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Continuous and Unconstrained Vital Signs Monitoring with

Ballistocardiogram Sensors in Headrest Position

Ibrahim Sadek, Member, IEEE, Jit Biswas, Bessam Abdulrazak, Zhang Haihong, Mounir Mokhtari

Abstract— Unobtrusive and long-term monitoring of human
vital signs are essential requirements for early diagnosis and
prophylaxis due to many reasons, one of the most important
being improving the quality of life. Currently, vital signs are
continuously monitored through sensors attached to the body,
such as multiple electrodes for measuring electrical activity of
the heart. Such methods may be undesirable, especially for
elderly, infants and other groups of people. In this paper, we
introduce an improved technique for measuring heart rate
from noisy ballistocardiogram signals acquired from 50 human
volunteers in a sitting position using a massage chair. The
signals are unobtrusively collected from a microbend fiber optic
sensor embedded within the headrest of the chair, and then
transmitted to a computer through a Bluetooth connection. The
heart rate is computed using the multiresolution analysis of the
maximal overlap discrete wavelet transform. The error between
the proposed method and the reference ECG is estimated in
beats per minute using the mean absolute error, where the
system achieved relatively good results (7.31±1.60) despite the
large amount of motion artifacts produced owing to the frequent
body movements and/or vibrations of the massage chair during
stress relief massage. Unlike the complete ensemble empirical
mode decomposition algorithm, previously employed for heart
rate estimation, the suggested system is much faster. Hence, it
can be used in real-time applications.

I. INTRODUCTION

Unobtrusive monitoring of vital signs is an increasing

requirement for the medical community due to a number of

reasons that may be outlined as follows: a) increased need for

the recording of vital signs continuously under normal life

conditions, i.e., for days and weeks, which is not achievable

in hospitals; b) increased numbers of residents at assisted

living facilities and numbers of elderly living alone in their

own homes, caused by rapid increases in the aging population

with need to self-monitor vital signs; c) the increased number

of people with chronic diseases, giving rise to a need for

self and remote monitoring of vital signs [1]; d) increased

need for health care providers to accurately measure vital

signs of their clients; e) the issue of rising health care costs
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France, Institute for Infocomm Research (I2R), Singapore (email:

stuis@i2r-astar.edu.sg)

Jit Biswas is with Information Systems Technology and Design (ISTD),
Singapore University of Technology and Design, Singapore (email:

jit biswas@sutd.edu.sg)

Bessam Abdulrazak is with Department of Computer Science, Fac-
ult des sciences, Universit de Sherbrooke (UdeS), Canada (email:

Bessam.Abdulrazak@usherbrooke.ca)

Zhang Haihong is with Institute for Infocomm Research (I2R), Singapore
(email: hhzhang@i2r.a-star.edu.sg)

Mounir Mokhtari is with Image and Pervasive Access Laboratory (IPAL),
CNRS UMI 2955, Singapore, Institut Mines Télécom, France (email:
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throughout the world [2]. As an example, an elderly person

may have the condition of sleep-disordered breathing (SDB).

The SDB, better known as the obstructive sleep apnea (OSA)

syndrome and associated cardiovascular complications are

one of the most common clinical disorders; OSA is expected

to influence approximately 14% of men and 5% of women

in the general population [3].

The gold-standard approach to diagnose OSA is known as

polysomnography (PSG), the PSG test should be performed

in a specialist sleep clinic for a complete overnight. In

principle, the sleep test includes many sensors placed on the

patient body to record specific body functions such as the

heart’s electrical activity, brain’s electrical activity, breathing,

thoracoabdominal movement, blood oxygen saturation, body

movement, etc. The PSG system provides accurate and

real-time data. However, it imposes many limitations, i.e.,

complexity, invasiveness, high cost, and absence of privacy.

Advanced development in hardware technology and signal

processing tools enables noninvasive and unobtrusive sensing

of vital signs. An alternative approach which may help

diagnose OSA and other cardiovascular diseases, is the

ballistocardiography.

The ballistocardiogram (BCG) signal records the mechanical

activity originating from the rebound of the body, gener-

ated when the blood is pumped out of ventricles into the

large blood vessel synchronous with each heart beat. BCG

sensors such as the microbend fiber, may be embedded in

ambient locations such as mattresses, pillows, chairs, beds,

or even weighing scales [4], in order to measure BCG.

