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Numerical simulations as well as recent experiments in turbulent three-dimensional flow show a
trend of the gradient of a passive scalar to align with the compressional axis of the strain tensor. In
two-dimensional flow, however, it has been proved that the most probable orientation of the scalar
gradient can be different from the compressional direction. An idealized situation is used to address
this question in the three-dimensional case and to suggest a possible way to reexamine the scalar
gradient alignment in three-dimensional flow. This kind of analysis can be applied to the material
line alignment as well. © 2006 American Institute of Physics. [DOI: 10.1063/1.2196091]

Enhancement of mixing in turbulent flow is closely
linked to gradient amplification through small scale produc-
tion. The mean dissipation rate (e, of the energy of fluctua-
tions of a scalar @ is proportional to the variance of the
fluctuating gradient through (ez)=D{g,g.)>» Where D is the
molecular diffusivity of @ and g;=d6/ dx;. The gradient norm
and thus dissipation are constantly promoted by strain s. This
process is expressed by the positivity of the mean production
term —(g,5,p8p) and is, in fact, a kinematic property of the
scalar field."

Writing the instantaneous production term in the strain
basis reveals that the positivity of its mean value is promoted
by alignment of the scalar gradient with the compressional
direction'

—8aSap8p="—" |g|2[)\1 cos’(e;.g) + \, cos*(e;.8)
+ )3 cos’(e3.8)], (1)

where the strain eigenvalues are such that N\|=N,= N3, A\
=0, Ny=<0, and, if incompressibility is assumed, N;+\,
+A;=0. The strain eigenvectors e, €,, and e define, respec-
tively, the dilatation, “intermediate,” and compression axes
of strain. From Eq. (1) and the signs of the \;’s, it is clear
that the better the alignment of g with e, the more positive
the production term. Alignment properties of the scalar gra-
dient, then, are essential to the mixing process.

Now, in three-dimensional turbulence, numerical
simulations'™ as well as recent experimental data® appear to
show a trend of the scalar gradient to statistically align with
the compressional direction. More precisely, the data only
prove that the scalar gradient better aligns with the compres-
sion axis than with the other strain directions. This also is a
kinematic prope:rty.1 Note that mean shear, however, seems
to weaken the alignment of the gradient with the compres-
sional direction.*”

Even so, the statistical alignment property of the scalar
gradient is actually not easy to explain, for the compressional
direction is in general not a fixed point of the gradient ori-
entation equations. The compressional direction is the stable
fixed point in the special case of a pure, stationary strain, but
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when vorticity and/or rotation of the strain basis also are
present, the existence of an equilibrium orientation for the
gradient is generally not proved.7 Anyway, the equilibrium
orientation, if any, is certainly determined by the combined
actions of strain, effective rotation (i.e., vorticity plus strain
basis rotation), and molecular diffusion and is not the com-
pressional direction.’

This question has already been addressed in two-
dimensional turbulent flow.*’ Numerical simulations have
proved that, in strain-dominated regions, despite a statistical
trend of the scalar gradient to align with the compressional
direction, the most probable orientation is in fact the equilib-
rium direction resulting from the competing effects of strain
and effective rotation. This direction is known as a simple
function of the strain persistence parameter.8 Nevertheless,
the study of Garcia et al."’ suggests that statistical alignment
with either the compressional or the equilibrium direction is
actually governed by the response of the scalar gradient to
Lagrangian fluctuations of strain persistence.

In a three-dimensional flow, the problem is much more
complex. As far as we know, even if molecular diffusion is
neglected, the equilibrium orientation cannot be derived ana-
Iytically in the general case and is a priori unknown. There is
thus no way (from numerical or experimental data) to check
whether or not the scalar gradient statistically aligns with the
equilibrium rather than the compressional direction. In this
Brief Communication, a simplified three-dimensional case is
used to revisit the question of alignment of the scalar gradi-
ent with the eigenvectors of the rate-of-strain tensor and to
propose a way to examine the preferential orientation of the
scalar gradient in a three-dimensional flow.

