However,
this supposes that the starting of the tasks is controllable, which
is not necessarily the case: it can be related to an event that is
uncontrollable and must be answered immediately.

In our case, we consider that only the alternative branches
choice points are controllable. Hence, when the progression in
the workflow reaches a choice point in an alternative branching,
for example b in Figure 19, then the controller must choose the
branch by evaluating the global situation. If there is an exclu-
sivity constraint then:

• if the other choice point a has already been passed then:

– if the branch T13a has been chosen then:

∗ if the other task has not been passed yet there is
a risk of a conflict, therefore the controller must
choose at point b for the branch T22a

∗ else if is terminated then no conflict can occur
anymore, and the choice is free at point b be-
tween T22a and T22b,

– else if the branch T13b has been chosen (for some
other reason) then the choice is free at point b,

• else the choice is open on both sides, and can be decided
either randomly, or based on some other criterion like e.g.,
optimization related to costs of the alternative options.
However, if the control for one alternative chooses to en-
ter one of the branches featuring conflicting components,
then this can constrain the choices allowed for the other
alternative.

This decision clearly has to take into account not only the
current state of active components/configurations and their re-
source consumption, but also the possible future evolutions
which can be predicted according to the structure in branches
of the application behavior.

6.2.2. Ctrl-F Model
The workflow example presented above is described in Ctrl-

F as shown in Listing 12. For sake of simplicity and readability,
we consider a single-component application containing two at-
tributes (r1 and r2), which corresponds to the consumption of
two resources (lines 3 and 4). The component has several con-
figurations (lines 8-21) in which, we specify the levels of con-
sumption of each resource (cf. Table 3 for the complete con-
figurations’ specification). The events leading the system from
one configuration to another are defined in line 6. The mutual
exclusion is specified by a policy (line 26) stating that the sum
of the consumptions of both resources must not exceed a cer-
tain capacity threshold. We also define another policy stating
that the sum of the resource consumptions should be minimized
(line 29).

It is noteworthy that exclusive components/configurations
could be expressed in different ways. For instance, there could
be two sub-components (a and b) , each with a boolean attribute
(r) specifying whether the resource is used or not. Finally, a
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policy at the composite level could make it explicit that a and b,
regardless of their behaviour must not access the resource r, i.e.,
! (a.r and b.r). For pedagogical purposes, we decided
to express the mutual exclusion with numerical attributes and
an explicit parallel behaviour, instead of two sub-components,
which, when instantiated, behave implicitly in parallel (e.g., the
soccer and politics Znn instance in the Znn Case Study).

Listing 12: Architectural Description of Components Application in Ctrl-F.

1 component Application {
2

3 attribute r1
4 attribute r2
5

6 port in e0,e11_12 ,e12_13 ...
7

8 configuration T0 {
9 set r1 to 0.5

10 set r2 to 0.2
11 }
12

13 configuration T11 {
14 set r1 to 0.4
15 set r2 to 0.0
16 }
17

18 configuration T12 { ... }
19 ...
20 configuration T14 { ... }
21 configuration T23 { ... }
22

23 behaviour { ... }
24

25 policy {
26 (r1 + rb) <= 1.0
27 }
28 policy {
29 minimize (r1 + rb)
30 }
31

32 }

The Ctrl-F behavior for the workflow is defined inside the
behaviour block (line 23), which is detailed in Listing 13. It
consists of an outside when-do statement (lines 2-16), compris-
ing a parallel statement, whose operator can be seen in line 10.
Both branches of the parallel statement (lines 3-9 and 11-15) are
composed of sequences of configurations with choice points.
This sub-behaviours are modeled as a set of embedded when-
doand alternative (lines 5 and 12) statements.

6.2.3. Execution
This section shows how the component-based software sys-

tem modeled in Ctrl-F in the previous section reacts to differ-
ent runtime scenarios, i.e., sequences of input events. More
precisely, we want to exploit three scenarios where the policy
could be violated, which implicitly means a violation on the
mutual exclusion constraint between configurations T13a2 and
T22b2: (i) when the choice point a is evaluated before choice
point b; (ii) when the choice point b is evaluated before choice
point a; and when both choice points are evaluated at the same

time. We consider the values for attributes r1 and r2 for each
configuration as shown in Table 3.