Some common BCG sensing technologies in literature are

microbend fiber optic sensors, fiber Bragg grating sensors,

piezoresistive fabric sensors, electromechanical film and

polyvinylidenefluoride film based sensors [2], [4]. One of

the main advantages of the microbend fiber is that due to

its immunity to electrical and electromagnetic interference it

is a very suitable tool to be implemented in the magnetic

resonance imaging environment.

Other advantages include small size, light weight, and lower

price. Additionally, the sensor is an appropriate choice for

unconstrained continuous monitoring of vital signs as it is

highly sensitive to pressure changes induced due to the

ballistic forces on the heart, while not required to be in close

contact with the body.

The contribution of the current paper is to measure interbeat

intervals (IBIs) from human subjects resting in a massage

chair through a microbend fiber optic sensor (FOS) embed-

ded in the headrest of the chair by utilizing the maximal

overlap discrete wavelet transform (MODWT).
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Fig. 1. Unobtrusive remote monitoring of vital signs.

Fig. 1 emphasizes how the FOS is used in a wellness

application for the unobtrusive monitoring of vital signs.

II. RELATED WORK

In healthy subjects, the electrocardiogram (ECG) signal,

which is considered as a reference to measure IBIs has a

uniform and repeated template known as PQRST complex,

i.e., cardiac cycle. Thus, this property facilitates the mea-

surement of the subject’s heart rate. Unlike ECG signals, the

BCG morphology varies between and within subjects, and

the shape of the signal is highly dependent on the subject’s

positions, i.e., sleeping or sitting. In addition, the raw sig-

nal is noisy and non-stationary owing to body movement,

induced respiratory efforts, and the characteristics of the

sensing system itself. Therefore, estimating IBIs from BCG

signals is a troublesome procedure.

In [5] a translation-invariant adaptive discrete wavelet trans-

form (DWT) is proposed to denoise BCG signals. Then, the

heart rate (HR) is computed using a pseudo-period detection

approach. In [6] DWT is implemented to cancel related BCG

artifacts and a template matching for IBIs detection. The

BCG data is collected from five healthy subjects in a sitting

position using an electromechanical film sensor.

In [7] continuous wavelet transform (CWT) is introduced

for HR and respiratory rate measurements, where in each

case, the scale which matches the periodicity of the signal

is selected. The proposed approach is applied to six healthy

subjects standing on a bathroom scale equipped with multiple

strain gages. A similar approach is proposed in [8], where

authors used CWT with splines for optimal scale selection.

However, this approach required a training phase for parame-

ter initialization. The BCG data is acquired from seven seated

healthy subjects via a piezoelectric sensor. We implemented

multiresolution analysis decomposition using MODWT since

the MODWT overcomes the time variant drawback of the

classical DWT by upsampling the filter coefficients [9].

III. METHODOLOGY

A. Experimental Setup and Data Collection

The configuration of the microbend FOS implemented in

our experiment is shown in Fig. 2. The system encompasses

a mat, which is embedded with microbend FOS and a

transceiver. The FOS data is transmitted wirelessly to a

computer through a Bluetooth connection with a sampling

frequency of 50Hz. If a pressure force is introduced to the

sensing mat, the separation between the two microbenders

(tooth blocks) changes. Hence, the sinusoidal amplitude of

the squeezed multimode optical fiber alternates due to the

ballistic forces on the heart. This ballistic force modulates

the intensity of the light passing through the fiber and this

modulation is subsequently recovered as a ballistocardiogram

signal.
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Fig. 2. Basic microbend fiber optic sensor.

The BCG signals are unobtrusively acquired from a group

of 50 healthy subjects resting in a massage chair, while the

sensor is embedded in the headrest of the chair. During data

acquisition, subjects are instructed to complete predefined

sessions, i.e., answering questionnaires, rest (no movement),

and stress relief massage. At the same time, ECG signals are

also collected to appraise the system performance in the HR

estimation. Fig. 3 shows an example of a BCG signal with

its ECG reference.
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Fig. 3. BCG signal with its reference ECG signal, J-Peaks (dominant BCG
peaks) represent heart beats as similar to R-Peaks in ECG.

Since subjects are performing multiple tasks, there are dif-

ferent scenarios for BCG data acquisition, i.e., good signals,

noisy signals, and no signals. In the first, the subject is sitting

still during the rest period. In the second, during the massage

session, the BCG signal is strongly affected by the chair

vibration. At last, the contact between the sensor mat and

the subject head might be lost while the subject is filling in

the questionnaire.