The flow is assumed to be incompressible. Neglecting
molecular diffusion, the Lagrangian equation for the evolu-
tion of the scalar gradient is

d; 1
—f:—s~g+§w><g. (2)

From Eq. (2), the equations for the components of g in the
strain basis are derived:
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dg; 1
d_tl =-Ngi+ Esmg(wa - Qa)gﬁ’ (3)

in which &;; is the alternating symbol and (); are the com-
ponents of the rotation of the strain principal axes, (),
=2e3-de,/dt, (),=2e,-de;/dt, and 3=2e,-de,/dt. In Eq.
(3), the summation is taken over the greek indexes.

Expressing g in spherical coordinates in Eq. (3), g
=|g|(sin 6 cos ¢,sin ¢,cos O cos ¢p), where ¢ is the angle be-
tween g and its projection on the plane (e;,e;) and @ is the
angle between the latter and the compressional direction de-
fined by es, the equations for the orientation of g in the strain
basis are derived to be

d26 w) — ] tan ¢ sin §— wj tan ¢ cos 6
—=0\-\y) :
dt N — N3

—sin 20), 4)
d2

d_t(ﬁ = (A, sin® O\, + \5 cos® )

( w} sin 6— | cos 6
A, sin? =\, + A5 cos” 6

+ sin 2¢> , (5)

with o/ =w;—(); and ¢ # 7/2. The system of Eqs. (4) and (5)
describe the complex behavior of the scalar gradient orienta-
tion under the combined actions of strain and effective rota-
tion.

We now assume that vorticity is aligned with a strain
eigenvector, namely e,; the approach is of course similar
(although the results can slightly differ) if e is aligned with
e, or e; (angles 0 and ¢ being appropriately defined). This
hypothesis leads to a great simplification, for it is mostly
misalignment of vorticity with respect to the strain directions
that makes the three-dimensional case difficult. It is, how-
ever, relevant insofar as vorticity statistically tends to align
it is relevant as well in the context of vortex
models such as Burgers’ and Lundgren’sm’14 in which vortic-
ity is fully aligned with a strain eigenvector. Although the
case under study is idealized, it is a necessary step in at-
tempting to analyze more rigorously the scalar gradient
alignment in a three-dimensional flow.

If the fluid is assumed to be inviscid, the );’s result from
two contributions, namely the local action of vorticity ex-
pressed by quadratic terms in w;w; and the nonlocal influence
of pressure represented by the off-diagonal components of
the pressure Hessian IT in the strain basis’

wawp/4 +11,5
Qi= .

— &
afi )\a_)\ﬁ

In a Euler flow, alignment of vorticity with a strain eigenvec-
tor is maintained, which implies that rotation of the strain
axes is caused by nonlocal effects only. Alignment of vortic-
ity with e, indeed leads to the following: (i) quadratic vor-
ticity terms vanish and (ii) vorticity is also an eigenvector of
the pressure Hessian"> (which requires the fluid to be invis-
cid). From (ii), e, is an eigenvector of II and then I,
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=I1,3=0, which finally leads to w;=w;=0 and w)=w,
+210,3/ (A3 =\,).

Equations (4) and (5) become simplified and, defining
{=260-m/2 and normalizing the time by A;—\3, they can be
written in the form

d{
=R , 6
7 ry—cos { (6)
a2 1
2¢ _ —(sin £ = 3\})sin 246, (7)
dr 2
in which
t ’ )\
T=J ()\1—)\3)d[,, r2= “)2 N )\;= 2 .
0 A=Az A= A3

Time ¢ is the Lagrangian time. The dimensionless time, 7, is
related to the strain-rate history experienced by a fluid par-
ticle. Parameter r, defines strain persistence.7_9

The analysis does not account for molecular and viscous
effects. Previous studies®™ have shown that the former do not
significantly influence scalar gradient orientation properties
as far as large gradients are considered. The latter are ex-
pected not to play a lot provided the Reynolds number is
large enough.