Table 3: Workflow Configurations’ Consumption Levels.
Configuration r1 r2 Configuration r1 r2

T0 0.5 0.2 T14 0.25 0.0
T11 0.4 0.0 T21 0.0 0.15
T12 0.2 0.0 T22a 0.0 0.3

T13a1 0.3 0.0 T22b1 0.0 0.2
T13a2 0.7 0.0 T22b2 0.0 0.6
T13b 0.35 0.0 T23 0.0 0.25

Tables 4, 5 and 6 show how the system evolves in terms of
reconfiguration in response to a sequence of input events. The
first row shows the incoming events at each logical time ti. The
second to the thirteenth rows indicate whether each configura-
tion is active, whereas the row shows the sum of both attribute
r1 and r2.

For the first scenario (cf. Table 4) the sequence e0, e11−12
and e12−13 leads the system the choice point a (at step t4) before
the choice point b , which make the controller pick the alter-
native that contains the configuration T13a1 since it minimizes
the sum of attributes r1 and r2. Upon event e21−22, the system is
led to the choice point b (at step t5) and the controller is forced
to pick the alternative containing configuration T22a so as to
respect the exclusion with T13a2 and thus avoid an eventual
policy violation (r1 + r2 > 1.0).

Table 4: Workflow Evolution Under Scenario 1.
t1 t2 t3 t4 t5 t6

Events e0 e11−12 e12−13 e13a1−13a2 e13−14
e21−22 e22−23

T0
T11
T12

T13a1
T13a2
T13b
T14
T21
T22a

T22b1
T22b2
T23

r1+r2 0.7 0.6 0.55 0.6 1.0 0.5

Conversely, the sequence e0 and e21−22/e11−12 (cf. Table 5)
takes the system first to the choice point b (at step t3), which
makes the controller choose the alternative containing T22b1,
since it minimizes the resource consumption at next step. The
next event (e12−13), at step t3, lead the other branch to choice
point a (at step t4). Since, at that point in time, configuration
T22b2 has not yet passed, the controller is forced to pick T13b
in order to respect the mutual exclusion.

Finally, for the third scenario (cf. Table 6), upon events e0,
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Listing 13: Workflow Behaviour in Ctrl-F.

1 behaviour {
2 T0 when e0 do
3 T11 when e11_12 do
4 T12 when e12_13 do
5 ((T13a1 when e13a1_13ea2 do T13a2 end) | T13b) when e13_14 do
6 T14
7 end
8 end
9 end

10 ||
11 T21 when e21_22 do
12 (T22a | (T22b1 when e22b1_22b2 do T22b2 end)) when e22_23 do
13 T23
14 end
15 end
16 end
17 }

Table 5: Workflow Evolution Under Scenario 2.
t1 t2 t3 t4 t5 t6

Events e0 e21−22 e22b1−22b2 e22−23
e11−12 e12−13 e13−14

T0
T11
T12

T13a1
T13a2
T13b
T14
T21
T22a

T22b1
T22b2
T23

r1+r2 0.7 0.6 0.4 0.95 0.5 0.5

e11−12, e12−13 / e21−22, the system is lead to both choice points a
and b at the same time, i.e., at step t3. At that point, the decision
taken by the controller is performed at the same time for both
choice points so that the mutual exclusion is respected and the
sum of resources is minimized. Thus, based on those criteria,
for one branch, the configuration T13b is picked, whereas the
alternative containing configuration T22a1a is chosen for the
other branch.

Although, the scenarios above illustrate situations where ei-
ther T13a2 or T22b2 are executed at the same time, there might
be scenarios where the alternative statement of one branch is ex-
ecuted entirely before the one of the other branch. This means
that the controller may allow the execution of both T13a2 and
T22b2 as soon as the alternative behaviours are not executed at
the same time.

Table 6: Workflow Evolution Under Scenario 3.
t1 t2 t3 t4 t5 t6

Events e0 e11−12 e12−13 e22b1−22b2 e13−14
e21−22 e22−23

T0
T11
T12

T13a1
T13a2
T13b
T14
T21
T22a

T22b1
T22b2
T23

r1+r2 0.7 0.60 0.55 0.55 0.95 0.5

6.3. Summary and Discussion

The control problem posed by software component-based
systems as the ones illustrated in this section requires decision
based upon observation of the current state and past events, but
also prediction of possible futures from the current state. The
manual design and writing of a control program doing this cor-
rectly would be very tedious and error-prone. Especially, ob-
taining a correct controller (which would require verification
by model-checking anyway) is not the ultimate goal: it is im-
portant to have a maximally permissive controller, in order to
keep the maximum flexibility in the execution and be minimally
constraining by forbidding alternative branches only when nec-
essary.