B. Hardware Description

The introduced algorithm is implemented using MATLAB

(R2015b, MathWorks Inc., MA) on a windows based laptop



platform (Intel core i5-4200U, 2.4GHz and 6GB RAM).

C. Maximal Overlap Discrete Wavelet Transform

Discrete Wavelet transform analysis is an adequate tool

for transforming a time-domain signal into a time-frequency-

domain signal and contrariwise. The maximal overlap dis-

crete wavelet transform shares some common characteristics

with the DWT, i.e., at each stage the input signal is convolved

with a series of low-pass and high-pass filters. However, it

omits the decimation of wavelet coefficients. Although the

MODWT does not provide an orthogonal decomposition,

it has some advantages over the DWT. For example, it

is a translation-invariant approach and can manipulate any

sample size n, which is not necessary to be divisible by two.

Moreover, the detail and smooth coefficients of the MODWT

are affiliated with zero-phase filters. Hence, it is applicable

to align features in a multiresolution analysis in a meaningful

way along with the original time series [9].

The MODWT decomposes a finite time signal Ut into

wavelet coefficients (Wk,t) and approximation coefficients

(Vk,t); k denotes the decomposition level, and t denotes

the time, where k = {1, . . . , K}, t = {1, . . . , N − 1}, K

represents the number of scales, and N denotes the number

of time points.

The MODWT wavelet (Wk,t) and approximation (Vk,t) coef-

ficients for a signal Ut including N time points are derived

as detailed below:

Wk,t =

Lk−1∑

l=0

hk,l · Ut−lmodN (1)

Vk,t =

Lk−1∑

l=0

gk,l · Ut−lmodN (2)

The length of equivalent MODWT wavelet (hk,l), and ap-

proximation (gk,l) filters are defined such as:

Lk = (2k − 1)(L − 1) + 1 (3)

D. Heart Rate Detection

A sliding window of a length (10 seconds/500 samples)

is used to compute the HR for BCG and ECG signals. The

proposed system is presented in Fig. 4 and can be elaborated

as discussed below:

BCG Extraction:
BM & RR 
Removal

Decomposition: 
MRA - MODWT

Level Selection 

Microbend FOS

Heart 
Rate

Fig. 4. The flowchart of the proposed HR estimation method; BM: Body
Movement, RR: Respiratory Rate, and MRA: Multiresolution Analysis.

1) BCG Signal Extraction: The raw data of the microbend

sensor consists of multiple components, i.e., BCG sig-

nals, respiratory signals, and body movements. Body

movements are eliminated using a moving window

of a size 1 second/50 samples with 50% overlap.

Thereafter, for each window if the difference between

the maximum and minimum (range) is greater than

a predetermined threshold, the current window is dis-

carded. The BCG signal is retrieved by employing

a bandpass Butterworth filter with frequency limits

between 1Hz and 10Hz.

2) Decomposition: For each 10 seconds of the BCG

signal, a multiresolution analysis based on MODWT

is applied to decompose the signal into approximation

and detail coefficients.

3) Suitable Level Selection: The 4th level smooth coef-

ficient is preferred for HR computation because the

periodicity of the maxima well matches with the heart

beats as presented in Fig. 5.
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Fig. 5. Symlet-8 MODWT multiresolution decomposition of a BCG signal.

IV. RESULTS AND DISCUSSION

In our study, a MODWT with level four, and 8th order

Symlets (Symlet-8) is applied to a BCG time series of 10

seconds to compute the HR. The Symlet-8 is selected for

the decomposition as discussed in [5], because the outline

of the scaling function is similar to the profile of the BCG

signal. The HR is calculated in beats per minute (BPM) for

the two-time series. The mean and standard deviation (Std)

of the mean absolute error (MAE) between ECG and BCG

signals are computed across all subjects to check the quality

of the proposed approach with regard to HR detection.

The work proposed in [10], [11] suggested to utilize the

complete ensemble empirical mode decomposition with an

adaptive noise (CEEMDAN) method to decompose the BCG

signal into amplitude modulated - frequency modulated

functions known as intrinsic mode functions (IMFs). Then,

selecting the IMF that best represents the heart beats.