Although the flow is not assumed to be locally two di-
mensional, Eq. (6) is similar to the equation for the scalar
gradient orientation in a two-dimensional flow.*” The two-
dimensional case is retrieved if ¢=0 and \,=0 (which im-
plies \;==\3).

If 5<1, Eq. (6) has a stable fixed point defined by Leq
=—arccos r,, which (for ¢=0) corresponds to the compres-
sional direction in the special case r2=0.8’9 Note that { can
be constantly close to its equilibrium value even for a time-
varying r,; this occurs provided the time scale of r, fluctua-
tions is large enough compared to the gradient response time
scale, which here is of the order of ()\1—)\3)‘1.10 For r%: 1,
the equilibrium direction makes an angle of /4 with axes e
and e; whereas for r%>l rotation prevails and there is no
stable orientation.®

While an equation similar to Eq. (6) has already been
derived in two-dimensional flows,® Eq. (7) is specific to the
present three-dimensional case. The value ¢=0, correspond-
ing to a scalar gradient oriented in the plane (e;,es), is a
fixed point of Eq. (7). It is a stable fixed point if sin {—3\}
<0. In particular, if {={.q, then ¢=0 is a stable fixed point
provided (1—73)"2+3)\5>0. As a consequence, if strain pre-
vails (r§< 1) and vorticity is positively stretched (A,>0),
the scalar gradient tends to the plane normal to vorticity, that
is, (£, ¢) tends to ({eq,0). If N, <0, the scalar gradient does
not necessarily tend to be normal to e,. Nevertheless, in this
case, this trend is promoted by small r, values.

The same method can be used for the material line. In
particular, it is found that if 3<<1 and (1-73)"?=3\5>0,
the material line has a stable equilibrium orientation defined
by Sge:—arccos(—rz) and ¢=0. The material line behavior
is opposite to that derived for the scalar gradient. If r%< 1,
the material line tends to its equilibrium orientation in the
plane normal to e, for N\, <<0; for A, >0, it does not neces-
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FIG. 1. Evolution of scalar gradient orientation in restricted Euler dynamics
for aligned vorticity; initial conditions: g;(0): 1/v2; 1/v2; 0; w;(0): 0; 3; 0;
Ni(0): 2.4; 0.2; =2.6.

sarily tend to be normal to e,. The combined effects of strain
and effective rotation on material lines alignment were stud-
ied by Dresselhaus and Tabor.'®

If vorticity is assumed to be aligned with e, instead of
e,, a similar analysis shows that when rf<1 [with r,
=w(/(N\y—\3)], the scalar gradient necessarily tends toward
the plane normal to e; because (1-7r7)"2+3\1>0 is always
true [AT=N;/(N\;—=\3) >0]. On the contrary, in this case, the
material line never tends to be normal to e; because (1
—r)2_3\1>0 is never verified (it is easy to show that
3NT>1).

Different possible trends can be derived from Egs. (6)
and (7) provided r, is constant or at least varies on a time
scale larger than the gradient response time scale. The scalar
gradient can tend to a stable direction in the plane normal to
e, or rotate in the latter; it can also tend to become parallel to
e, (when ¢=0 is not a stable fixed point) either rotating
around the latter or keeping angle # constant. In the case
where the gradient tends to align with e,, however, the
asymptotic state is such that either |g|=0 (if \,>0) or ||
=0 (if \,<0). These trends have been checked in the sim-
plified case of a “frozen” velocity gradient tensor.

Neglecting the off-diagonal part of the pressure Hessian
would lead to a restricted Euler (RE) approximation17 of the
present approach. With vorticity parallel to a strain eigenvec-
tor, the latter implies that there is no rotation of the strain
axes and strain persistence thus reduces to r,=w,/(A;—\3).
Then, from the RE equations for w,, \; and )\3,18 it is
straightforward to demonstrate (and thus not reported here)
that r, is constant in time. Figure 1 displays the evolution of
the scalar gradient toward the stable equilibrium orientation
({eq=—arccos 0.6, =0) (which is different from the com-
pressional direction {.) in the case where the conditions are
such that r,=0.6 and ¢=0 is a stable fixed point [i.e., (1
—13)'243\5>0]. These results have been derived by solving
the equations for the gradient components together with the
RE equations for vorticity and strain eigenvalues. They show
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that the scalar gradient behavior in RE dynamics is consis-
tent with the present approach.