The case studies discussed in this section are very useful to
understand how Ctrl-F and the Manager component that can
be derived from are able to address those problems. First of all,
from the language perspective, Ctrl-F is shown to be very useful
to define self-adaptive component-based software systems in a
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high-level and descriptive manner. From the control-theoretical
point of view, the adaptation scenarios presented in this section
shows in a pedagogical way, how controllers obtained by Ctrl-F
compilation to Heptagon/BZR and DCS are capable to control
reconfigurations by involving an exploration of future branches,
from the current global advancement state, taking into account
all possible event interleavings, and possible control choices in
order to guarantee the stated policies.

7. Related Work

Our work can be compared to a body of work in the do-
mains of Component-based Software Development, Model-
Driven Development and Control.

In the domain of Component-based Software Development,
runtime adaption is classically achieved by first relying on
ADLs such as Acme [16] or Fractal [2] for an initial description
of the software structure and architecture, then by specifying
fine-grained reconfiguration actions with dedicated languages
like Plastik [25] or FPath/FScript [5], or simply by defining
Event-Condition-Actions (ECA) rules to lead the system to the
desired state. A harmful consequence is that the space of reach-
able configuration states is only known as side effect of those
reconfiguration actions, which makes it difficult to ensure cor-
rect adaptive behaviours. Moreover, a drawback of ECA rules
is that, contrary to Ctrl-F, they cannot describe sequences of
configurations. Even though, ECA rules can be expressed in
Ctrl-F with a set of when-do (for the E part) and case (for the C
and A parts) statements in parallel.

Rainbow [8] provides an autonomic framework for Acme
components [16]. A DSL called Stitch is used to express au-
tonomic behaviours (called strategies) in a tree-like manner.
Branches in strategies are selected online by a utility-based al-
gorithm according to runtime conditions. At the end (when it
gets to a leaf in the tree), a strategy is evaluated as successful
or failed and this information is used to improve the selection
algorithm. A body of work [26][27][28][28][29][30][31] focus
on how to plan a set of actions that safely lead component-based
systems to a target configuration. These approaches are com-
plementary to ours in the sense that our focus is on the choice
of a new configuration and its control. Once a new configura-
tion chosen, we rely on existing mechanisms to determine the
plan of action actually leading the system from the current to
the next configuration.

Kouchnarenko and Weber [9] propose the use of temporal
logics to integrate temporal requirements to adaptation poli-
cies in the context of Fractal components [2]. The policies
specify reflection or enforcement mechanisms, which refer re-
spectively to corrective reconfigurations triggered by unwanted
behaviours, and avoidance of reconfigurations leading to un-
wanted states. While in those approaches, enforcement (resp.
decisions over strategies’ branches) and reflection are per-
formed at runtime, in our approach, the decisional part of the
AM is obtained in an off-line manner, through the reactive lan-
guage Heptagon/BZR and by performing DCS. This way, the
exploration of behavioural programs is compiled away, produc-
ing as result a maximal permissive and correct-by-construction

controller that enforces correct autonomic behaviours. That
can be seen as a tremendous advantage, since the formal ex-
ploration can be very costly and exponential in the number of
possible configurations to be performed online, which is even
more complex when the control is required to be least restric-
tive. Conversely, due to model incompleteness and uncertain-
ties inherent to unpredictable environments, assumptions taken
at design time may no longer hold at runtime. One way to mit-
igate this limitation is to have a multi-tier control, as proposed
by D’Ippolito et al. [32]. The idea is that one can define mul-
tiple models and controllers associated to different levels of as-
sumptions (from the least to the most restrictive) and guaran-
teeable functionalities. The level of control is then determined
according to the validity of assumptions at runtime.

In [33][34], feature models are used to express variability in
software systems. At runtime, a resolution mechanism is used
for determining which features should be present so as to con-
stitute configuration. Those approaches rely on Model-Driven
Engineering to ease the mapping between features and architec-
tures as well as to automatically and dynamically generate the
adaptation logics, i.e., the reconfiguration actions leading the
target system from the current to the target configuration. In the
same direction, Pascual et al. [35] propose an approach for opti-
mal resolution of architectural variability specified in the Com-
mon Variability Language (CVL) [36]. A major drawback of
those approaches is that in the adaptation logics specified with
feature models or CVL, there is no way to define stateful adap-
tation behaviours, i.e., sequences of reconfigurations. In fact,
the resolution is generally performed based on the current state
and/or constraints on the feature model. On the contrary, in our
approach, in the underlying reactive model based on FSA, deci-
sions are taken also based on the history and possible futures of
configurations which allows us to define more interesting and
complex behaviours, while providing guarantees on them.