The results were promising since the CEEMDAN algorithm

was able to overcome the limitations of the original empirical

mode decomposition (EMD) algorithm such as end effects

and mode mixing. A comparison between the CEEMDAN al-

gorithm and the proposed MODWT multiresolution analysis

is implemented to examine the performance of each method.



TABLE I

THE MEAN AND STD OF ERROR FOR MODWT AND CEEMDAN, AND

THE RUN TIME OVER 10 SECONDS SIGNAL.

MAE (Average) MAE (Std) Run Time (Sec)

MODWT 7.31 1.60 0.04

CEEMDAN 6.81 1.15 20

The CEEMDAN is applied with a noise standard deviation

of 0.35, an ensemble size of 100, and a maximum number of

siftings of 30. Table I presents the mean and Std of the error

for both methods as well as the run time of 10 seconds signal.

In addition, Fig. 6 shows box plots of the average MAE for

MODWT and CEEMDAN methods. Even though the error

of the CEEMDAN algorithm (6.81 ± 1.15) is slightly lower

than the error for the MODWT (7.31 ± 1.60), the MODWT

is much faster than CEEMDAN algorithm. Subsequently, the

MODWT is more suitable for real-time applications.
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Fig. 6. Box plots of the average MAE for both CEEMDAN and MODWT
methods.

In many situations, the MODWT method is able to handle

the motion artifacts originated during the massage session.

As shown in Fig. 7, the algorithm managed to detect all

the corresponding J-Peaks in the noisy BCG signal. On the

other hand, sometimes the MODWT detects more / less peaks

than the reference ECG, which is not taken into account for

HR estimation. Usually, this situation arises because of the

induced motion artifacts. Furthermore, during the massage

period the ECG electrodes might not be attached correctly

to the subject body. As a result, incorrect synchronization

between both signals occurred.

To sum up, in spite of the unstable environment employed

to collect BCG signals, the MODWT managed to deal with

motion artifacts caused by body movements and vibrations

of the massage chair during relief therapy with reasonably

good results.

V. CONCLUSION

In this study, a new approach is developed to measure hu-

man vital signs using BCG signals produced by a microbend

FOS pressure mat embedded in the headrest of a massage

chair. The proposed system is completely noninvasive and

unobtrusive, where no electrodes are attached to the human

body and the data can be transmitted to a personal computer

via a Bluetooth connection or to a server through Wi-Fi.

The HR is computed using multiresolution analysis based
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Fig. 7. BCG signal with the 4th level smooth coefficient during a massage
session.

on MODWT, where the smooth coefficient of the wavelet

decomposition is chosen to compute the HR, since the

periodicity of the local maxima matches with the heart

beats. The MODWT attains relatively good results against the

reference ECG despite the many challenges related to motion

artifacts. The MODWT is much faster than the CEEMDAN

algorithm. Thus, it is an appropriate tool for real-time vital

signs monitoring.
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[7] S. Gilaberte, J. Gómez-Clapers, R. Casanella, and R. Pallas-Areny,

“Heart and respiratory rate detection on a bathroom scale based on
the ballistocardiogram and the continuous wavelet transform,” in 2010

Annual International Conference of the IEEE Engineering in Medicine

and Biology, Aug 2010, pp. 2557–2560.
[8] C. Alvarado-Serrano, P. S. Luna-Lozano, and R. P. As Areny, “An algo-

rithm for beat-to-beat heart rate detection from the bcg based on the
continuous spline wavelet transform,” Biomedical Signal Processing

and Control, vol. 27, pp. 96 – 102, 2016.
[9] D. B. Percival and A. T. Walden, Wavelet methods for time series

analysis. Cambridge university press, 2006, vol. 4.
[10] I. Sadek, J. Biswas, V. F. S. Fook, and M. Mokhtari, “Automatic heart

rate detection from fbg sensors using sensor fusion and enhanced em-
pirical mode decomposition,” in 2015 IEEE International Symposium

on Signal Processing and Information Technology (ISSPIT), Dec 2015,
pp. 349–353.

[11] I. Sadek, J. Biswas, Z. Yongwei, Z. Haihong, J. Maniyeri, C. Zhihao,
T. J. Teng, N. S. Huat, and M. Mokhtari, “Sensor data quality
processing for vital signs with opportunistic ambient sensing,” in 2016

38th Annual International Conference of the IEEE Engineering in

Medicine and Biology Society (EMBC), Aug 2016, pp. 2484–2487.