Finally, in this simplified situation where vorticity is
aligned with a strain eigenvector, it appears that the compres-
sional direction is not the equilibrium orientation of the sca-
lar gradient except in the special case of fully persistent
strain (r,=0). There is thus no reason for compression to
correspond to the equilibrium orientation in the general case
of misaligned vorticity. The common view of a trend to
alignment with the compressional direction can therefore be
questioned.

Admittedly, the gradient equilibrium orientation must be
close to the compressional direction in high strain regions. In
the present simple case, the angle between e; and the actual
equilibrium direction in the plane (e;,es) is smaller than 10°
for r,<<0.35. Most likely, slight differences between the
compressional and equilibrium directions are not observed
when plotting, as is usual, the probability density function
(pdf) of the cosine of angles instead of the pdf of angles
themselves. In regions where strain is moderately large, how-
ever, the difference between both directions is not negligible
and tends to 7/4 for r, close to unity. The pdf of r, is
therefore crucial; a pdf sharply peaked on zero would imply
that the equilibrium orientation is always close to the com-
pressional direction. Nevertheless, numerical simulations of
two-dimensional turbulence show that the pdf of strain per-
sistence is rather well distributed around zero.®

It is precisely in the two-dimensional case that statistical
alignment with the equilibrium orientation depending on lo-
cal strain persistence has been clearly revealed.*” Even so,
Garcia er al.'’ have recently shown that the Lagrangian
variations of strain persistence r have to occur on a time
scale larger than the response time scale of the scalar gradi-
ent (which is of the order of ¢! where o is the strain inten-
sity) for the latter to be constantly close to the equilibrium
orientation defined by the instantaneous r. In the opposite
case, when strain persistence is fluctuating rapidly with re-
spect to the gradient response, the preferential alignment is
determined by (r) as {,y=—arccos(r). Then, if (r)=0, the
preferential orientation turns out to be the compressional di-
rection; this is not because it corresponds to any equilibrium,
but just for the reason that the scalar gradient does not keep
up with r fluctuations and only feels (r).

A similar behavior in the three-dimensional case would
imply a possible alignment of the scalar gradient with an
equilibrium direction different from the compressional one
(at least in strain-dominated regions) if its time response is
small enough compared to the time scale of the Lagrangian
fluctuations of strain persistence (which, of course, is in gen-
eral much more difficult to define than in the two-
dimensional case). This would not be inconsistent with a
trend of alignment with the compressional direction, but
would just mean the latter is not the most probable one. If,
by contrast, the response of the gradient to strain persistence
fluctuations is poor, the compressional direction could be the
preferential orientation although it is not the equilibrium one.

To summarize, this analysis shows that in three-
dimensional flow it is still not proved whether or not the
compressional direction is the most probable orientation for
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the scalar gradient. This is confirmed, in particular, in the
case of the restricted Euler model. A work-in-progress on
passive scalar gradient behavior in Burgers’ vortex tubes
leads to the same conclusion.

Questions remain also regarding the actual mechanism
that would impose the compression axis as the preferential
orientation. A way of shedding some light on the problem
could consist in using three-dimensional, turbulent, Lagrang-
ian data conditioned on persistent alignment of vorticity with
a strain eigenvector as recently done by Guala et al. " In the
case of strict enough alignment of vorticity, the equilibrium
direction could be estimated and the alignments of a scalar
gradient with either the latter or the compressional direction
could be statistically compared. A similar study could of
course be undertaken for the material line by comparing
alignment with either the extensional direction or the actual
equilibrium orientation.
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