As in our approach, in [37], the authors also rely on
Heptagon/BZR and DCS techniques to model autonomic be-
haviours in the context of Fractal components. An et al. [38]
used Heptagon/BZR to conceive AMs in the context of partially
reconfigurable FPGAs (Field Programmable Gate Arrays). Al-
though those approaches provide us with interesting insights on
how adaptive behaviours can be formalized, there is no general
method allowing for the direct translation from a high-level de-
scription (e.g., ADL) to a synchronous reactive model. It means
that for each new application, the formal model has to be recre-
ated. Moreover, reconfigurations are controlled at the level of
fine-grained reconfiguration actions (e.g., add/remove compo-
nents and bindings), which can be considered time-consuming
and difficult to scale, especially for large-scale architectures. In
comparison, Ctrl-F proposes a set of high-level constructs to
ease the description of adaptation behaviours and policies of
component-based architectures. In addition, we propose an ex-
tensible AM that bridges Ctrl-F and a real component platform.
Delaval et al. [39] propose the use of components to embody
AMs conceived with Heptagon/BZR. The idea is to have modu-
lar controllers that can be coordinated so as to work together in
a coherent manner. The approach is complementary to ours: on
the one hand, it does not provide means to describe behavioural
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programs for those managers, although the authors provide in-
teresting intuitions on a methodology to do so. On the other
hand, our approach does not provide means for the specifica-
tion of the coordination among components’ controllers. We
do believe however that coordination is a major challenge that
has to be tackled by any modular autonomic system. Hence, the
integration of coordination aspects to Ctrl-F and its behavioural
formalization must be considered in future work. Moreover,
modularity seems to be an interesting perspective to mitigate
the scalability issues due to state-space explorations.

8. Conclusion

8.1. Problem Statement Revisited

Reusability, modularity and reconfigurabily are enabling
properties that make component-based architecture a ma-
jor player in providing self-adaptive capabilities to software-
intensive systems. High-level architecture description lan-
guages enable to define initial configurations, but programing
adaptation behaviours is done with low-level fine-grained ac-
tions, which brings complexity, especially in large architec-
tures. Another negative consequence is that the space of reach-
able configurations is only known as a side-effect of those fine-
grained actions, which makes it hard to ensure correctness on
the adaptive behaviours. In fact, such kind of adaptive be-
haviours requires decisions that are taken based not only on
the past/current configurations and incoming events, but also
on possible (reachable) futures configurations in a way to avoid
branches, which, in the future, may lead the system to bad
states.

8.2. Contributions

We tackled these problems by first proposing a high-
level domain-specific language, named Ctrl-F, which allows
for the description of adaptation behaviours and policies of
component-based architectures and then by relying on discrete
control to ensure correct adaptive behaviors. Concretely, we
rely on Heptagon/BZR, a Finite State Automata-based reactive
language, to formally define Ctrl-F’s semantics. The compila-
tion of Heptagon/BZR involves formal tools allowing for veri-
fication and Discrete Controller Synthesis (DCS), which makes
it possible to ensure correct adaptive behaviours of component-
based software systems defined in Ctrl-F. This article extends
previous work [12, 7] by providing a detailed view on the Ctrl-
F language itself, its compilation into Heptagon/BZR and its
implementation and integration with FraSCAti, a Service Com-
ponent Architecture middleware platform. Besides, we applied
Ctrl-F to two cases studies and provided some discussion about
its applicability.

8.3. Perspectives and Future Work

The intrinsic combinatorial complexity of Discrete Con-
troller Synthesis raises some problems regarding the scalability
of the approach. One perspective to be explored to cope with
this issue is to decompose control problems specified in Ctrl-F
in a systematical way, relying on the mechanisms of modular

compilation and modular DCS [39]. That may require some
effort on both the language redefinition and they way it is trans-
lated to Heptagon/BZR. Another important aspect that should
be investigated in this domain is the possibility to make the
adaption policies themselves subject to change, in order to re-
act to changes in operation conditions imposing other proper-
ties than the ones specified at design time. Finally, in some
contexts like in mobile computing, the presence of components
in the system can change, by appearing or disappearing at any
time. Therefore, an important perspective would be to work on
a notion of adaptive control.
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